xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision f70e39ec173192058976805a2c51ac438bb2ff2f)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/EHPersonalities.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <type_traits>
75 #include <utility>
76 #include <vector>
77 
78 #include "LiveDebugValues/LiveDebugValues.h"
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "codegen"
83 
84 static cl::opt<unsigned> AlignAllFunctions(
85     "align-all-functions",
86     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87              "means align on 16B boundaries)."),
88     cl::init(0), cl::Hidden);
89 
90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91   using P = MachineFunctionProperties::Property;
92 
93   // clang-format off
94   switch(Prop) {
95   case P::FailedISel: return "FailedISel";
96   case P::IsSSA: return "IsSSA";
97   case P::Legalized: return "Legalized";
98   case P::NoPHIs: return "NoPHIs";
99   case P::NoVRegs: return "NoVRegs";
100   case P::RegBankSelected: return "RegBankSelected";
101   case P::Selected: return "Selected";
102   case P::TracksLiveness: return "TracksLiveness";
103   case P::TiedOpsRewritten: return "TiedOpsRewritten";
104   case P::FailsVerification: return "FailsVerification";
105   case P::TracksDebugUserValues: return "TracksDebugUserValues";
106   }
107   // clang-format on
108   llvm_unreachable("Invalid machine function property");
109 }
110 
111 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
112   if (!F.hasFnAttribute(Attribute::SafeStack))
113     return;
114 
115   auto *Existing =
116       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
117 
118   if (!Existing || Existing->getNumOperands() != 2)
119     return;
120 
121   auto *MetadataName = "unsafe-stack-size";
122   if (auto &N = Existing->getOperand(0)) {
123     if (N.equalsStr(MetadataName)) {
124       if (auto &Op = Existing->getOperand(1)) {
125         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
126         FrameInfo.setUnsafeStackSize(Val);
127       }
128     }
129   }
130 }
131 
132 // Pin the vtable to this file.
133 void MachineFunction::Delegate::anchor() {}
134 
135 void MachineFunctionProperties::print(raw_ostream &OS) const {
136   const char *Separator = "";
137   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
138     if (!Properties[I])
139       continue;
140     OS << Separator << getPropertyName(static_cast<Property>(I));
141     Separator = ", ";
142   }
143 }
144 
145 //===----------------------------------------------------------------------===//
146 // MachineFunction implementation
147 //===----------------------------------------------------------------------===//
148 
149 // Out-of-line virtual method.
150 MachineFunctionInfo::~MachineFunctionInfo() = default;
151 
152 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
153   MBB->getParent()->deleteMachineBasicBlock(MBB);
154 }
155 
156 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
157                                            const Function &F) {
158   if (auto MA = F.getFnStackAlign())
159     return *MA;
160   return STI->getFrameLowering()->getStackAlign();
161 }
162 
163 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
164                                  const TargetSubtargetInfo &STI,
165                                  unsigned FunctionNum, MachineModuleInfo &mmi)
166     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
167   FunctionNumber = FunctionNum;
168   init();
169 }
170 
171 void MachineFunction::handleInsertion(MachineInstr &MI) {
172   if (TheDelegate)
173     TheDelegate->MF_HandleInsertion(MI);
174 }
175 
176 void MachineFunction::handleRemoval(MachineInstr &MI) {
177   if (TheDelegate)
178     TheDelegate->MF_HandleRemoval(MI);
179 }
180 
181 void MachineFunction::handleChangeDesc(MachineInstr &MI,
182                                        const MCInstrDesc &TID) {
183   if (TheDelegate)
184     TheDelegate->MF_HandleChangeDesc(MI, TID);
185 }
186 
187 void MachineFunction::init() {
188   // Assume the function starts in SSA form with correct liveness.
189   Properties.set(MachineFunctionProperties::Property::IsSSA);
190   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
191   if (STI->getRegisterInfo())
192     RegInfo = new (Allocator) MachineRegisterInfo(this);
193   else
194     RegInfo = nullptr;
195 
196   MFInfo = nullptr;
197 
198   // We can realign the stack if the target supports it and the user hasn't
199   // explicitly asked us not to.
200   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
201                       !F.hasFnAttribute("no-realign-stack");
202   FrameInfo = new (Allocator) MachineFrameInfo(
203       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
204       /*ForcedRealign=*/CanRealignSP &&
205           F.hasFnAttribute(Attribute::StackAlignment));
206 
207   setUnsafeStackSize(F, *FrameInfo);
208 
209   if (F.hasFnAttribute(Attribute::StackAlignment))
210     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
211 
212   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
213   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
214 
215   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
216   // FIXME: Use Function::hasOptSize().
217   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
218     Alignment = std::max(Alignment,
219                          STI->getTargetLowering()->getPrefFunctionAlignment());
220 
221   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
222   // to load a type hash before the function label. Ensure functions are aligned
223   // by a least 4 to avoid unaligned access, which is especially important for
224   // -mno-unaligned-access.
225   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
226       F.getMetadata(LLVMContext::MD_kcfi_type))
227     Alignment = std::max(Alignment, Align(4));
228 
229   if (AlignAllFunctions)
230     Alignment = Align(1ULL << AlignAllFunctions);
231 
232   JumpTableInfo = nullptr;
233 
234   if (isFuncletEHPersonality(classifyEHPersonality(
235           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
236     WinEHInfo = new (Allocator) WinEHFuncInfo();
237   }
238 
239   if (isScopedEHPersonality(classifyEHPersonality(
240           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
241     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
242   }
243 
244   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
245          "Can't create a MachineFunction using a Module with a "
246          "Target-incompatible DataLayout attached\n");
247 
248   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
249 }
250 
251 void MachineFunction::initTargetMachineFunctionInfo(
252     const TargetSubtargetInfo &STI) {
253   assert(!MFInfo && "MachineFunctionInfo already set");
254   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
255 }
256 
257 MachineFunction::~MachineFunction() {
258   clear();
259 }
260 
261 void MachineFunction::clear() {
262   Properties.reset();
263   // Don't call destructors on MachineInstr and MachineOperand. All of their
264   // memory comes from the BumpPtrAllocator which is about to be purged.
265   //
266   // Do call MachineBasicBlock destructors, it contains std::vectors.
267   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
268     I->Insts.clearAndLeakNodesUnsafely();
269   MBBNumbering.clear();
270 
271   InstructionRecycler.clear(Allocator);
272   OperandRecycler.clear(Allocator);
273   BasicBlockRecycler.clear(Allocator);
274   CodeViewAnnotations.clear();
275   VariableDbgInfos.clear();
276   if (RegInfo) {
277     RegInfo->~MachineRegisterInfo();
278     Allocator.Deallocate(RegInfo);
279   }
280   if (MFInfo) {
281     MFInfo->~MachineFunctionInfo();
282     Allocator.Deallocate(MFInfo);
283   }
284 
285   FrameInfo->~MachineFrameInfo();
286   Allocator.Deallocate(FrameInfo);
287 
288   ConstantPool->~MachineConstantPool();
289   Allocator.Deallocate(ConstantPool);
290 
291   if (JumpTableInfo) {
292     JumpTableInfo->~MachineJumpTableInfo();
293     Allocator.Deallocate(JumpTableInfo);
294   }
295 
296   if (WinEHInfo) {
297     WinEHInfo->~WinEHFuncInfo();
298     Allocator.Deallocate(WinEHInfo);
299   }
300 
301   if (WasmEHInfo) {
302     WasmEHInfo->~WasmEHFuncInfo();
303     Allocator.Deallocate(WasmEHInfo);
304   }
305 }
306 
307 const DataLayout &MachineFunction::getDataLayout() const {
308   return F.getParent()->getDataLayout();
309 }
310 
311 /// Get the JumpTableInfo for this function.
312 /// If it does not already exist, allocate one.
313 MachineJumpTableInfo *MachineFunction::
314 getOrCreateJumpTableInfo(unsigned EntryKind) {
315   if (JumpTableInfo) return JumpTableInfo;
316 
317   JumpTableInfo = new (Allocator)
318     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
319   return JumpTableInfo;
320 }
321 
322 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
323   return F.getDenormalMode(FPType);
324 }
325 
326 /// Should we be emitting segmented stack stuff for the function
327 bool MachineFunction::shouldSplitStack() const {
328   return getFunction().hasFnAttribute("split-stack");
329 }
330 
331 [[nodiscard]] unsigned
332 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
333   FrameInstructions.push_back(Inst);
334   return FrameInstructions.size() - 1;
335 }
336 
337 /// This discards all of the MachineBasicBlock numbers and recomputes them.
338 /// This guarantees that the MBB numbers are sequential, dense, and match the
339 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
340 /// is specified, only that block and those after it are renumbered.
341 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
342   if (empty()) { MBBNumbering.clear(); return; }
343   MachineFunction::iterator MBBI, E = end();
344   if (MBB == nullptr)
345     MBBI = begin();
346   else
347     MBBI = MBB->getIterator();
348 
349   // Figure out the block number this should have.
350   unsigned BlockNo = 0;
351   if (MBBI != begin())
352     BlockNo = std::prev(MBBI)->getNumber() + 1;
353 
354   for (; MBBI != E; ++MBBI, ++BlockNo) {
355     if (MBBI->getNumber() != (int)BlockNo) {
356       // Remove use of the old number.
357       if (MBBI->getNumber() != -1) {
358         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
359                "MBB number mismatch!");
360         MBBNumbering[MBBI->getNumber()] = nullptr;
361       }
362 
363       // If BlockNo is already taken, set that block's number to -1.
364       if (MBBNumbering[BlockNo])
365         MBBNumbering[BlockNo]->setNumber(-1);
366 
367       MBBNumbering[BlockNo] = &*MBBI;
368       MBBI->setNumber(BlockNo);
369     }
370   }
371 
372   // Okay, all the blocks are renumbered.  If we have compactified the block
373   // numbering, shrink MBBNumbering now.
374   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
375   MBBNumbering.resize(BlockNo);
376 }
377 
378 /// This method iterates over the basic blocks and assigns their IsBeginSection
379 /// and IsEndSection fields. This must be called after MBB layout is finalized
380 /// and the SectionID's are assigned to MBBs.
381 void MachineFunction::assignBeginEndSections() {
382   front().setIsBeginSection();
383   auto CurrentSectionID = front().getSectionID();
384   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
385     if (MBBI->getSectionID() == CurrentSectionID)
386       continue;
387     MBBI->setIsBeginSection();
388     std::prev(MBBI)->setIsEndSection();
389     CurrentSectionID = MBBI->getSectionID();
390   }
391   back().setIsEndSection();
392 }
393 
394 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
395 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
396                                                   DebugLoc DL,
397                                                   bool NoImplicit) {
398   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
399       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
400 }
401 
402 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
403 /// identical in all ways except the instruction has no parent, prev, or next.
404 MachineInstr *
405 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
406   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
407              MachineInstr(*this, *Orig);
408 }
409 
410 MachineInstr &MachineFunction::cloneMachineInstrBundle(
411     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
412     const MachineInstr &Orig) {
413   MachineInstr *FirstClone = nullptr;
414   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
415   while (true) {
416     MachineInstr *Cloned = CloneMachineInstr(&*I);
417     MBB.insert(InsertBefore, Cloned);
418     if (FirstClone == nullptr) {
419       FirstClone = Cloned;
420     } else {
421       Cloned->bundleWithPred();
422     }
423 
424     if (!I->isBundledWithSucc())
425       break;
426     ++I;
427   }
428   // Copy over call site info to the cloned instruction if needed. If Orig is in
429   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
430   // the bundle.
431   if (Orig.shouldUpdateCallSiteInfo())
432     copyCallSiteInfo(&Orig, FirstClone);
433   return *FirstClone;
434 }
435 
436 /// Delete the given MachineInstr.
437 ///
438 /// This function also serves as the MachineInstr destructor - the real
439 /// ~MachineInstr() destructor must be empty.
440 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
441   // Verify that a call site info is at valid state. This assertion should
442   // be triggered during the implementation of support for the
443   // call site info of a new architecture. If the assertion is triggered,
444   // back trace will tell where to insert a call to updateCallSiteInfo().
445   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
446          "Call site info was not updated!");
447   // Strip it for parts. The operand array and the MI object itself are
448   // independently recyclable.
449   if (MI->Operands)
450     deallocateOperandArray(MI->CapOperands, MI->Operands);
451   // Don't call ~MachineInstr() which must be trivial anyway because
452   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
453   // destructors.
454   InstructionRecycler.Deallocate(Allocator, MI);
455 }
456 
457 /// Allocate a new MachineBasicBlock. Use this instead of
458 /// `new MachineBasicBlock'.
459 MachineBasicBlock *
460 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
461                                          std::optional<UniqueBBID> BBID) {
462   MachineBasicBlock *MBB =
463       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
464           MachineBasicBlock(*this, BB);
465   // Set BBID for `-basic-block=sections=labels` and
466   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
467   // blocks.
468   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
469       Target.getBBSectionsType() == BasicBlockSection::List)
470     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
471   return MBB;
472 }
473 
474 /// Delete the given MachineBasicBlock.
475 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
476   assert(MBB->getParent() == this && "MBB parent mismatch!");
477   // Clean up any references to MBB in jump tables before deleting it.
478   if (JumpTableInfo)
479     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
480   MBB->~MachineBasicBlock();
481   BasicBlockRecycler.Deallocate(Allocator, MBB);
482 }
483 
484 MachineMemOperand *MachineFunction::getMachineMemOperand(
485     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
486     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
487     SyncScope::ID SSID, AtomicOrdering Ordering,
488     AtomicOrdering FailureOrdering) {
489   return new (Allocator)
490       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
491                         SSID, Ordering, FailureOrdering);
492 }
493 
494 MachineMemOperand *MachineFunction::getMachineMemOperand(
495     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
496     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
497     SyncScope::ID SSID, AtomicOrdering Ordering,
498     AtomicOrdering FailureOrdering) {
499   return new (Allocator)
500       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
501                         Ordering, FailureOrdering);
502 }
503 
504 MachineMemOperand *MachineFunction::getMachineMemOperand(
505     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
506   return new (Allocator)
507       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
508                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
509                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
510 }
511 
512 MachineMemOperand *MachineFunction::getMachineMemOperand(
513     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
514   return new (Allocator)
515       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
516                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
517                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
518 }
519 
520 MachineMemOperand *
521 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
522                                       int64_t Offset, LLT Ty) {
523   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
524 
525   // If there is no pointer value, the offset isn't tracked so we need to adjust
526   // the base alignment.
527   Align Alignment = PtrInfo.V.isNull()
528                         ? commonAlignment(MMO->getBaseAlign(), Offset)
529                         : MMO->getBaseAlign();
530 
531   // Do not preserve ranges, since we don't necessarily know what the high bits
532   // are anymore.
533   return new (Allocator) MachineMemOperand(
534       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
535       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
536       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
537 }
538 
539 MachineMemOperand *
540 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
541                                       const AAMDNodes &AAInfo) {
542   MachinePointerInfo MPI = MMO->getValue() ?
543              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
544              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
545 
546   return new (Allocator) MachineMemOperand(
547       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
548       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
549       MMO->getFailureOrdering());
550 }
551 
552 MachineMemOperand *
553 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
554                                       MachineMemOperand::Flags Flags) {
555   return new (Allocator) MachineMemOperand(
556       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
557       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
558       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
559 }
560 
561 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
562     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
563     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
564     uint32_t CFIType) {
565   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
566                                          PostInstrSymbol, HeapAllocMarker,
567                                          PCSections, CFIType);
568 }
569 
570 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
571   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
572   llvm::copy(Name, Dest);
573   Dest[Name.size()] = 0;
574   return Dest;
575 }
576 
577 uint32_t *MachineFunction::allocateRegMask() {
578   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
579   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
580   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
581   memset(Mask, 0, Size * sizeof(Mask[0]));
582   return Mask;
583 }
584 
585 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
586   int* AllocMask = Allocator.Allocate<int>(Mask.size());
587   copy(Mask, AllocMask);
588   return {AllocMask, Mask.size()};
589 }
590 
591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
592 LLVM_DUMP_METHOD void MachineFunction::dump() const {
593   print(dbgs());
594 }
595 #endif
596 
597 StringRef MachineFunction::getName() const {
598   return getFunction().getName();
599 }
600 
601 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
602   OS << "# Machine code for function " << getName() << ": ";
603   getProperties().print(OS);
604   OS << '\n';
605 
606   // Print Frame Information
607   FrameInfo->print(*this, OS);
608 
609   // Print JumpTable Information
610   if (JumpTableInfo)
611     JumpTableInfo->print(OS);
612 
613   // Print Constant Pool
614   ConstantPool->print(OS);
615 
616   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
617 
618   if (RegInfo && !RegInfo->livein_empty()) {
619     OS << "Function Live Ins: ";
620     for (MachineRegisterInfo::livein_iterator
621          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
622       OS << printReg(I->first, TRI);
623       if (I->second)
624         OS << " in " << printReg(I->second, TRI);
625       if (std::next(I) != E)
626         OS << ", ";
627     }
628     OS << '\n';
629   }
630 
631   ModuleSlotTracker MST(getFunction().getParent());
632   MST.incorporateFunction(getFunction());
633   for (const auto &BB : *this) {
634     OS << '\n';
635     // If we print the whole function, print it at its most verbose level.
636     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
637   }
638 
639   OS << "\n# End machine code for function " << getName() << ".\n\n";
640 }
641 
642 /// True if this function needs frame moves for debug or exceptions.
643 bool MachineFunction::needsFrameMoves() const {
644   return getMMI().hasDebugInfo() ||
645          getTarget().Options.ForceDwarfFrameSection ||
646          F.needsUnwindTableEntry();
647 }
648 
649 namespace llvm {
650 
651   template<>
652   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
653     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
654 
655     static std::string getGraphName(const MachineFunction *F) {
656       return ("CFG for '" + F->getName() + "' function").str();
657     }
658 
659     std::string getNodeLabel(const MachineBasicBlock *Node,
660                              const MachineFunction *Graph) {
661       std::string OutStr;
662       {
663         raw_string_ostream OSS(OutStr);
664 
665         if (isSimple()) {
666           OSS << printMBBReference(*Node);
667           if (const BasicBlock *BB = Node->getBasicBlock())
668             OSS << ": " << BB->getName();
669         } else
670           Node->print(OSS);
671       }
672 
673       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
674 
675       // Process string output to make it nicer...
676       for (unsigned i = 0; i != OutStr.length(); ++i)
677         if (OutStr[i] == '\n') {                            // Left justify
678           OutStr[i] = '\\';
679           OutStr.insert(OutStr.begin()+i+1, 'l');
680         }
681       return OutStr;
682     }
683   };
684 
685 } // end namespace llvm
686 
687 void MachineFunction::viewCFG() const
688 {
689 #ifndef NDEBUG
690   ViewGraph(this, "mf" + getName());
691 #else
692   errs() << "MachineFunction::viewCFG is only available in debug builds on "
693          << "systems with Graphviz or gv!\n";
694 #endif // NDEBUG
695 }
696 
697 void MachineFunction::viewCFGOnly() const
698 {
699 #ifndef NDEBUG
700   ViewGraph(this, "mf" + getName(), true);
701 #else
702   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
703          << "systems with Graphviz or gv!\n";
704 #endif // NDEBUG
705 }
706 
707 /// Add the specified physical register as a live-in value and
708 /// create a corresponding virtual register for it.
709 Register MachineFunction::addLiveIn(MCRegister PReg,
710                                     const TargetRegisterClass *RC) {
711   MachineRegisterInfo &MRI = getRegInfo();
712   Register VReg = MRI.getLiveInVirtReg(PReg);
713   if (VReg) {
714     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
715     (void)VRegRC;
716     // A physical register can be added several times.
717     // Between two calls, the register class of the related virtual register
718     // may have been constrained to match some operation constraints.
719     // In that case, check that the current register class includes the
720     // physical register and is a sub class of the specified RC.
721     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
722                              RC->hasSubClassEq(VRegRC))) &&
723             "Register class mismatch!");
724     return VReg;
725   }
726   VReg = MRI.createVirtualRegister(RC);
727   MRI.addLiveIn(PReg, VReg);
728   return VReg;
729 }
730 
731 /// Return the MCSymbol for the specified non-empty jump table.
732 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
733 /// normal 'L' label is returned.
734 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
735                                         bool isLinkerPrivate) const {
736   const DataLayout &DL = getDataLayout();
737   assert(JumpTableInfo && "No jump tables");
738   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
739 
740   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
741                                      : DL.getPrivateGlobalPrefix();
742   SmallString<60> Name;
743   raw_svector_ostream(Name)
744     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
745   return Ctx.getOrCreateSymbol(Name);
746 }
747 
748 /// Return a function-local symbol to represent the PIC base.
749 MCSymbol *MachineFunction::getPICBaseSymbol() const {
750   const DataLayout &DL = getDataLayout();
751   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
752                                Twine(getFunctionNumber()) + "$pb");
753 }
754 
755 /// \name Exception Handling
756 /// \{
757 
758 LandingPadInfo &
759 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
760   unsigned N = LandingPads.size();
761   for (unsigned i = 0; i < N; ++i) {
762     LandingPadInfo &LP = LandingPads[i];
763     if (LP.LandingPadBlock == LandingPad)
764       return LP;
765   }
766 
767   LandingPads.push_back(LandingPadInfo(LandingPad));
768   return LandingPads[N];
769 }
770 
771 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
772                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
773   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
774   LP.BeginLabels.push_back(BeginLabel);
775   LP.EndLabels.push_back(EndLabel);
776 }
777 
778 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
779   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
780   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
781   LP.LandingPadLabel = LandingPadLabel;
782 
783   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
784   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
785     // If there's no typeid list specified, then "cleanup" is implicit.
786     // Otherwise, id 0 is reserved for the cleanup action.
787     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
788       LP.TypeIds.push_back(0);
789 
790     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
791     //        correct, but we need to do it this way because of how the DWARF EH
792     //        emitter processes the clauses.
793     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
794       Value *Val = LPI->getClause(I - 1);
795       if (LPI->isCatch(I - 1)) {
796         LP.TypeIds.push_back(
797             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
798       } else {
799         // Add filters in a list.
800         auto *CVal = cast<Constant>(Val);
801         SmallVector<unsigned, 4> FilterList;
802         for (const Use &U : CVal->operands())
803           FilterList.push_back(
804               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
805 
806         LP.TypeIds.push_back(getFilterIDFor(FilterList));
807       }
808     }
809 
810   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
811     for (unsigned I = CPI->arg_size(); I != 0; --I) {
812       auto *TypeInfo =
813           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
814       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
815     }
816 
817   } else {
818     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
819   }
820 
821   return LandingPadLabel;
822 }
823 
824 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
825                                             ArrayRef<unsigned> Sites) {
826   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
827 }
828 
829 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
830   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
831     if (TypeInfos[i] == TI) return i + 1;
832 
833   TypeInfos.push_back(TI);
834   return TypeInfos.size();
835 }
836 
837 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
838   // If the new filter coincides with the tail of an existing filter, then
839   // re-use the existing filter.  Folding filters more than this requires
840   // re-ordering filters and/or their elements - probably not worth it.
841   for (unsigned i : FilterEnds) {
842     unsigned j = TyIds.size();
843 
844     while (i && j)
845       if (FilterIds[--i] != TyIds[--j])
846         goto try_next;
847 
848     if (!j)
849       // The new filter coincides with range [i, end) of the existing filter.
850       return -(1 + i);
851 
852 try_next:;
853   }
854 
855   // Add the new filter.
856   int FilterID = -(1 + FilterIds.size());
857   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
858   llvm::append_range(FilterIds, TyIds);
859   FilterEnds.push_back(FilterIds.size());
860   FilterIds.push_back(0); // terminator
861   return FilterID;
862 }
863 
864 MachineFunction::CallSiteInfoMap::iterator
865 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
866   assert(MI->isCandidateForCallSiteEntry() &&
867          "Call site info refers only to call (MI) candidates");
868 
869   if (!Target.Options.EmitCallSiteInfo)
870     return CallSitesInfo.end();
871   return CallSitesInfo.find(MI);
872 }
873 
874 /// Return the call machine instruction or find a call within bundle.
875 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
876   if (!MI->isBundle())
877     return MI;
878 
879   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
880                                     getBundleEnd(MI->getIterator())))
881     if (BMI.isCandidateForCallSiteEntry())
882       return &BMI;
883 
884   llvm_unreachable("Unexpected bundle without a call site candidate");
885 }
886 
887 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
888   assert(MI->shouldUpdateCallSiteInfo() &&
889          "Call site info refers only to call (MI) candidates or "
890          "candidates inside bundles");
891 
892   const MachineInstr *CallMI = getCallInstr(MI);
893   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
894   if (CSIt == CallSitesInfo.end())
895     return;
896   CallSitesInfo.erase(CSIt);
897 }
898 
899 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
900                                        const MachineInstr *New) {
901   assert(Old->shouldUpdateCallSiteInfo() &&
902          "Call site info refers only to call (MI) candidates or "
903          "candidates inside bundles");
904 
905   if (!New->isCandidateForCallSiteEntry())
906     return eraseCallSiteInfo(Old);
907 
908   const MachineInstr *OldCallMI = getCallInstr(Old);
909   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
910   if (CSIt == CallSitesInfo.end())
911     return;
912 
913   CallSiteInfo CSInfo = CSIt->second;
914   CallSitesInfo[New] = CSInfo;
915 }
916 
917 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
918                                        const MachineInstr *New) {
919   assert(Old->shouldUpdateCallSiteInfo() &&
920          "Call site info refers only to call (MI) candidates or "
921          "candidates inside bundles");
922 
923   if (!New->isCandidateForCallSiteEntry())
924     return eraseCallSiteInfo(Old);
925 
926   const MachineInstr *OldCallMI = getCallInstr(Old);
927   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
928   if (CSIt == CallSitesInfo.end())
929     return;
930 
931   CallSiteInfo CSInfo = std::move(CSIt->second);
932   CallSitesInfo.erase(CSIt);
933   CallSitesInfo[New] = CSInfo;
934 }
935 
936 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
937   DebugInstrNumberingCount = Num;
938 }
939 
940 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
941                                                  DebugInstrOperandPair B,
942                                                  unsigned Subreg) {
943   // Catch any accidental self-loops.
944   assert(A.first != B.first);
945   // Don't allow any substitutions _from_ the memory operand number.
946   assert(A.second != DebugOperandMemNumber);
947 
948   DebugValueSubstitutions.push_back({A, B, Subreg});
949 }
950 
951 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
952                                                    MachineInstr &New,
953                                                    unsigned MaxOperand) {
954   // If the Old instruction wasn't tracked at all, there is no work to do.
955   unsigned OldInstrNum = Old.peekDebugInstrNum();
956   if (!OldInstrNum)
957     return;
958 
959   // Iterate over all operands looking for defs to create substitutions for.
960   // Avoid creating new instr numbers unless we create a new substitution.
961   // While this has no functional effect, it risks confusing someone reading
962   // MIR output.
963   // Examine all the operands, or the first N specified by the caller.
964   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
965   for (unsigned int I = 0; I < MaxOperand; ++I) {
966     const auto &OldMO = Old.getOperand(I);
967     auto &NewMO = New.getOperand(I);
968     (void)NewMO;
969 
970     if (!OldMO.isReg() || !OldMO.isDef())
971       continue;
972     assert(NewMO.isDef());
973 
974     unsigned NewInstrNum = New.getDebugInstrNum();
975     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
976                                std::make_pair(NewInstrNum, I));
977   }
978 }
979 
980 auto MachineFunction::salvageCopySSA(
981     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
982     -> DebugInstrOperandPair {
983   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
984 
985   // Check whether this copy-like instruction has already been salvaged into
986   // an operand pair.
987   Register Dest;
988   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
989     Dest = CopyDstSrc->Destination->getReg();
990   } else {
991     assert(MI.isSubregToReg());
992     Dest = MI.getOperand(0).getReg();
993   }
994 
995   auto CacheIt = DbgPHICache.find(Dest);
996   if (CacheIt != DbgPHICache.end())
997     return CacheIt->second;
998 
999   // Calculate the instruction number to use, or install a DBG_PHI.
1000   auto OperandPair = salvageCopySSAImpl(MI);
1001   DbgPHICache.insert({Dest, OperandPair});
1002   return OperandPair;
1003 }
1004 
1005 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1006     -> DebugInstrOperandPair {
1007   MachineRegisterInfo &MRI = getRegInfo();
1008   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1009   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1010 
1011   // Chase the value read by a copy-like instruction back to the instruction
1012   // that ultimately _defines_ that value. This may pass:
1013   //  * Through multiple intermediate copies, including subregister moves /
1014   //    copies,
1015   //  * Copies from physical registers that must then be traced back to the
1016   //    defining instruction,
1017   //  * Or, physical registers may be live-in to (only) the entry block, which
1018   //    requires a DBG_PHI to be created.
1019   // We can pursue this problem in that order: trace back through copies,
1020   // optionally through a physical register, to a defining instruction. We
1021   // should never move from physreg to vreg. As we're still in SSA form, no need
1022   // to worry about partial definitions of registers.
1023 
1024   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1025   // returns the register read and any subregister identifying which part is
1026   // read.
1027   auto GetRegAndSubreg =
1028       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1029     Register NewReg, OldReg;
1030     unsigned SubReg;
1031     if (Cpy.isCopy()) {
1032       OldReg = Cpy.getOperand(0).getReg();
1033       NewReg = Cpy.getOperand(1).getReg();
1034       SubReg = Cpy.getOperand(1).getSubReg();
1035     } else if (Cpy.isSubregToReg()) {
1036       OldReg = Cpy.getOperand(0).getReg();
1037       NewReg = Cpy.getOperand(2).getReg();
1038       SubReg = Cpy.getOperand(3).getImm();
1039     } else {
1040       auto CopyDetails = *TII.isCopyInstr(Cpy);
1041       const MachineOperand &Src = *CopyDetails.Source;
1042       const MachineOperand &Dest = *CopyDetails.Destination;
1043       OldReg = Dest.getReg();
1044       NewReg = Src.getReg();
1045       SubReg = Src.getSubReg();
1046     }
1047 
1048     return {NewReg, SubReg};
1049   };
1050 
1051   // First seek either the defining instruction, or a copy from a physreg.
1052   // During search, the current state is the current copy instruction, and which
1053   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1054   // deal with those later.
1055   auto State = GetRegAndSubreg(MI);
1056   auto CurInst = MI.getIterator();
1057   SmallVector<unsigned, 4> SubregsSeen;
1058   while (true) {
1059     // If we've found a copy from a physreg, first portion of search is over.
1060     if (!State.first.isVirtual())
1061       break;
1062 
1063     // Record any subregister qualifier.
1064     if (State.second)
1065       SubregsSeen.push_back(State.second);
1066 
1067     assert(MRI.hasOneDef(State.first));
1068     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1069     CurInst = Inst.getIterator();
1070 
1071     // Any non-copy instruction is the defining instruction we're seeking.
1072     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1073       break;
1074     State = GetRegAndSubreg(Inst);
1075   };
1076 
1077   // Helper lambda to apply additional subregister substitutions to a known
1078   // instruction/operand pair. Adds new (fake) substitutions so that we can
1079   // record the subregister. FIXME: this isn't very space efficient if multiple
1080   // values are tracked back through the same copies; cache something later.
1081   auto ApplySubregisters =
1082       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1083     for (unsigned Subreg : reverse(SubregsSeen)) {
1084       // Fetch a new instruction number, not attached to an actual instruction.
1085       unsigned NewInstrNumber = getNewDebugInstrNum();
1086       // Add a substitution from the "new" number to the known one, with a
1087       // qualifying subreg.
1088       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1089       // Return the new number; to find the underlying value, consumers need to
1090       // deal with the qualifying subreg.
1091       P = {NewInstrNumber, 0};
1092     }
1093     return P;
1094   };
1095 
1096   // If we managed to find the defining instruction after COPYs, return an
1097   // instruction / operand pair after adding subregister qualifiers.
1098   if (State.first.isVirtual()) {
1099     // Virtual register def -- we can just look up where this happens.
1100     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1101     for (auto &MO : Inst->all_defs()) {
1102       if (MO.getReg() != State.first)
1103         continue;
1104       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1105     }
1106 
1107     llvm_unreachable("Vreg def with no corresponding operand?");
1108   }
1109 
1110   // Our search ended in a copy from a physreg: walk back up the function
1111   // looking for whatever defines the physreg.
1112   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1113   State = GetRegAndSubreg(*CurInst);
1114   Register RegToSeek = State.first;
1115 
1116   auto RMII = CurInst->getReverseIterator();
1117   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1118   for (auto &ToExamine : PrevInstrs) {
1119     for (auto &MO : ToExamine.all_defs()) {
1120       // Test for operand that defines something aliasing RegToSeek.
1121       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1122         continue;
1123 
1124       return ApplySubregisters(
1125           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1126     }
1127   }
1128 
1129   MachineBasicBlock &InsertBB = *CurInst->getParent();
1130 
1131   // We reached the start of the block before finding a defining instruction.
1132   // There are numerous scenarios where this can happen:
1133   // * Constant physical registers,
1134   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1135   // * Arguments in the entry block,
1136   // * Exception handling landing pads.
1137   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1138   // the variable value at this position, rather than checking it makes sense.
1139 
1140   // Create DBG_PHI for specified physreg.
1141   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1142                          TII.get(TargetOpcode::DBG_PHI));
1143   Builder.addReg(State.first);
1144   unsigned NewNum = getNewDebugInstrNum();
1145   Builder.addImm(NewNum);
1146   return ApplySubregisters({NewNum, 0u});
1147 }
1148 
1149 void MachineFunction::finalizeDebugInstrRefs() {
1150   auto *TII = getSubtarget().getInstrInfo();
1151 
1152   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1153     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1154     MI.setDesc(RefII);
1155     MI.setDebugValueUndef();
1156   };
1157 
1158   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1159   for (auto &MBB : *this) {
1160     for (auto &MI : MBB) {
1161       if (!MI.isDebugRef())
1162         continue;
1163 
1164       bool IsValidRef = true;
1165 
1166       for (MachineOperand &MO : MI.debug_operands()) {
1167         if (!MO.isReg())
1168           continue;
1169 
1170         Register Reg = MO.getReg();
1171 
1172         // Some vregs can be deleted as redundant in the meantime. Mark those
1173         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1174         // quickly deleted, leaving dangling references to vregs with no def.
1175         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1176           IsValidRef = false;
1177           break;
1178         }
1179 
1180         assert(Reg.isVirtual());
1181         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1182 
1183         // If we've found a copy-like instruction, follow it back to the
1184         // instruction that defines the source value, see salvageCopySSA docs
1185         // for why this is important.
1186         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1187           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1188           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1189         } else {
1190           // Otherwise, identify the operand number that the VReg refers to.
1191           unsigned OperandIdx = 0;
1192           for (const auto &DefMO : DefMI.operands()) {
1193             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1194               break;
1195             ++OperandIdx;
1196           }
1197           assert(OperandIdx < DefMI.getNumOperands());
1198 
1199           // Morph this instr ref to point at the given instruction and operand.
1200           unsigned ID = DefMI.getDebugInstrNum();
1201           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1202         }
1203       }
1204 
1205       if (!IsValidRef)
1206         MakeUndefDbgValue(MI);
1207     }
1208   }
1209 }
1210 
1211 bool MachineFunction::shouldUseDebugInstrRef() const {
1212   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1213   // have optimized code inlined into this unoptimized code, however with
1214   // fewer and less aggressive optimizations happening, coverage and accuracy
1215   // should not suffer.
1216   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1217     return false;
1218 
1219   // Don't use instr-ref if this function is marked optnone.
1220   if (F.hasFnAttribute(Attribute::OptimizeNone))
1221     return false;
1222 
1223   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1224     return true;
1225 
1226   return false;
1227 }
1228 
1229 bool MachineFunction::useDebugInstrRef() const {
1230   return UseDebugInstrRef;
1231 }
1232 
1233 void MachineFunction::setUseDebugInstrRef(bool Use) {
1234   UseDebugInstrRef = Use;
1235 }
1236 
1237 // Use one million as a high / reserved number.
1238 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1239 
1240 /// \}
1241 
1242 //===----------------------------------------------------------------------===//
1243 //  MachineJumpTableInfo implementation
1244 //===----------------------------------------------------------------------===//
1245 
1246 /// Return the size of each entry in the jump table.
1247 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1248   // The size of a jump table entry is 4 bytes unless the entry is just the
1249   // address of a block, in which case it is the pointer size.
1250   switch (getEntryKind()) {
1251   case MachineJumpTableInfo::EK_BlockAddress:
1252     return TD.getPointerSize();
1253   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1254   case MachineJumpTableInfo::EK_LabelDifference64:
1255     return 8;
1256   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1257   case MachineJumpTableInfo::EK_LabelDifference32:
1258   case MachineJumpTableInfo::EK_Custom32:
1259     return 4;
1260   case MachineJumpTableInfo::EK_Inline:
1261     return 0;
1262   }
1263   llvm_unreachable("Unknown jump table encoding!");
1264 }
1265 
1266 /// Return the alignment of each entry in the jump table.
1267 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1268   // The alignment of a jump table entry is the alignment of int32 unless the
1269   // entry is just the address of a block, in which case it is the pointer
1270   // alignment.
1271   switch (getEntryKind()) {
1272   case MachineJumpTableInfo::EK_BlockAddress:
1273     return TD.getPointerABIAlignment(0).value();
1274   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1275   case MachineJumpTableInfo::EK_LabelDifference64:
1276     return TD.getABIIntegerTypeAlignment(64).value();
1277   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1278   case MachineJumpTableInfo::EK_LabelDifference32:
1279   case MachineJumpTableInfo::EK_Custom32:
1280     return TD.getABIIntegerTypeAlignment(32).value();
1281   case MachineJumpTableInfo::EK_Inline:
1282     return 1;
1283   }
1284   llvm_unreachable("Unknown jump table encoding!");
1285 }
1286 
1287 /// Create a new jump table entry in the jump table info.
1288 unsigned MachineJumpTableInfo::createJumpTableIndex(
1289                                const std::vector<MachineBasicBlock*> &DestBBs) {
1290   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1291   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1292   return JumpTables.size()-1;
1293 }
1294 
1295 /// If Old is the target of any jump tables, update the jump tables to branch
1296 /// to New instead.
1297 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1298                                                   MachineBasicBlock *New) {
1299   assert(Old != New && "Not making a change?");
1300   bool MadeChange = false;
1301   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1302     ReplaceMBBInJumpTable(i, Old, New);
1303   return MadeChange;
1304 }
1305 
1306 /// If MBB is present in any jump tables, remove it.
1307 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1308   bool MadeChange = false;
1309   for (MachineJumpTableEntry &JTE : JumpTables) {
1310     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1311     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1312     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1313   }
1314   return MadeChange;
1315 }
1316 
1317 /// If Old is a target of the jump tables, update the jump table to branch to
1318 /// New instead.
1319 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1320                                                  MachineBasicBlock *Old,
1321                                                  MachineBasicBlock *New) {
1322   assert(Old != New && "Not making a change?");
1323   bool MadeChange = false;
1324   MachineJumpTableEntry &JTE = JumpTables[Idx];
1325   for (MachineBasicBlock *&MBB : JTE.MBBs)
1326     if (MBB == Old) {
1327       MBB = New;
1328       MadeChange = true;
1329     }
1330   return MadeChange;
1331 }
1332 
1333 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1334   if (JumpTables.empty()) return;
1335 
1336   OS << "Jump Tables:\n";
1337 
1338   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1339     OS << printJumpTableEntryReference(i) << ':';
1340     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1341       OS << ' ' << printMBBReference(*MBB);
1342     if (i != e)
1343       OS << '\n';
1344   }
1345 
1346   OS << '\n';
1347 }
1348 
1349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1350 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1351 #endif
1352 
1353 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1354   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1355 }
1356 
1357 //===----------------------------------------------------------------------===//
1358 //  MachineConstantPool implementation
1359 //===----------------------------------------------------------------------===//
1360 
1361 void MachineConstantPoolValue::anchor() {}
1362 
1363 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1364   return DL.getTypeAllocSize(Ty);
1365 }
1366 
1367 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1368   if (isMachineConstantPoolEntry())
1369     return Val.MachineCPVal->getSizeInBytes(DL);
1370   return DL.getTypeAllocSize(Val.ConstVal->getType());
1371 }
1372 
1373 bool MachineConstantPoolEntry::needsRelocation() const {
1374   if (isMachineConstantPoolEntry())
1375     return true;
1376   return Val.ConstVal->needsDynamicRelocation();
1377 }
1378 
1379 SectionKind
1380 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1381   if (needsRelocation())
1382     return SectionKind::getReadOnlyWithRel();
1383   switch (getSizeInBytes(*DL)) {
1384   case 4:
1385     return SectionKind::getMergeableConst4();
1386   case 8:
1387     return SectionKind::getMergeableConst8();
1388   case 16:
1389     return SectionKind::getMergeableConst16();
1390   case 32:
1391     return SectionKind::getMergeableConst32();
1392   default:
1393     return SectionKind::getReadOnly();
1394   }
1395 }
1396 
1397 MachineConstantPool::~MachineConstantPool() {
1398   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1399   // so keep track of which we've deleted to avoid double deletions.
1400   DenseSet<MachineConstantPoolValue*> Deleted;
1401   for (const MachineConstantPoolEntry &C : Constants)
1402     if (C.isMachineConstantPoolEntry()) {
1403       Deleted.insert(C.Val.MachineCPVal);
1404       delete C.Val.MachineCPVal;
1405     }
1406   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1407     if (Deleted.count(CPV) == 0)
1408       delete CPV;
1409   }
1410 }
1411 
1412 /// Test whether the given two constants can be allocated the same constant pool
1413 /// entry referenced by \param A.
1414 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1415                                       const DataLayout &DL) {
1416   // Handle the trivial case quickly.
1417   if (A == B) return true;
1418 
1419   // If they have the same type but weren't the same constant, quickly
1420   // reject them.
1421   if (A->getType() == B->getType()) return false;
1422 
1423   // We can't handle structs or arrays.
1424   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1425       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1426     return false;
1427 
1428   // For now, only support constants with the same size.
1429   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1430   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1431     return false;
1432 
1433   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1434 
1435   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1436 
1437   // Try constant folding a bitcast of both instructions to an integer.  If we
1438   // get two identical ConstantInt's, then we are good to share them.  We use
1439   // the constant folding APIs to do this so that we get the benefit of
1440   // DataLayout.
1441   if (isa<PointerType>(A->getType()))
1442     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1443                                 const_cast<Constant *>(A), IntTy, DL);
1444   else if (A->getType() != IntTy)
1445     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1446                                 IntTy, DL);
1447   if (isa<PointerType>(B->getType()))
1448     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1449                                 const_cast<Constant *>(B), IntTy, DL);
1450   else if (B->getType() != IntTy)
1451     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1452                                 IntTy, DL);
1453 
1454   if (A != B)
1455     return false;
1456 
1457   // Constants only safely match if A doesn't contain undef/poison.
1458   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1459   // TODO: Handle cases where A and B have the same undef/poison elements.
1460   // TODO: Merge A and B with mismatching undef/poison elements.
1461   return !ContainsUndefOrPoisonA;
1462 }
1463 
1464 /// Create a new entry in the constant pool or return an existing one.
1465 /// User must specify the log2 of the minimum required alignment for the object.
1466 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1467                                                    Align Alignment) {
1468   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1469 
1470   // Check to see if we already have this constant.
1471   //
1472   // FIXME, this could be made much more efficient for large constant pools.
1473   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1474     if (!Constants[i].isMachineConstantPoolEntry() &&
1475         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1476       if (Constants[i].getAlign() < Alignment)
1477         Constants[i].Alignment = Alignment;
1478       return i;
1479     }
1480 
1481   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1482   return Constants.size()-1;
1483 }
1484 
1485 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1486                                                    Align Alignment) {
1487   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1488 
1489   // Check to see if we already have this constant.
1490   //
1491   // FIXME, this could be made much more efficient for large constant pools.
1492   int Idx = V->getExistingMachineCPValue(this, Alignment);
1493   if (Idx != -1) {
1494     MachineCPVsSharingEntries.insert(V);
1495     return (unsigned)Idx;
1496   }
1497 
1498   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1499   return Constants.size()-1;
1500 }
1501 
1502 void MachineConstantPool::print(raw_ostream &OS) const {
1503   if (Constants.empty()) return;
1504 
1505   OS << "Constant Pool:\n";
1506   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1507     OS << "  cp#" << i << ": ";
1508     if (Constants[i].isMachineConstantPoolEntry())
1509       Constants[i].Val.MachineCPVal->print(OS);
1510     else
1511       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1512     OS << ", align=" << Constants[i].getAlign().value();
1513     OS << "\n";
1514   }
1515 }
1516 
1517 //===----------------------------------------------------------------------===//
1518 // Template specialization for MachineFunction implementation of
1519 // ProfileSummaryInfo::getEntryCount().
1520 //===----------------------------------------------------------------------===//
1521 template <>
1522 std::optional<Function::ProfileCount>
1523 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1524     const llvm::MachineFunction *F) const {
1525   return F->getFunction().getEntryCount();
1526 }
1527 
1528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1529 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1530 #endif
1531