1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DataLayout.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 62 TM.Options.RealignStack); 63 if (Fn->getFnAttributes().hasAttribute(Attributes::StackAlignment)) 64 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 65 getFnAttributes().getStackAlignment()); 66 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 67 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 68 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 69 if (!Fn->getFnAttributes().hasAttribute(Attributes::OptimizeForSize)) 70 Alignment = std::max(Alignment, 71 TM.getTargetLowering()->getPrefFunctionAlignment()); 72 FunctionNumber = FunctionNum; 73 JumpTableInfo = 0; 74 } 75 76 MachineFunction::~MachineFunction() { 77 BasicBlocks.clear(); 78 InstructionRecycler.clear(Allocator); 79 BasicBlockRecycler.clear(Allocator); 80 if (RegInfo) { 81 RegInfo->~MachineRegisterInfo(); 82 Allocator.Deallocate(RegInfo); 83 } 84 if (MFInfo) { 85 MFInfo->~MachineFunctionInfo(); 86 Allocator.Deallocate(MFInfo); 87 } 88 89 FrameInfo->~MachineFrameInfo(); 90 Allocator.Deallocate(FrameInfo); 91 92 ConstantPool->~MachineConstantPool(); 93 Allocator.Deallocate(ConstantPool); 94 95 if (JumpTableInfo) { 96 JumpTableInfo->~MachineJumpTableInfo(); 97 Allocator.Deallocate(JumpTableInfo); 98 } 99 } 100 101 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 102 /// does already exist, allocate one. 103 MachineJumpTableInfo *MachineFunction:: 104 getOrCreateJumpTableInfo(unsigned EntryKind) { 105 if (JumpTableInfo) return JumpTableInfo; 106 107 JumpTableInfo = new (Allocator) 108 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 109 return JumpTableInfo; 110 } 111 112 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 113 /// recomputes them. This guarantees that the MBB numbers are sequential, 114 /// dense, and match the ordering of the blocks within the function. If a 115 /// specific MachineBasicBlock is specified, only that block and those after 116 /// it are renumbered. 117 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 118 if (empty()) { MBBNumbering.clear(); return; } 119 MachineFunction::iterator MBBI, E = end(); 120 if (MBB == 0) 121 MBBI = begin(); 122 else 123 MBBI = MBB; 124 125 // Figure out the block number this should have. 126 unsigned BlockNo = 0; 127 if (MBBI != begin()) 128 BlockNo = prior(MBBI)->getNumber()+1; 129 130 for (; MBBI != E; ++MBBI, ++BlockNo) { 131 if (MBBI->getNumber() != (int)BlockNo) { 132 // Remove use of the old number. 133 if (MBBI->getNumber() != -1) { 134 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 135 "MBB number mismatch!"); 136 MBBNumbering[MBBI->getNumber()] = 0; 137 } 138 139 // If BlockNo is already taken, set that block's number to -1. 140 if (MBBNumbering[BlockNo]) 141 MBBNumbering[BlockNo]->setNumber(-1); 142 143 MBBNumbering[BlockNo] = MBBI; 144 MBBI->setNumber(BlockNo); 145 } 146 } 147 148 // Okay, all the blocks are renumbered. If we have compactified the block 149 // numbering, shrink MBBNumbering now. 150 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 151 MBBNumbering.resize(BlockNo); 152 } 153 154 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 155 /// of `new MachineInstr'. 156 /// 157 MachineInstr * 158 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 159 DebugLoc DL, bool NoImp) { 160 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 161 MachineInstr(MCID, DL, NoImp); 162 } 163 164 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 165 /// 'Orig' instruction, identical in all ways except the instruction 166 /// has no parent, prev, or next. 167 /// 168 MachineInstr * 169 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 170 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 171 MachineInstr(*this, *Orig); 172 } 173 174 /// DeleteMachineInstr - Delete the given MachineInstr. 175 /// 176 void 177 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 178 MI->~MachineInstr(); 179 InstructionRecycler.Deallocate(Allocator, MI); 180 } 181 182 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 183 /// instead of `new MachineBasicBlock'. 184 /// 185 MachineBasicBlock * 186 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 187 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 188 MachineBasicBlock(*this, bb); 189 } 190 191 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 192 /// 193 void 194 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 195 assert(MBB->getParent() == this && "MBB parent mismatch!"); 196 MBB->~MachineBasicBlock(); 197 BasicBlockRecycler.Deallocate(Allocator, MBB); 198 } 199 200 MachineMemOperand * 201 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 202 uint64_t s, unsigned base_alignment, 203 const MDNode *TBAAInfo, 204 const MDNode *Ranges) { 205 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 206 TBAAInfo, Ranges); 207 } 208 209 MachineMemOperand * 210 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 211 int64_t Offset, uint64_t Size) { 212 return new (Allocator) 213 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 214 MMO->getOffset()+Offset), 215 MMO->getFlags(), Size, 216 MMO->getBaseAlignment(), 0); 217 } 218 219 MachineInstr::mmo_iterator 220 MachineFunction::allocateMemRefsArray(unsigned long Num) { 221 return Allocator.Allocate<MachineMemOperand *>(Num); 222 } 223 224 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 225 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 226 MachineInstr::mmo_iterator End) { 227 // Count the number of load mem refs. 228 unsigned Num = 0; 229 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 230 if ((*I)->isLoad()) 231 ++Num; 232 233 // Allocate a new array and populate it with the load information. 234 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 235 unsigned Index = 0; 236 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 237 if ((*I)->isLoad()) { 238 if (!(*I)->isStore()) 239 // Reuse the MMO. 240 Result[Index] = *I; 241 else { 242 // Clone the MMO and unset the store flag. 243 MachineMemOperand *JustLoad = 244 getMachineMemOperand((*I)->getPointerInfo(), 245 (*I)->getFlags() & ~MachineMemOperand::MOStore, 246 (*I)->getSize(), (*I)->getBaseAlignment(), 247 (*I)->getTBAAInfo()); 248 Result[Index] = JustLoad; 249 } 250 ++Index; 251 } 252 } 253 return std::make_pair(Result, Result + Num); 254 } 255 256 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 257 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 258 MachineInstr::mmo_iterator End) { 259 // Count the number of load mem refs. 260 unsigned Num = 0; 261 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 262 if ((*I)->isStore()) 263 ++Num; 264 265 // Allocate a new array and populate it with the store information. 266 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 267 unsigned Index = 0; 268 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 269 if ((*I)->isStore()) { 270 if (!(*I)->isLoad()) 271 // Reuse the MMO. 272 Result[Index] = *I; 273 else { 274 // Clone the MMO and unset the load flag. 275 MachineMemOperand *JustStore = 276 getMachineMemOperand((*I)->getPointerInfo(), 277 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 278 (*I)->getSize(), (*I)->getBaseAlignment(), 279 (*I)->getTBAAInfo()); 280 Result[Index] = JustStore; 281 } 282 ++Index; 283 } 284 } 285 return std::make_pair(Result, Result + Num); 286 } 287 288 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 289 void MachineFunction::dump() const { 290 print(dbgs()); 291 } 292 #endif 293 294 StringRef MachineFunction::getName() const { 295 assert(getFunction() && "No function!"); 296 return getFunction()->getName(); 297 } 298 299 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 300 OS << "# Machine code for function " << getName() << ": "; 301 if (RegInfo) { 302 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 303 if (!RegInfo->tracksLiveness()) 304 OS << ", not tracking liveness"; 305 } 306 OS << '\n'; 307 308 // Print Frame Information 309 FrameInfo->print(*this, OS); 310 311 // Print JumpTable Information 312 if (JumpTableInfo) 313 JumpTableInfo->print(OS); 314 315 // Print Constant Pool 316 ConstantPool->print(OS); 317 318 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 319 320 if (RegInfo && !RegInfo->livein_empty()) { 321 OS << "Function Live Ins: "; 322 for (MachineRegisterInfo::livein_iterator 323 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 324 OS << PrintReg(I->first, TRI); 325 if (I->second) 326 OS << " in " << PrintReg(I->second, TRI); 327 if (llvm::next(I) != E) 328 OS << ", "; 329 } 330 OS << '\n'; 331 } 332 if (RegInfo && !RegInfo->liveout_empty()) { 333 OS << "Function Live Outs:"; 334 for (MachineRegisterInfo::liveout_iterator 335 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I) 336 OS << ' ' << PrintReg(*I, TRI); 337 OS << '\n'; 338 } 339 340 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 341 OS << '\n'; 342 BB->print(OS, Indexes); 343 } 344 345 OS << "\n# End machine code for function " << getName() << ".\n\n"; 346 } 347 348 namespace llvm { 349 template<> 350 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 351 352 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 353 354 static std::string getGraphName(const MachineFunction *F) { 355 return "CFG for '" + F->getName().str() + "' function"; 356 } 357 358 std::string getNodeLabel(const MachineBasicBlock *Node, 359 const MachineFunction *Graph) { 360 std::string OutStr; 361 { 362 raw_string_ostream OSS(OutStr); 363 364 if (isSimple()) { 365 OSS << "BB#" << Node->getNumber(); 366 if (const BasicBlock *BB = Node->getBasicBlock()) 367 OSS << ": " << BB->getName(); 368 } else 369 Node->print(OSS); 370 } 371 372 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 373 374 // Process string output to make it nicer... 375 for (unsigned i = 0; i != OutStr.length(); ++i) 376 if (OutStr[i] == '\n') { // Left justify 377 OutStr[i] = '\\'; 378 OutStr.insert(OutStr.begin()+i+1, 'l'); 379 } 380 return OutStr; 381 } 382 }; 383 } 384 385 void MachineFunction::viewCFG() const 386 { 387 #ifndef NDEBUG 388 ViewGraph(this, "mf" + getName()); 389 #else 390 errs() << "MachineFunction::viewCFG is only available in debug builds on " 391 << "systems with Graphviz or gv!\n"; 392 #endif // NDEBUG 393 } 394 395 void MachineFunction::viewCFGOnly() const 396 { 397 #ifndef NDEBUG 398 ViewGraph(this, "mf" + getName(), true); 399 #else 400 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 401 << "systems with Graphviz or gv!\n"; 402 #endif // NDEBUG 403 } 404 405 /// addLiveIn - Add the specified physical register as a live-in value and 406 /// create a corresponding virtual register for it. 407 unsigned MachineFunction::addLiveIn(unsigned PReg, 408 const TargetRegisterClass *RC) { 409 MachineRegisterInfo &MRI = getRegInfo(); 410 unsigned VReg = MRI.getLiveInVirtReg(PReg); 411 if (VReg) { 412 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 413 return VReg; 414 } 415 VReg = MRI.createVirtualRegister(RC); 416 MRI.addLiveIn(PReg, VReg); 417 return VReg; 418 } 419 420 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 421 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 422 /// normal 'L' label is returned. 423 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 424 bool isLinkerPrivate) const { 425 assert(JumpTableInfo && "No jump tables"); 426 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 427 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 428 429 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 430 MAI.getPrivateGlobalPrefix(); 431 SmallString<60> Name; 432 raw_svector_ostream(Name) 433 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 434 return Ctx.GetOrCreateSymbol(Name.str()); 435 } 436 437 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 438 /// base. 439 MCSymbol *MachineFunction::getPICBaseSymbol() const { 440 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 441 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 442 Twine(getFunctionNumber())+"$pb"); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // MachineFrameInfo implementation 447 //===----------------------------------------------------------------------===// 448 449 /// ensureMaxAlignment - Make sure the function is at least Align bytes 450 /// aligned. 451 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 452 if (!TFI.isStackRealignable() || !RealignOption) 453 assert(Align <= TFI.getStackAlignment() && 454 "For targets without stack realignment, Align is out of limit!"); 455 if (MaxAlignment < Align) MaxAlignment = Align; 456 } 457 458 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 459 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 460 unsigned StackAlign) { 461 if (!ShouldClamp || Align <= StackAlign) 462 return Align; 463 DEBUG(dbgs() << "Warning: requested alignment " << Align 464 << " exceeds the stack alignment " << StackAlign 465 << " when stack realignment is off" << '\n'); 466 return StackAlign; 467 } 468 469 /// CreateStackObject - Create a new statically sized stack object, returning 470 /// a nonnegative identifier to represent it. 471 /// 472 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 473 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 474 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 475 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 476 Alignment, TFI.getStackAlignment()); 477 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 478 Alloca)); 479 int Index = (int)Objects.size() - NumFixedObjects - 1; 480 assert(Index >= 0 && "Bad frame index!"); 481 ensureMaxAlignment(Alignment); 482 return Index; 483 } 484 485 /// CreateSpillStackObject - Create a new statically sized stack object that 486 /// represents a spill slot, returning a nonnegative identifier to represent 487 /// it. 488 /// 489 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 490 unsigned Alignment) { 491 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 492 Alignment, TFI.getStackAlignment()); 493 CreateStackObject(Size, Alignment, true, false); 494 int Index = (int)Objects.size() - NumFixedObjects - 1; 495 ensureMaxAlignment(Alignment); 496 return Index; 497 } 498 499 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 500 /// variable sized object has been created. This must be created whenever a 501 /// variable sized object is created, whether or not the index returned is 502 /// actually used. 503 /// 504 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) { 505 HasVarSizedObjects = true; 506 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 507 Alignment, TFI.getStackAlignment()); 508 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 509 ensureMaxAlignment(Alignment); 510 return (int)Objects.size()-NumFixedObjects-1; 511 } 512 513 /// CreateFixedObject - Create a new object at a fixed location on the stack. 514 /// All fixed objects should be created before other objects are created for 515 /// efficiency. By default, fixed objects are immutable. This returns an 516 /// index with a negative value. 517 /// 518 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 519 bool Immutable) { 520 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 521 // The alignment of the frame index can be determined from its offset from 522 // the incoming frame position. If the frame object is at offset 32 and 523 // the stack is guaranteed to be 16-byte aligned, then we know that the 524 // object is 16-byte aligned. 525 unsigned StackAlign = TFI.getStackAlignment(); 526 unsigned Align = MinAlign(SPOffset, StackAlign); 527 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 528 Align, TFI.getStackAlignment()); 529 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 530 /*isSS*/ false, 531 /*NeedSP*/ false, 532 /*Alloca*/ 0)); 533 return -++NumFixedObjects; 534 } 535 536 537 BitVector 538 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 539 assert(MBB && "MBB must be valid"); 540 const MachineFunction *MF = MBB->getParent(); 541 assert(MF && "MBB must be part of a MachineFunction"); 542 const TargetMachine &TM = MF->getTarget(); 543 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 544 BitVector BV(TRI->getNumRegs()); 545 546 // Before CSI is calculated, no registers are considered pristine. They can be 547 // freely used and PEI will make sure they are saved. 548 if (!isCalleeSavedInfoValid()) 549 return BV; 550 551 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 552 BV.set(*CSR); 553 554 // The entry MBB always has all CSRs pristine. 555 if (MBB == &MF->front()) 556 return BV; 557 558 // On other MBBs the saved CSRs are not pristine. 559 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 560 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 561 E = CSI.end(); I != E; ++I) 562 BV.reset(I->getReg()); 563 564 return BV; 565 } 566 567 568 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 569 if (Objects.empty()) return; 570 571 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 572 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 573 574 OS << "Frame Objects:\n"; 575 576 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 577 const StackObject &SO = Objects[i]; 578 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 579 if (SO.Size == ~0ULL) { 580 OS << "dead\n"; 581 continue; 582 } 583 if (SO.Size == 0) 584 OS << "variable sized"; 585 else 586 OS << "size=" << SO.Size; 587 OS << ", align=" << SO.Alignment; 588 589 if (i < NumFixedObjects) 590 OS << ", fixed"; 591 if (i < NumFixedObjects || SO.SPOffset != -1) { 592 int64_t Off = SO.SPOffset - ValOffset; 593 OS << ", at location [SP"; 594 if (Off > 0) 595 OS << "+" << Off; 596 else if (Off < 0) 597 OS << Off; 598 OS << "]"; 599 } 600 OS << "\n"; 601 } 602 } 603 604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 605 void MachineFrameInfo::dump(const MachineFunction &MF) const { 606 print(MF, dbgs()); 607 } 608 #endif 609 610 //===----------------------------------------------------------------------===// 611 // MachineJumpTableInfo implementation 612 //===----------------------------------------------------------------------===// 613 614 /// getEntrySize - Return the size of each entry in the jump table. 615 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 616 // The size of a jump table entry is 4 bytes unless the entry is just the 617 // address of a block, in which case it is the pointer size. 618 switch (getEntryKind()) { 619 case MachineJumpTableInfo::EK_BlockAddress: 620 return TD.getPointerSize(); 621 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 622 return 8; 623 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 624 case MachineJumpTableInfo::EK_LabelDifference32: 625 case MachineJumpTableInfo::EK_Custom32: 626 return 4; 627 case MachineJumpTableInfo::EK_Inline: 628 return 0; 629 } 630 llvm_unreachable("Unknown jump table encoding!"); 631 } 632 633 /// getEntryAlignment - Return the alignment of each entry in the jump table. 634 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 635 // The alignment of a jump table entry is the alignment of int32 unless the 636 // entry is just the address of a block, in which case it is the pointer 637 // alignment. 638 switch (getEntryKind()) { 639 case MachineJumpTableInfo::EK_BlockAddress: 640 return TD.getPointerABIAlignment(); 641 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 642 return TD.getABIIntegerTypeAlignment(64); 643 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 644 case MachineJumpTableInfo::EK_LabelDifference32: 645 case MachineJumpTableInfo::EK_Custom32: 646 return TD.getABIIntegerTypeAlignment(32); 647 case MachineJumpTableInfo::EK_Inline: 648 return 1; 649 } 650 llvm_unreachable("Unknown jump table encoding!"); 651 } 652 653 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 654 /// 655 unsigned MachineJumpTableInfo::createJumpTableIndex( 656 const std::vector<MachineBasicBlock*> &DestBBs) { 657 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 658 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 659 return JumpTables.size()-1; 660 } 661 662 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 663 /// the jump tables to branch to New instead. 664 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 665 MachineBasicBlock *New) { 666 assert(Old != New && "Not making a change?"); 667 bool MadeChange = false; 668 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 669 ReplaceMBBInJumpTable(i, Old, New); 670 return MadeChange; 671 } 672 673 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 674 /// the jump table to branch to New instead. 675 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 676 MachineBasicBlock *Old, 677 MachineBasicBlock *New) { 678 assert(Old != New && "Not making a change?"); 679 bool MadeChange = false; 680 MachineJumpTableEntry &JTE = JumpTables[Idx]; 681 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 682 if (JTE.MBBs[j] == Old) { 683 JTE.MBBs[j] = New; 684 MadeChange = true; 685 } 686 return MadeChange; 687 } 688 689 void MachineJumpTableInfo::print(raw_ostream &OS) const { 690 if (JumpTables.empty()) return; 691 692 OS << "Jump Tables:\n"; 693 694 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 695 OS << " jt#" << i << ": "; 696 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 697 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 698 } 699 700 OS << '\n'; 701 } 702 703 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 704 void MachineJumpTableInfo::dump() const { print(dbgs()); } 705 #endif 706 707 708 //===----------------------------------------------------------------------===// 709 // MachineConstantPool implementation 710 //===----------------------------------------------------------------------===// 711 712 void MachineConstantPoolValue::anchor() { } 713 714 Type *MachineConstantPoolEntry::getType() const { 715 if (isMachineConstantPoolEntry()) 716 return Val.MachineCPVal->getType(); 717 return Val.ConstVal->getType(); 718 } 719 720 721 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 722 if (isMachineConstantPoolEntry()) 723 return Val.MachineCPVal->getRelocationInfo(); 724 return Val.ConstVal->getRelocationInfo(); 725 } 726 727 MachineConstantPool::~MachineConstantPool() { 728 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 729 if (Constants[i].isMachineConstantPoolEntry()) 730 delete Constants[i].Val.MachineCPVal; 731 for (DenseSet<MachineConstantPoolValue*>::iterator I = 732 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 733 I != E; ++I) 734 delete *I; 735 } 736 737 /// CanShareConstantPoolEntry - Test whether the given two constants 738 /// can be allocated the same constant pool entry. 739 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 740 const DataLayout *TD) { 741 // Handle the trivial case quickly. 742 if (A == B) return true; 743 744 // If they have the same type but weren't the same constant, quickly 745 // reject them. 746 if (A->getType() == B->getType()) return false; 747 748 // We can't handle structs or arrays. 749 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 750 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 751 return false; 752 753 // For now, only support constants with the same size. 754 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 755 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 756 StoreSize > 128) 757 return false; 758 759 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 760 761 // Try constant folding a bitcast of both instructions to an integer. If we 762 // get two identical ConstantInt's, then we are good to share them. We use 763 // the constant folding APIs to do this so that we get the benefit of 764 // DataLayout. 765 if (isa<PointerType>(A->getType())) 766 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 767 const_cast<Constant*>(A), TD); 768 else if (A->getType() != IntTy) 769 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 770 const_cast<Constant*>(A), TD); 771 if (isa<PointerType>(B->getType())) 772 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 773 const_cast<Constant*>(B), TD); 774 else if (B->getType() != IntTy) 775 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 776 const_cast<Constant*>(B), TD); 777 778 return A == B; 779 } 780 781 /// getConstantPoolIndex - Create a new entry in the constant pool or return 782 /// an existing one. User must specify the log2 of the minimum required 783 /// alignment for the object. 784 /// 785 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 786 unsigned Alignment) { 787 assert(Alignment && "Alignment must be specified!"); 788 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 789 790 // Check to see if we already have this constant. 791 // 792 // FIXME, this could be made much more efficient for large constant pools. 793 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 794 if (!Constants[i].isMachineConstantPoolEntry() && 795 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 796 if ((unsigned)Constants[i].getAlignment() < Alignment) 797 Constants[i].Alignment = Alignment; 798 return i; 799 } 800 801 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 802 return Constants.size()-1; 803 } 804 805 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 806 unsigned Alignment) { 807 assert(Alignment && "Alignment must be specified!"); 808 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 809 810 // Check to see if we already have this constant. 811 // 812 // FIXME, this could be made much more efficient for large constant pools. 813 int Idx = V->getExistingMachineCPValue(this, Alignment); 814 if (Idx != -1) { 815 MachineCPVsSharingEntries.insert(V); 816 return (unsigned)Idx; 817 } 818 819 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 820 return Constants.size()-1; 821 } 822 823 void MachineConstantPool::print(raw_ostream &OS) const { 824 if (Constants.empty()) return; 825 826 OS << "Constant Pool:\n"; 827 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 828 OS << " cp#" << i << ": "; 829 if (Constants[i].isMachineConstantPoolEntry()) 830 Constants[i].Val.MachineCPVal->print(OS); 831 else 832 OS << *(const Value*)Constants[i].Val.ConstVal; 833 OS << ", align=" << Constants[i].getAlignment(); 834 OS << "\n"; 835 } 836 } 837 838 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 839 void MachineConstantPool::dump() const { print(dbgs()); } 840 #endif 841