1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 // Pin the vtable to this file. 111 void MachineFunction::Delegate::anchor() {} 112 113 void MachineFunctionProperties::print(raw_ostream &OS) const { 114 const char *Separator = ""; 115 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 116 if (!Properties[I]) 117 continue; 118 OS << Separator << getPropertyName(static_cast<Property>(I)); 119 Separator = ", "; 120 } 121 } 122 123 //===----------------------------------------------------------------------===// 124 // MachineFunction implementation 125 //===----------------------------------------------------------------------===// 126 127 // Out-of-line virtual method. 128 MachineFunctionInfo::~MachineFunctionInfo() = default; 129 130 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 131 MBB->getParent()->DeleteMachineBasicBlock(MBB); 132 } 133 134 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 135 const Function &F) { 136 if (auto MA = F.getFnStackAlign()) 137 return MA->value(); 138 return STI->getFrameLowering()->getStackAlign().value(); 139 } 140 141 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 142 const TargetSubtargetInfo &STI, 143 unsigned FunctionNum, MachineModuleInfo &mmi) 144 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 145 FunctionNumber = FunctionNum; 146 init(); 147 } 148 149 void MachineFunction::handleInsertion(MachineInstr &MI) { 150 if (TheDelegate) 151 TheDelegate->MF_HandleInsertion(MI); 152 } 153 154 void MachineFunction::handleRemoval(MachineInstr &MI) { 155 if (TheDelegate) 156 TheDelegate->MF_HandleRemoval(MI); 157 } 158 159 void MachineFunction::init() { 160 // Assume the function starts in SSA form with correct liveness. 161 Properties.set(MachineFunctionProperties::Property::IsSSA); 162 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 163 if (STI->getRegisterInfo()) 164 RegInfo = new (Allocator) MachineRegisterInfo(this); 165 else 166 RegInfo = nullptr; 167 168 MFInfo = nullptr; 169 // We can realign the stack if the target supports it and the user hasn't 170 // explicitly asked us not to. 171 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 172 !F.hasFnAttribute("no-realign-stack"); 173 FrameInfo = new (Allocator) MachineFrameInfo( 174 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 175 /*ForcedRealign=*/CanRealignSP && 176 F.hasFnAttribute(Attribute::StackAlignment)); 177 178 if (F.hasFnAttribute(Attribute::StackAlignment)) 179 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 180 181 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 182 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 183 184 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 185 // FIXME: Use Function::hasOptSize(). 186 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 187 Alignment = std::max(Alignment, 188 STI->getTargetLowering()->getPrefFunctionAlignment()); 189 190 if (AlignAllFunctions) 191 Alignment = Align(1ULL << AlignAllFunctions); 192 193 JumpTableInfo = nullptr; 194 195 if (isFuncletEHPersonality(classifyEHPersonality( 196 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 197 WinEHInfo = new (Allocator) WinEHFuncInfo(); 198 } 199 200 if (isScopedEHPersonality(classifyEHPersonality( 201 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 202 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 203 } 204 205 assert(Target.isCompatibleDataLayout(getDataLayout()) && 206 "Can't create a MachineFunction using a Module with a " 207 "Target-incompatible DataLayout attached\n"); 208 209 PSVManager = 210 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 211 getInstrInfo())); 212 } 213 214 MachineFunction::~MachineFunction() { 215 clear(); 216 } 217 218 void MachineFunction::clear() { 219 Properties.reset(); 220 // Don't call destructors on MachineInstr and MachineOperand. All of their 221 // memory comes from the BumpPtrAllocator which is about to be purged. 222 // 223 // Do call MachineBasicBlock destructors, it contains std::vectors. 224 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 225 I->Insts.clearAndLeakNodesUnsafely(); 226 MBBNumbering.clear(); 227 228 InstructionRecycler.clear(Allocator); 229 OperandRecycler.clear(Allocator); 230 BasicBlockRecycler.clear(Allocator); 231 CodeViewAnnotations.clear(); 232 VariableDbgInfos.clear(); 233 if (RegInfo) { 234 RegInfo->~MachineRegisterInfo(); 235 Allocator.Deallocate(RegInfo); 236 } 237 if (MFInfo) { 238 MFInfo->~MachineFunctionInfo(); 239 Allocator.Deallocate(MFInfo); 240 } 241 242 FrameInfo->~MachineFrameInfo(); 243 Allocator.Deallocate(FrameInfo); 244 245 ConstantPool->~MachineConstantPool(); 246 Allocator.Deallocate(ConstantPool); 247 248 if (JumpTableInfo) { 249 JumpTableInfo->~MachineJumpTableInfo(); 250 Allocator.Deallocate(JumpTableInfo); 251 } 252 253 if (WinEHInfo) { 254 WinEHInfo->~WinEHFuncInfo(); 255 Allocator.Deallocate(WinEHInfo); 256 } 257 258 if (WasmEHInfo) { 259 WasmEHInfo->~WasmEHFuncInfo(); 260 Allocator.Deallocate(WasmEHInfo); 261 } 262 } 263 264 const DataLayout &MachineFunction::getDataLayout() const { 265 return F.getParent()->getDataLayout(); 266 } 267 268 /// Get the JumpTableInfo for this function. 269 /// If it does not already exist, allocate one. 270 MachineJumpTableInfo *MachineFunction:: 271 getOrCreateJumpTableInfo(unsigned EntryKind) { 272 if (JumpTableInfo) return JumpTableInfo; 273 274 JumpTableInfo = new (Allocator) 275 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 276 return JumpTableInfo; 277 } 278 279 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 280 return F.getDenormalMode(FPType); 281 } 282 283 /// Should we be emitting segmented stack stuff for the function 284 bool MachineFunction::shouldSplitStack() const { 285 return getFunction().hasFnAttribute("split-stack"); 286 } 287 288 LLVM_NODISCARD unsigned 289 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 290 FrameInstructions.push_back(Inst); 291 return FrameInstructions.size() - 1; 292 } 293 294 /// This discards all of the MachineBasicBlock numbers and recomputes them. 295 /// This guarantees that the MBB numbers are sequential, dense, and match the 296 /// ordering of the blocks within the function. If a specific MachineBasicBlock 297 /// is specified, only that block and those after it are renumbered. 298 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 299 if (empty()) { MBBNumbering.clear(); return; } 300 MachineFunction::iterator MBBI, E = end(); 301 if (MBB == nullptr) 302 MBBI = begin(); 303 else 304 MBBI = MBB->getIterator(); 305 306 // Figure out the block number this should have. 307 unsigned BlockNo = 0; 308 if (MBBI != begin()) 309 BlockNo = std::prev(MBBI)->getNumber() + 1; 310 311 for (; MBBI != E; ++MBBI, ++BlockNo) { 312 if (MBBI->getNumber() != (int)BlockNo) { 313 // Remove use of the old number. 314 if (MBBI->getNumber() != -1) { 315 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 316 "MBB number mismatch!"); 317 MBBNumbering[MBBI->getNumber()] = nullptr; 318 } 319 320 // If BlockNo is already taken, set that block's number to -1. 321 if (MBBNumbering[BlockNo]) 322 MBBNumbering[BlockNo]->setNumber(-1); 323 324 MBBNumbering[BlockNo] = &*MBBI; 325 MBBI->setNumber(BlockNo); 326 } 327 } 328 329 // Okay, all the blocks are renumbered. If we have compactified the block 330 // numbering, shrink MBBNumbering now. 331 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 332 MBBNumbering.resize(BlockNo); 333 } 334 335 /// This method iterates over the basic blocks and assigns their IsBeginSection 336 /// and IsEndSection fields. This must be called after MBB layout is finalized 337 /// and the SectionID's are assigned to MBBs. 338 void MachineFunction::assignBeginEndSections() { 339 front().setIsBeginSection(); 340 auto CurrentSectionID = front().getSectionID(); 341 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 342 if (MBBI->getSectionID() == CurrentSectionID) 343 continue; 344 MBBI->setIsBeginSection(); 345 std::prev(MBBI)->setIsEndSection(); 346 CurrentSectionID = MBBI->getSectionID(); 347 } 348 back().setIsEndSection(); 349 } 350 351 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 352 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 353 const DebugLoc &DL, 354 bool NoImplicit) { 355 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 356 MachineInstr(*this, MCID, DL, NoImplicit); 357 } 358 359 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 360 /// identical in all ways except the instruction has no parent, prev, or next. 361 MachineInstr * 362 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 363 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 364 MachineInstr(*this, *Orig); 365 } 366 367 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 368 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 369 MachineInstr *FirstClone = nullptr; 370 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 371 while (true) { 372 MachineInstr *Cloned = CloneMachineInstr(&*I); 373 MBB.insert(InsertBefore, Cloned); 374 if (FirstClone == nullptr) { 375 FirstClone = Cloned; 376 } else { 377 Cloned->bundleWithPred(); 378 } 379 380 if (!I->isBundledWithSucc()) 381 break; 382 ++I; 383 } 384 // Copy over call site info to the cloned instruction if needed. If Orig is in 385 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 386 // the bundle. 387 if (Orig.shouldUpdateCallSiteInfo()) 388 copyCallSiteInfo(&Orig, FirstClone); 389 return *FirstClone; 390 } 391 392 /// Delete the given MachineInstr. 393 /// 394 /// This function also serves as the MachineInstr destructor - the real 395 /// ~MachineInstr() destructor must be empty. 396 void 397 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 398 // Verify that a call site info is at valid state. This assertion should 399 // be triggered during the implementation of support for the 400 // call site info of a new architecture. If the assertion is triggered, 401 // back trace will tell where to insert a call to updateCallSiteInfo(). 402 assert((!MI->isCandidateForCallSiteEntry() || 403 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 404 "Call site info was not updated!"); 405 // Strip it for parts. The operand array and the MI object itself are 406 // independently recyclable. 407 if (MI->Operands) 408 deallocateOperandArray(MI->CapOperands, MI->Operands); 409 // Don't call ~MachineInstr() which must be trivial anyway because 410 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 411 // destructors. 412 InstructionRecycler.Deallocate(Allocator, MI); 413 } 414 415 /// Allocate a new MachineBasicBlock. Use this instead of 416 /// `new MachineBasicBlock'. 417 MachineBasicBlock * 418 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 419 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 420 MachineBasicBlock(*this, bb); 421 } 422 423 /// Delete the given MachineBasicBlock. 424 void 425 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 426 assert(MBB->getParent() == this && "MBB parent mismatch!"); 427 // Clean up any references to MBB in jump tables before deleting it. 428 if (JumpTableInfo) 429 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 430 MBB->~MachineBasicBlock(); 431 BasicBlockRecycler.Deallocate(Allocator, MBB); 432 } 433 434 MachineMemOperand *MachineFunction::getMachineMemOperand( 435 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 436 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 437 SyncScope::ID SSID, AtomicOrdering Ordering, 438 AtomicOrdering FailureOrdering) { 439 return new (Allocator) 440 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 441 SSID, Ordering, FailureOrdering); 442 } 443 444 MachineMemOperand *MachineFunction::getMachineMemOperand( 445 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 446 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 447 SyncScope::ID SSID, AtomicOrdering Ordering, 448 AtomicOrdering FailureOrdering) { 449 return new (Allocator) 450 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 451 Ordering, FailureOrdering); 452 } 453 454 MachineMemOperand *MachineFunction::getMachineMemOperand( 455 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 456 return new (Allocator) 457 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 458 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 459 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 460 } 461 462 MachineMemOperand *MachineFunction::getMachineMemOperand( 463 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 464 return new (Allocator) 465 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 466 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 467 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 468 } 469 470 MachineMemOperand * 471 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 472 int64_t Offset, LLT Ty) { 473 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 474 475 // If there is no pointer value, the offset isn't tracked so we need to adjust 476 // the base alignment. 477 Align Alignment = PtrInfo.V.isNull() 478 ? commonAlignment(MMO->getBaseAlign(), Offset) 479 : MMO->getBaseAlign(); 480 481 // Do not preserve ranges, since we don't necessarily know what the high bits 482 // are anymore. 483 return new (Allocator) MachineMemOperand( 484 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 485 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 486 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 487 } 488 489 MachineMemOperand * 490 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 491 const AAMDNodes &AAInfo) { 492 MachinePointerInfo MPI = MMO->getValue() ? 493 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 494 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 495 496 return new (Allocator) MachineMemOperand( 497 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 498 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 499 MMO->getFailureOrdering()); 500 } 501 502 MachineMemOperand * 503 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 504 MachineMemOperand::Flags Flags) { 505 return new (Allocator) MachineMemOperand( 506 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 507 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 508 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 509 } 510 511 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 512 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 513 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 514 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 515 PostInstrSymbol, HeapAllocMarker); 516 } 517 518 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 519 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 520 llvm::copy(Name, Dest); 521 Dest[Name.size()] = 0; 522 return Dest; 523 } 524 525 uint32_t *MachineFunction::allocateRegMask() { 526 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 527 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 528 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 529 memset(Mask, 0, Size * sizeof(Mask[0])); 530 return Mask; 531 } 532 533 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 534 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 535 copy(Mask, AllocMask); 536 return {AllocMask, Mask.size()}; 537 } 538 539 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 540 LLVM_DUMP_METHOD void MachineFunction::dump() const { 541 print(dbgs()); 542 } 543 #endif 544 545 StringRef MachineFunction::getName() const { 546 return getFunction().getName(); 547 } 548 549 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 550 OS << "# Machine code for function " << getName() << ": "; 551 getProperties().print(OS); 552 OS << '\n'; 553 554 // Print Frame Information 555 FrameInfo->print(*this, OS); 556 557 // Print JumpTable Information 558 if (JumpTableInfo) 559 JumpTableInfo->print(OS); 560 561 // Print Constant Pool 562 ConstantPool->print(OS); 563 564 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 565 566 if (RegInfo && !RegInfo->livein_empty()) { 567 OS << "Function Live Ins: "; 568 for (MachineRegisterInfo::livein_iterator 569 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 570 OS << printReg(I->first, TRI); 571 if (I->second) 572 OS << " in " << printReg(I->second, TRI); 573 if (std::next(I) != E) 574 OS << ", "; 575 } 576 OS << '\n'; 577 } 578 579 ModuleSlotTracker MST(getFunction().getParent()); 580 MST.incorporateFunction(getFunction()); 581 for (const auto &BB : *this) { 582 OS << '\n'; 583 // If we print the whole function, print it at its most verbose level. 584 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 585 } 586 587 OS << "\n# End machine code for function " << getName() << ".\n\n"; 588 } 589 590 /// True if this function needs frame moves for debug or exceptions. 591 bool MachineFunction::needsFrameMoves() const { 592 return getMMI().hasDebugInfo() || 593 getTarget().Options.ForceDwarfFrameSection || 594 F.needsUnwindTableEntry(); 595 } 596 597 namespace llvm { 598 599 template<> 600 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 601 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 602 603 static std::string getGraphName(const MachineFunction *F) { 604 return ("CFG for '" + F->getName() + "' function").str(); 605 } 606 607 std::string getNodeLabel(const MachineBasicBlock *Node, 608 const MachineFunction *Graph) { 609 std::string OutStr; 610 { 611 raw_string_ostream OSS(OutStr); 612 613 if (isSimple()) { 614 OSS << printMBBReference(*Node); 615 if (const BasicBlock *BB = Node->getBasicBlock()) 616 OSS << ": " << BB->getName(); 617 } else 618 Node->print(OSS); 619 } 620 621 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 622 623 // Process string output to make it nicer... 624 for (unsigned i = 0; i != OutStr.length(); ++i) 625 if (OutStr[i] == '\n') { // Left justify 626 OutStr[i] = '\\'; 627 OutStr.insert(OutStr.begin()+i+1, 'l'); 628 } 629 return OutStr; 630 } 631 }; 632 633 } // end namespace llvm 634 635 void MachineFunction::viewCFG() const 636 { 637 #ifndef NDEBUG 638 ViewGraph(this, "mf" + getName()); 639 #else 640 errs() << "MachineFunction::viewCFG is only available in debug builds on " 641 << "systems with Graphviz or gv!\n"; 642 #endif // NDEBUG 643 } 644 645 void MachineFunction::viewCFGOnly() const 646 { 647 #ifndef NDEBUG 648 ViewGraph(this, "mf" + getName(), true); 649 #else 650 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 651 << "systems with Graphviz or gv!\n"; 652 #endif // NDEBUG 653 } 654 655 /// Add the specified physical register as a live-in value and 656 /// create a corresponding virtual register for it. 657 Register MachineFunction::addLiveIn(MCRegister PReg, 658 const TargetRegisterClass *RC) { 659 MachineRegisterInfo &MRI = getRegInfo(); 660 Register VReg = MRI.getLiveInVirtReg(PReg); 661 if (VReg) { 662 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 663 (void)VRegRC; 664 // A physical register can be added several times. 665 // Between two calls, the register class of the related virtual register 666 // may have been constrained to match some operation constraints. 667 // In that case, check that the current register class includes the 668 // physical register and is a sub class of the specified RC. 669 assert((VRegRC == RC || (VRegRC->contains(PReg) && 670 RC->hasSubClassEq(VRegRC))) && 671 "Register class mismatch!"); 672 return VReg; 673 } 674 VReg = MRI.createVirtualRegister(RC); 675 MRI.addLiveIn(PReg, VReg); 676 return VReg; 677 } 678 679 /// Return the MCSymbol for the specified non-empty jump table. 680 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 681 /// normal 'L' label is returned. 682 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 683 bool isLinkerPrivate) const { 684 const DataLayout &DL = getDataLayout(); 685 assert(JumpTableInfo && "No jump tables"); 686 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 687 688 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 689 : DL.getPrivateGlobalPrefix(); 690 SmallString<60> Name; 691 raw_svector_ostream(Name) 692 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 693 return Ctx.getOrCreateSymbol(Name); 694 } 695 696 /// Return a function-local symbol to represent the PIC base. 697 MCSymbol *MachineFunction::getPICBaseSymbol() const { 698 const DataLayout &DL = getDataLayout(); 699 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 700 Twine(getFunctionNumber()) + "$pb"); 701 } 702 703 /// \name Exception Handling 704 /// \{ 705 706 LandingPadInfo & 707 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 708 unsigned N = LandingPads.size(); 709 for (unsigned i = 0; i < N; ++i) { 710 LandingPadInfo &LP = LandingPads[i]; 711 if (LP.LandingPadBlock == LandingPad) 712 return LP; 713 } 714 715 LandingPads.push_back(LandingPadInfo(LandingPad)); 716 return LandingPads[N]; 717 } 718 719 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 720 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 721 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 722 LP.BeginLabels.push_back(BeginLabel); 723 LP.EndLabels.push_back(EndLabel); 724 } 725 726 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 727 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 728 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 729 LP.LandingPadLabel = LandingPadLabel; 730 731 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 732 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 733 if (const auto *PF = 734 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 735 getMMI().addPersonality(PF); 736 737 if (LPI->isCleanup()) 738 addCleanup(LandingPad); 739 740 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 741 // correct, but we need to do it this way because of how the DWARF EH 742 // emitter processes the clauses. 743 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 744 Value *Val = LPI->getClause(I - 1); 745 if (LPI->isCatch(I - 1)) { 746 addCatchTypeInfo(LandingPad, 747 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 748 } else { 749 // Add filters in a list. 750 auto *CVal = cast<Constant>(Val); 751 SmallVector<const GlobalValue *, 4> FilterList; 752 for (const Use &U : CVal->operands()) 753 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 754 755 addFilterTypeInfo(LandingPad, FilterList); 756 } 757 } 758 759 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 760 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 761 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 762 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 763 } 764 765 } else { 766 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 767 } 768 769 return LandingPadLabel; 770 } 771 772 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 773 ArrayRef<const GlobalValue *> TyInfo) { 774 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 775 for (unsigned N = TyInfo.size(); N; --N) 776 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 777 } 778 779 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 780 ArrayRef<const GlobalValue *> TyInfo) { 781 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 782 std::vector<unsigned> IdsInFilter(TyInfo.size()); 783 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 784 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 785 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 786 } 787 788 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 789 bool TidyIfNoBeginLabels) { 790 for (unsigned i = 0; i != LandingPads.size(); ) { 791 LandingPadInfo &LandingPad = LandingPads[i]; 792 if (LandingPad.LandingPadLabel && 793 !LandingPad.LandingPadLabel->isDefined() && 794 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 795 LandingPad.LandingPadLabel = nullptr; 796 797 // Special case: we *should* emit LPs with null LP MBB. This indicates 798 // "nounwind" case. 799 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 800 LandingPads.erase(LandingPads.begin() + i); 801 continue; 802 } 803 804 if (TidyIfNoBeginLabels) { 805 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 806 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 807 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 808 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 809 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 810 continue; 811 812 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 813 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 814 --j; 815 --e; 816 } 817 818 // Remove landing pads with no try-ranges. 819 if (LandingPads[i].BeginLabels.empty()) { 820 LandingPads.erase(LandingPads.begin() + i); 821 continue; 822 } 823 } 824 825 // If there is no landing pad, ensure that the list of typeids is empty. 826 // If the only typeid is a cleanup, this is the same as having no typeids. 827 if (!LandingPad.LandingPadBlock || 828 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 829 LandingPad.TypeIds.clear(); 830 ++i; 831 } 832 } 833 834 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 835 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 836 LP.TypeIds.push_back(0); 837 } 838 839 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 840 const Function *Filter, 841 const BlockAddress *RecoverBA) { 842 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 843 SEHHandler Handler; 844 Handler.FilterOrFinally = Filter; 845 Handler.RecoverBA = RecoverBA; 846 LP.SEHHandlers.push_back(Handler); 847 } 848 849 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 850 const Function *Cleanup) { 851 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 852 SEHHandler Handler; 853 Handler.FilterOrFinally = Cleanup; 854 Handler.RecoverBA = nullptr; 855 LP.SEHHandlers.push_back(Handler); 856 } 857 858 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 859 ArrayRef<unsigned> Sites) { 860 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 861 } 862 863 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 864 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 865 if (TypeInfos[i] == TI) return i + 1; 866 867 TypeInfos.push_back(TI); 868 return TypeInfos.size(); 869 } 870 871 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 872 // If the new filter coincides with the tail of an existing filter, then 873 // re-use the existing filter. Folding filters more than this requires 874 // re-ordering filters and/or their elements - probably not worth it. 875 for (unsigned i : FilterEnds) { 876 unsigned j = TyIds.size(); 877 878 while (i && j) 879 if (FilterIds[--i] != TyIds[--j]) 880 goto try_next; 881 882 if (!j) 883 // The new filter coincides with range [i, end) of the existing filter. 884 return -(1 + i); 885 886 try_next:; 887 } 888 889 // Add the new filter. 890 int FilterID = -(1 + FilterIds.size()); 891 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 892 llvm::append_range(FilterIds, TyIds); 893 FilterEnds.push_back(FilterIds.size()); 894 FilterIds.push_back(0); // terminator 895 return FilterID; 896 } 897 898 MachineFunction::CallSiteInfoMap::iterator 899 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 900 assert(MI->isCandidateForCallSiteEntry() && 901 "Call site info refers only to call (MI) candidates"); 902 903 if (!Target.Options.EmitCallSiteInfo) 904 return CallSitesInfo.end(); 905 return CallSitesInfo.find(MI); 906 } 907 908 /// Return the call machine instruction or find a call within bundle. 909 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 910 if (!MI->isBundle()) 911 return MI; 912 913 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 914 getBundleEnd(MI->getIterator()))) 915 if (BMI.isCandidateForCallSiteEntry()) 916 return &BMI; 917 918 llvm_unreachable("Unexpected bundle without a call site candidate"); 919 } 920 921 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 922 assert(MI->shouldUpdateCallSiteInfo() && 923 "Call site info refers only to call (MI) candidates or " 924 "candidates inside bundles"); 925 926 const MachineInstr *CallMI = getCallInstr(MI); 927 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 928 if (CSIt == CallSitesInfo.end()) 929 return; 930 CallSitesInfo.erase(CSIt); 931 } 932 933 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 934 const MachineInstr *New) { 935 assert(Old->shouldUpdateCallSiteInfo() && 936 "Call site info refers only to call (MI) candidates or " 937 "candidates inside bundles"); 938 939 if (!New->isCandidateForCallSiteEntry()) 940 return eraseCallSiteInfo(Old); 941 942 const MachineInstr *OldCallMI = getCallInstr(Old); 943 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 944 if (CSIt == CallSitesInfo.end()) 945 return; 946 947 CallSiteInfo CSInfo = CSIt->second; 948 CallSitesInfo[New] = CSInfo; 949 } 950 951 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 952 const MachineInstr *New) { 953 assert(Old->shouldUpdateCallSiteInfo() && 954 "Call site info refers only to call (MI) candidates or " 955 "candidates inside bundles"); 956 957 if (!New->isCandidateForCallSiteEntry()) 958 return eraseCallSiteInfo(Old); 959 960 const MachineInstr *OldCallMI = getCallInstr(Old); 961 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 962 if (CSIt == CallSitesInfo.end()) 963 return; 964 965 CallSiteInfo CSInfo = std::move(CSIt->second); 966 CallSitesInfo.erase(CSIt); 967 CallSitesInfo[New] = CSInfo; 968 } 969 970 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 971 DebugInstrNumberingCount = Num; 972 } 973 974 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 975 DebugInstrOperandPair B, 976 unsigned Subreg) { 977 // Catch any accidental self-loops. 978 assert(A.first != B.first); 979 // Don't allow any substitutions _from_ the memory operand number. 980 assert(A.second != DebugOperandMemNumber); 981 982 DebugValueSubstitutions.push_back({A, B, Subreg}); 983 } 984 985 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 986 MachineInstr &New, 987 unsigned MaxOperand) { 988 // If the Old instruction wasn't tracked at all, there is no work to do. 989 unsigned OldInstrNum = Old.peekDebugInstrNum(); 990 if (!OldInstrNum) 991 return; 992 993 // Iterate over all operands looking for defs to create substitutions for. 994 // Avoid creating new instr numbers unless we create a new substitution. 995 // While this has no functional effect, it risks confusing someone reading 996 // MIR output. 997 // Examine all the operands, or the first N specified by the caller. 998 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 999 for (unsigned int I = 0; I < MaxOperand; ++I) { 1000 const auto &OldMO = Old.getOperand(I); 1001 auto &NewMO = New.getOperand(I); 1002 (void)NewMO; 1003 1004 if (!OldMO.isReg() || !OldMO.isDef()) 1005 continue; 1006 assert(NewMO.isDef()); 1007 1008 unsigned NewInstrNum = New.getDebugInstrNum(); 1009 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1010 std::make_pair(NewInstrNum, I)); 1011 } 1012 } 1013 1014 auto MachineFunction::salvageCopySSA(MachineInstr &MI) 1015 -> DebugInstrOperandPair { 1016 MachineRegisterInfo &MRI = getRegInfo(); 1017 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1018 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1019 1020 // Chase the value read by a copy-like instruction back to the instruction 1021 // that ultimately _defines_ that value. This may pass: 1022 // * Through multiple intermediate copies, including subregister moves / 1023 // copies, 1024 // * Copies from physical registers that must then be traced back to the 1025 // defining instruction, 1026 // * Or, physical registers may be live-in to (only) the entry block, which 1027 // requires a DBG_PHI to be created. 1028 // We can pursue this problem in that order: trace back through copies, 1029 // optionally through a physical register, to a defining instruction. We 1030 // should never move from physreg to vreg. As we're still in SSA form, no need 1031 // to worry about partial definitions of registers. 1032 1033 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1034 // returns the register read and any subregister identifying which part is 1035 // read. 1036 auto GetRegAndSubreg = 1037 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1038 Register NewReg, OldReg; 1039 unsigned SubReg; 1040 if (Cpy.isCopy()) { 1041 OldReg = Cpy.getOperand(0).getReg(); 1042 NewReg = Cpy.getOperand(1).getReg(); 1043 SubReg = Cpy.getOperand(1).getSubReg(); 1044 } else if (Cpy.isSubregToReg()) { 1045 OldReg = Cpy.getOperand(0).getReg(); 1046 NewReg = Cpy.getOperand(2).getReg(); 1047 SubReg = Cpy.getOperand(3).getImm(); 1048 } else { 1049 auto CopyDetails = *TII.isCopyInstr(Cpy); 1050 const MachineOperand &Src = *CopyDetails.Source; 1051 const MachineOperand &Dest = *CopyDetails.Destination; 1052 OldReg = Dest.getReg(); 1053 NewReg = Src.getReg(); 1054 SubReg = Src.getSubReg(); 1055 } 1056 1057 return {NewReg, SubReg}; 1058 }; 1059 1060 // First seek either the defining instruction, or a copy from a physreg. 1061 // During search, the current state is the current copy instruction, and which 1062 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1063 // deal with those later. 1064 auto State = GetRegAndSubreg(MI); 1065 auto CurInst = MI.getIterator(); 1066 SmallVector<unsigned, 4> SubregsSeen; 1067 while (true) { 1068 // If we've found a copy from a physreg, first portion of search is over. 1069 if (!State.first.isVirtual()) 1070 break; 1071 1072 // Record any subregister qualifier. 1073 if (State.second) 1074 SubregsSeen.push_back(State.second); 1075 1076 assert(MRI.hasOneDef(State.first)); 1077 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1078 CurInst = Inst.getIterator(); 1079 1080 // Any non-copy instruction is the defining instruction we're seeking. 1081 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1082 break; 1083 State = GetRegAndSubreg(Inst); 1084 }; 1085 1086 // Helper lambda to apply additional subregister substitutions to a known 1087 // instruction/operand pair. Adds new (fake) substitutions so that we can 1088 // record the subregister. FIXME: this isn't very space efficient if multiple 1089 // values are tracked back through the same copies; cache something later. 1090 auto ApplySubregisters = 1091 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1092 for (unsigned Subreg : reverse(SubregsSeen)) { 1093 // Fetch a new instruction number, not attached to an actual instruction. 1094 unsigned NewInstrNumber = getNewDebugInstrNum(); 1095 // Add a substitution from the "new" number to the known one, with a 1096 // qualifying subreg. 1097 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1098 // Return the new number; to find the underlying value, consumers need to 1099 // deal with the qualifying subreg. 1100 P = {NewInstrNumber, 0}; 1101 } 1102 return P; 1103 }; 1104 1105 // If we managed to find the defining instruction after COPYs, return an 1106 // instruction / operand pair after adding subregister qualifiers. 1107 if (State.first.isVirtual()) { 1108 // Virtual register def -- we can just look up where this happens. 1109 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1110 for (auto &MO : Inst->operands()) { 1111 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1112 continue; 1113 return ApplySubregisters( 1114 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1115 } 1116 1117 llvm_unreachable("Vreg def with no corresponding operand?"); 1118 } 1119 1120 // Our search ended in a copy from a physreg: walk back up the function 1121 // looking for whatever defines the physreg. 1122 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1123 State = GetRegAndSubreg(*CurInst); 1124 Register RegToSeek = State.first; 1125 1126 auto RMII = CurInst->getReverseIterator(); 1127 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1128 for (auto &ToExamine : PrevInstrs) { 1129 for (auto &MO : ToExamine.operands()) { 1130 // Test for operand that defines something aliasing RegToSeek. 1131 if (!MO.isReg() || !MO.isDef() || 1132 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1133 continue; 1134 1135 return ApplySubregisters( 1136 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1137 } 1138 } 1139 1140 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1141 1142 // We reached the start of the block before finding a defining instruction. 1143 // It could be from a constant register, otherwise it must be an argument. 1144 if (TRI.isConstantPhysReg(State.first)) { 1145 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't 1146 // matter where we put it, as it's constant valued. 1147 assert(CurInst->isCopy()); 1148 } else if (State.first == TRI.getFrameRegister(*this)) { 1149 // LLVM IR is allowed to read the framepointer by calling a 1150 // llvm.frameaddress.* intrinsic. We can support this by emitting a 1151 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / 1152 // position that DBG_PHIs appear at, limiting what can be done later. 1153 // TODO: see if there's a better way of expressing these variable 1154 // locations. 1155 ; 1156 } else { 1157 // Assert that this is the entry block, or an EH pad. If it isn't, then 1158 // there is some code construct we don't recognise that deals with physregs 1159 // across blocks. 1160 assert(!State.first.isVirtual()); 1161 assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad()); 1162 } 1163 1164 // Create DBG_PHI for specified physreg. 1165 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1166 TII.get(TargetOpcode::DBG_PHI)); 1167 Builder.addReg(State.first); 1168 unsigned NewNum = getNewDebugInstrNum(); 1169 Builder.addImm(NewNum); 1170 return ApplySubregisters({NewNum, 0u}); 1171 } 1172 1173 void MachineFunction::finalizeDebugInstrRefs() { 1174 auto *TII = getSubtarget().getInstrInfo(); 1175 1176 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1177 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1178 MI.setDesc(RefII); 1179 MI.getOperand(0).setReg(0); 1180 MI.getOperand(1).ChangeToRegister(0, false); 1181 }; 1182 1183 if (!useDebugInstrRef()) 1184 return; 1185 1186 for (auto &MBB : *this) { 1187 for (auto &MI : MBB) { 1188 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1189 continue; 1190 1191 Register Reg = MI.getOperand(0).getReg(); 1192 1193 // Some vregs can be deleted as redundant in the meantime. Mark those 1194 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1195 // quickly deleted, leaving dangling references to vregs with no def. 1196 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1197 MakeUndefDbgValue(MI); 1198 continue; 1199 } 1200 1201 assert(Reg.isVirtual()); 1202 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1203 1204 // If we've found a copy-like instruction, follow it back to the 1205 // instruction that defines the source value, see salvageCopySSA docs 1206 // for why this is important. 1207 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1208 auto Result = salvageCopySSA(DefMI); 1209 MI.getOperand(0).ChangeToImmediate(Result.first); 1210 MI.getOperand(1).setImm(Result.second); 1211 } else { 1212 // Otherwise, identify the operand number that the VReg refers to. 1213 unsigned OperandIdx = 0; 1214 for (const auto &MO : DefMI.operands()) { 1215 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1216 break; 1217 ++OperandIdx; 1218 } 1219 assert(OperandIdx < DefMI.getNumOperands()); 1220 1221 // Morph this instr ref to point at the given instruction and operand. 1222 unsigned ID = DefMI.getDebugInstrNum(); 1223 MI.getOperand(0).ChangeToImmediate(ID); 1224 MI.getOperand(1).setImm(OperandIdx); 1225 } 1226 } 1227 } 1228 } 1229 1230 bool MachineFunction::useDebugInstrRef() const { 1231 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1232 // have optimized code inlined into this unoptimized code, however with 1233 // fewer and less aggressive optimizations happening, coverage and accuracy 1234 // should not suffer. 1235 if (getTarget().getOptLevel() == CodeGenOpt::None) 1236 return false; 1237 1238 // Don't use instr-ref if this function is marked optnone. 1239 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1240 return false; 1241 1242 if (getTarget().Options.ValueTrackingVariableLocations) 1243 return true; 1244 1245 return false; 1246 } 1247 1248 // Use one million as a high / reserved number. 1249 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1250 1251 /// \} 1252 1253 //===----------------------------------------------------------------------===// 1254 // MachineJumpTableInfo implementation 1255 //===----------------------------------------------------------------------===// 1256 1257 /// Return the size of each entry in the jump table. 1258 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1259 // The size of a jump table entry is 4 bytes unless the entry is just the 1260 // address of a block, in which case it is the pointer size. 1261 switch (getEntryKind()) { 1262 case MachineJumpTableInfo::EK_BlockAddress: 1263 return TD.getPointerSize(); 1264 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1265 return 8; 1266 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1267 case MachineJumpTableInfo::EK_LabelDifference32: 1268 case MachineJumpTableInfo::EK_Custom32: 1269 return 4; 1270 case MachineJumpTableInfo::EK_Inline: 1271 return 0; 1272 } 1273 llvm_unreachable("Unknown jump table encoding!"); 1274 } 1275 1276 /// Return the alignment of each entry in the jump table. 1277 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1278 // The alignment of a jump table entry is the alignment of int32 unless the 1279 // entry is just the address of a block, in which case it is the pointer 1280 // alignment. 1281 switch (getEntryKind()) { 1282 case MachineJumpTableInfo::EK_BlockAddress: 1283 return TD.getPointerABIAlignment(0).value(); 1284 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1285 return TD.getABIIntegerTypeAlignment(64).value(); 1286 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1287 case MachineJumpTableInfo::EK_LabelDifference32: 1288 case MachineJumpTableInfo::EK_Custom32: 1289 return TD.getABIIntegerTypeAlignment(32).value(); 1290 case MachineJumpTableInfo::EK_Inline: 1291 return 1; 1292 } 1293 llvm_unreachable("Unknown jump table encoding!"); 1294 } 1295 1296 /// Create a new jump table entry in the jump table info. 1297 unsigned MachineJumpTableInfo::createJumpTableIndex( 1298 const std::vector<MachineBasicBlock*> &DestBBs) { 1299 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1300 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1301 return JumpTables.size()-1; 1302 } 1303 1304 /// If Old is the target of any jump tables, update the jump tables to branch 1305 /// to New instead. 1306 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1307 MachineBasicBlock *New) { 1308 assert(Old != New && "Not making a change?"); 1309 bool MadeChange = false; 1310 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1311 ReplaceMBBInJumpTable(i, Old, New); 1312 return MadeChange; 1313 } 1314 1315 /// If MBB is present in any jump tables, remove it. 1316 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1317 bool MadeChange = false; 1318 for (MachineJumpTableEntry &JTE : JumpTables) { 1319 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1320 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1321 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1322 } 1323 return MadeChange; 1324 } 1325 1326 /// If Old is a target of the jump tables, update the jump table to branch to 1327 /// New instead. 1328 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1329 MachineBasicBlock *Old, 1330 MachineBasicBlock *New) { 1331 assert(Old != New && "Not making a change?"); 1332 bool MadeChange = false; 1333 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1334 for (MachineBasicBlock *&MBB : JTE.MBBs) 1335 if (MBB == Old) { 1336 MBB = New; 1337 MadeChange = true; 1338 } 1339 return MadeChange; 1340 } 1341 1342 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1343 if (JumpTables.empty()) return; 1344 1345 OS << "Jump Tables:\n"; 1346 1347 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1348 OS << printJumpTableEntryReference(i) << ':'; 1349 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1350 OS << ' ' << printMBBReference(*MBB); 1351 if (i != e) 1352 OS << '\n'; 1353 } 1354 1355 OS << '\n'; 1356 } 1357 1358 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1359 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1360 #endif 1361 1362 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1363 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1364 } 1365 1366 //===----------------------------------------------------------------------===// 1367 // MachineConstantPool implementation 1368 //===----------------------------------------------------------------------===// 1369 1370 void MachineConstantPoolValue::anchor() {} 1371 1372 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1373 return DL.getTypeAllocSize(Ty); 1374 } 1375 1376 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1377 if (isMachineConstantPoolEntry()) 1378 return Val.MachineCPVal->getSizeInBytes(DL); 1379 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1380 } 1381 1382 bool MachineConstantPoolEntry::needsRelocation() const { 1383 if (isMachineConstantPoolEntry()) 1384 return true; 1385 return Val.ConstVal->needsDynamicRelocation(); 1386 } 1387 1388 SectionKind 1389 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1390 if (needsRelocation()) 1391 return SectionKind::getReadOnlyWithRel(); 1392 switch (getSizeInBytes(*DL)) { 1393 case 4: 1394 return SectionKind::getMergeableConst4(); 1395 case 8: 1396 return SectionKind::getMergeableConst8(); 1397 case 16: 1398 return SectionKind::getMergeableConst16(); 1399 case 32: 1400 return SectionKind::getMergeableConst32(); 1401 default: 1402 return SectionKind::getReadOnly(); 1403 } 1404 } 1405 1406 MachineConstantPool::~MachineConstantPool() { 1407 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1408 // so keep track of which we've deleted to avoid double deletions. 1409 DenseSet<MachineConstantPoolValue*> Deleted; 1410 for (const MachineConstantPoolEntry &C : Constants) 1411 if (C.isMachineConstantPoolEntry()) { 1412 Deleted.insert(C.Val.MachineCPVal); 1413 delete C.Val.MachineCPVal; 1414 } 1415 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1416 if (Deleted.count(CPV) == 0) 1417 delete CPV; 1418 } 1419 } 1420 1421 /// Test whether the given two constants can be allocated the same constant pool 1422 /// entry. 1423 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1424 const DataLayout &DL) { 1425 // Handle the trivial case quickly. 1426 if (A == B) return true; 1427 1428 // If they have the same type but weren't the same constant, quickly 1429 // reject them. 1430 if (A->getType() == B->getType()) return false; 1431 1432 // We can't handle structs or arrays. 1433 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1434 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1435 return false; 1436 1437 // For now, only support constants with the same size. 1438 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1439 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1440 return false; 1441 1442 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1443 1444 // Try constant folding a bitcast of both instructions to an integer. If we 1445 // get two identical ConstantInt's, then we are good to share them. We use 1446 // the constant folding APIs to do this so that we get the benefit of 1447 // DataLayout. 1448 if (isa<PointerType>(A->getType())) 1449 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1450 const_cast<Constant *>(A), IntTy, DL); 1451 else if (A->getType() != IntTy) 1452 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1453 IntTy, DL); 1454 if (isa<PointerType>(B->getType())) 1455 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1456 const_cast<Constant *>(B), IntTy, DL); 1457 else if (B->getType() != IntTy) 1458 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1459 IntTy, DL); 1460 1461 return A == B; 1462 } 1463 1464 /// Create a new entry in the constant pool or return an existing one. 1465 /// User must specify the log2 of the minimum required alignment for the object. 1466 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1467 Align Alignment) { 1468 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1469 1470 // Check to see if we already have this constant. 1471 // 1472 // FIXME, this could be made much more efficient for large constant pools. 1473 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1474 if (!Constants[i].isMachineConstantPoolEntry() && 1475 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1476 if (Constants[i].getAlign() < Alignment) 1477 Constants[i].Alignment = Alignment; 1478 return i; 1479 } 1480 1481 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1482 return Constants.size()-1; 1483 } 1484 1485 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1486 Align Alignment) { 1487 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1488 1489 // Check to see if we already have this constant. 1490 // 1491 // FIXME, this could be made much more efficient for large constant pools. 1492 int Idx = V->getExistingMachineCPValue(this, Alignment); 1493 if (Idx != -1) { 1494 MachineCPVsSharingEntries.insert(V); 1495 return (unsigned)Idx; 1496 } 1497 1498 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1499 return Constants.size()-1; 1500 } 1501 1502 void MachineConstantPool::print(raw_ostream &OS) const { 1503 if (Constants.empty()) return; 1504 1505 OS << "Constant Pool:\n"; 1506 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1507 OS << " cp#" << i << ": "; 1508 if (Constants[i].isMachineConstantPoolEntry()) 1509 Constants[i].Val.MachineCPVal->print(OS); 1510 else 1511 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1512 OS << ", align=" << Constants[i].getAlign().value(); 1513 OS << "\n"; 1514 } 1515 } 1516 1517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1518 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1519 #endif 1520