xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision eb3f76fc83146f85b424a8f923f65263069876dd)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/MC/MCContext.h"
55 #include "llvm/MC/MCSymbol.h"
56 #include "llvm/MC/SectionKind.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/DOTGraphTraits.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/GraphWriter.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <iterator>
71 #include <string>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "codegen"
78 
79 static cl::opt<unsigned>
80 AlignAllFunctions("align-all-functions",
81                   cl::desc("Force the alignment of all functions."),
82                   cl::init(0), cl::Hidden);
83 
84 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
85   using P = MachineFunctionProperties::Property;
86 
87   switch(Prop) {
88   case P::FailedISel: return "FailedISel";
89   case P::IsSSA: return "IsSSA";
90   case P::Legalized: return "Legalized";
91   case P::NoPHIs: return "NoPHIs";
92   case P::NoVRegs: return "NoVRegs";
93   case P::RegBankSelected: return "RegBankSelected";
94   case P::Selected: return "Selected";
95   case P::TracksLiveness: return "TracksLiveness";
96   }
97   llvm_unreachable("Invalid machine function property");
98 }
99 
100 void MachineFunctionProperties::print(raw_ostream &OS) const {
101   const char *Separator = "";
102   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
103     if (!Properties[I])
104       continue;
105     OS << Separator << getPropertyName(static_cast<Property>(I));
106     Separator = ", ";
107   }
108 }
109 
110 //===----------------------------------------------------------------------===//
111 // MachineFunction implementation
112 //===----------------------------------------------------------------------===//
113 
114 // Out-of-line virtual method.
115 MachineFunctionInfo::~MachineFunctionInfo() = default;
116 
117 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
118   MBB->getParent()->DeleteMachineBasicBlock(MBB);
119 }
120 
121 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
122                                            const Function &F) {
123   if (F.hasFnAttribute(Attribute::StackAlignment))
124     return F.getFnStackAlignment();
125   return STI->getFrameLowering()->getStackAlignment();
126 }
127 
128 MachineFunction::MachineFunction(const Function &F, const TargetMachine &Target,
129                                  const TargetSubtargetInfo &STI,
130                                  unsigned FunctionNum, MachineModuleInfo &mmi)
131     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
132   FunctionNumber = FunctionNum;
133   init();
134 }
135 
136 void MachineFunction::init() {
137   // Assume the function starts in SSA form with correct liveness.
138   Properties.set(MachineFunctionProperties::Property::IsSSA);
139   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
140   if (STI->getRegisterInfo())
141     RegInfo = new (Allocator) MachineRegisterInfo(this);
142   else
143     RegInfo = nullptr;
144 
145   MFInfo = nullptr;
146   // We can realign the stack if the target supports it and the user hasn't
147   // explicitly asked us not to.
148   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
149                       !F.hasFnAttribute("no-realign-stack");
150   FrameInfo = new (Allocator) MachineFrameInfo(
151       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
152       /*ForceRealign=*/CanRealignSP &&
153           F.hasFnAttribute(Attribute::StackAlignment));
154 
155   if (F.hasFnAttribute(Attribute::StackAlignment))
156     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
157 
158   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
159   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
160 
161   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
162   // FIXME: Use Function::optForSize().
163   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
164     Alignment = std::max(Alignment,
165                          STI->getTargetLowering()->getPrefFunctionAlignment());
166 
167   if (AlignAllFunctions)
168     Alignment = AlignAllFunctions;
169 
170   JumpTableInfo = nullptr;
171 
172   if (isFuncletEHPersonality(classifyEHPersonality(
173           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
174     WinEHInfo = new (Allocator) WinEHFuncInfo();
175   }
176 
177   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
178          "Can't create a MachineFunction using a Module with a "
179          "Target-incompatible DataLayout attached\n");
180 
181   PSVManager =
182     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
183                                                   getInstrInfo()));
184 }
185 
186 MachineFunction::~MachineFunction() {
187   clear();
188 }
189 
190 void MachineFunction::clear() {
191   Properties.reset();
192   // Don't call destructors on MachineInstr and MachineOperand. All of their
193   // memory comes from the BumpPtrAllocator which is about to be purged.
194   //
195   // Do call MachineBasicBlock destructors, it contains std::vectors.
196   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
197     I->Insts.clearAndLeakNodesUnsafely();
198 
199   InstructionRecycler.clear(Allocator);
200   OperandRecycler.clear(Allocator);
201   BasicBlockRecycler.clear(Allocator);
202   CodeViewAnnotations.clear();
203   VariableDbgInfos.clear();
204   if (RegInfo) {
205     RegInfo->~MachineRegisterInfo();
206     Allocator.Deallocate(RegInfo);
207   }
208   if (MFInfo) {
209     MFInfo->~MachineFunctionInfo();
210     Allocator.Deallocate(MFInfo);
211   }
212 
213   FrameInfo->~MachineFrameInfo();
214   Allocator.Deallocate(FrameInfo);
215 
216   ConstantPool->~MachineConstantPool();
217   Allocator.Deallocate(ConstantPool);
218 
219   if (JumpTableInfo) {
220     JumpTableInfo->~MachineJumpTableInfo();
221     Allocator.Deallocate(JumpTableInfo);
222   }
223 
224   if (WinEHInfo) {
225     WinEHInfo->~WinEHFuncInfo();
226     Allocator.Deallocate(WinEHInfo);
227   }
228 }
229 
230 const DataLayout &MachineFunction::getDataLayout() const {
231   return F.getParent()->getDataLayout();
232 }
233 
234 /// Get the JumpTableInfo for this function.
235 /// If it does not already exist, allocate one.
236 MachineJumpTableInfo *MachineFunction::
237 getOrCreateJumpTableInfo(unsigned EntryKind) {
238   if (JumpTableInfo) return JumpTableInfo;
239 
240   JumpTableInfo = new (Allocator)
241     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
242   return JumpTableInfo;
243 }
244 
245 /// Should we be emitting segmented stack stuff for the function
246 bool MachineFunction::shouldSplitStack() const {
247   return getFunction().hasFnAttribute("split-stack");
248 }
249 
250 /// This discards all of the MachineBasicBlock numbers and recomputes them.
251 /// This guarantees that the MBB numbers are sequential, dense, and match the
252 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
253 /// is specified, only that block and those after it are renumbered.
254 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
255   if (empty()) { MBBNumbering.clear(); return; }
256   MachineFunction::iterator MBBI, E = end();
257   if (MBB == nullptr)
258     MBBI = begin();
259   else
260     MBBI = MBB->getIterator();
261 
262   // Figure out the block number this should have.
263   unsigned BlockNo = 0;
264   if (MBBI != begin())
265     BlockNo = std::prev(MBBI)->getNumber() + 1;
266 
267   for (; MBBI != E; ++MBBI, ++BlockNo) {
268     if (MBBI->getNumber() != (int)BlockNo) {
269       // Remove use of the old number.
270       if (MBBI->getNumber() != -1) {
271         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
272                "MBB number mismatch!");
273         MBBNumbering[MBBI->getNumber()] = nullptr;
274       }
275 
276       // If BlockNo is already taken, set that block's number to -1.
277       if (MBBNumbering[BlockNo])
278         MBBNumbering[BlockNo]->setNumber(-1);
279 
280       MBBNumbering[BlockNo] = &*MBBI;
281       MBBI->setNumber(BlockNo);
282     }
283   }
284 
285   // Okay, all the blocks are renumbered.  If we have compactified the block
286   // numbering, shrink MBBNumbering now.
287   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
288   MBBNumbering.resize(BlockNo);
289 }
290 
291 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
292 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
293                                                   const DebugLoc &DL,
294                                                   bool NoImp) {
295   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
296     MachineInstr(*this, MCID, DL, NoImp);
297 }
298 
299 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
300 /// identical in all ways except the instruction has no parent, prev, or next.
301 MachineInstr *
302 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
303   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
304              MachineInstr(*this, *Orig);
305 }
306 
307 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
308     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
309   MachineInstr *FirstClone = nullptr;
310   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
311   while (true) {
312     MachineInstr *Cloned = CloneMachineInstr(&*I);
313     MBB.insert(InsertBefore, Cloned);
314     if (FirstClone == nullptr) {
315       FirstClone = Cloned;
316     } else {
317       Cloned->bundleWithPred();
318     }
319 
320     if (!I->isBundledWithSucc())
321       break;
322     ++I;
323   }
324   return *FirstClone;
325 }
326 
327 /// Delete the given MachineInstr.
328 ///
329 /// This function also serves as the MachineInstr destructor - the real
330 /// ~MachineInstr() destructor must be empty.
331 void
332 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
333   // Strip it for parts. The operand array and the MI object itself are
334   // independently recyclable.
335   if (MI->Operands)
336     deallocateOperandArray(MI->CapOperands, MI->Operands);
337   // Don't call ~MachineInstr() which must be trivial anyway because
338   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
339   // destructors.
340   InstructionRecycler.Deallocate(Allocator, MI);
341 }
342 
343 /// Allocate a new MachineBasicBlock. Use this instead of
344 /// `new MachineBasicBlock'.
345 MachineBasicBlock *
346 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
347   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
348              MachineBasicBlock(*this, bb);
349 }
350 
351 /// Delete the given MachineBasicBlock.
352 void
353 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
354   assert(MBB->getParent() == this && "MBB parent mismatch!");
355   MBB->~MachineBasicBlock();
356   BasicBlockRecycler.Deallocate(Allocator, MBB);
357 }
358 
359 MachineMemOperand *MachineFunction::getMachineMemOperand(
360     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
361     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
362     SyncScope::ID SSID, AtomicOrdering Ordering,
363     AtomicOrdering FailureOrdering) {
364   return new (Allocator)
365       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
366                         SSID, Ordering, FailureOrdering);
367 }
368 
369 MachineMemOperand *
370 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
371                                       int64_t Offset, uint64_t Size) {
372   if (MMO->getValue())
373     return new (Allocator)
374                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
375                                                     MMO->getOffset()+Offset),
376                                  MMO->getFlags(), Size, MMO->getBaseAlignment(),
377                                  AAMDNodes(), nullptr, MMO->getSyncScopeID(),
378                                  MMO->getOrdering(), MMO->getFailureOrdering());
379   return new (Allocator)
380              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
381                                                   MMO->getOffset()+Offset),
382                                MMO->getFlags(), Size, MMO->getBaseAlignment(),
383                                AAMDNodes(), nullptr, MMO->getSyncScopeID(),
384                                MMO->getOrdering(), MMO->getFailureOrdering());
385 }
386 
387 MachineMemOperand *
388 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
389                                       const AAMDNodes &AAInfo) {
390   MachinePointerInfo MPI = MMO->getValue() ?
391              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
392              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
393 
394   return new (Allocator)
395              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
396                                MMO->getBaseAlignment(), AAInfo,
397                                MMO->getRanges(), MMO->getSyncScopeID(),
398                                MMO->getOrdering(), MMO->getFailureOrdering());
399 }
400 
401 MachineInstr::mmo_iterator
402 MachineFunction::allocateMemRefsArray(unsigned long Num) {
403   return Allocator.Allocate<MachineMemOperand *>(Num);
404 }
405 
406 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
407 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
408                                     MachineInstr::mmo_iterator End) {
409   // Count the number of load mem refs.
410   unsigned Num = 0;
411   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
412     if ((*I)->isLoad())
413       ++Num;
414 
415   // Allocate a new array and populate it with the load information.
416   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
417   unsigned Index = 0;
418   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
419     if ((*I)->isLoad()) {
420       if (!(*I)->isStore())
421         // Reuse the MMO.
422         Result[Index] = *I;
423       else {
424         // Clone the MMO and unset the store flag.
425         MachineMemOperand *JustLoad =
426           getMachineMemOperand((*I)->getPointerInfo(),
427                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
428                                (*I)->getSize(), (*I)->getBaseAlignment(),
429                                (*I)->getAAInfo(), nullptr,
430                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
431                                (*I)->getFailureOrdering());
432         Result[Index] = JustLoad;
433       }
434       ++Index;
435     }
436   }
437   return std::make_pair(Result, Result + Num);
438 }
439 
440 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
441 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
442                                      MachineInstr::mmo_iterator End) {
443   // Count the number of load mem refs.
444   unsigned Num = 0;
445   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
446     if ((*I)->isStore())
447       ++Num;
448 
449   // Allocate a new array and populate it with the store information.
450   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
451   unsigned Index = 0;
452   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
453     if ((*I)->isStore()) {
454       if (!(*I)->isLoad())
455         // Reuse the MMO.
456         Result[Index] = *I;
457       else {
458         // Clone the MMO and unset the load flag.
459         MachineMemOperand *JustStore =
460           getMachineMemOperand((*I)->getPointerInfo(),
461                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
462                                (*I)->getSize(), (*I)->getBaseAlignment(),
463                                (*I)->getAAInfo(), nullptr,
464                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
465                                (*I)->getFailureOrdering());
466         Result[Index] = JustStore;
467       }
468       ++Index;
469     }
470   }
471   return std::make_pair(Result, Result + Num);
472 }
473 
474 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
475   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
476   std::copy(Name.begin(), Name.end(), Dest);
477   Dest[Name.size()] = 0;
478   return Dest;
479 }
480 
481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
482 LLVM_DUMP_METHOD void MachineFunction::dump() const {
483   print(dbgs());
484 }
485 #endif
486 
487 StringRef MachineFunction::getName() const {
488   return getFunction().getName();
489 }
490 
491 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
492   OS << "# Machine code for function " << getName() << ": ";
493   getProperties().print(OS);
494   OS << '\n';
495 
496   // Print Frame Information
497   FrameInfo->print(*this, OS);
498 
499   // Print JumpTable Information
500   if (JumpTableInfo)
501     JumpTableInfo->print(OS);
502 
503   // Print Constant Pool
504   ConstantPool->print(OS);
505 
506   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
507 
508   if (RegInfo && !RegInfo->livein_empty()) {
509     OS << "Function Live Ins: ";
510     for (MachineRegisterInfo::livein_iterator
511          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
512       OS << printReg(I->first, TRI);
513       if (I->second)
514         OS << " in " << printReg(I->second, TRI);
515       if (std::next(I) != E)
516         OS << ", ";
517     }
518     OS << '\n';
519   }
520 
521   ModuleSlotTracker MST(getFunction().getParent());
522   MST.incorporateFunction(getFunction());
523   for (const auto &BB : *this) {
524     OS << '\n';
525     // If we print the whole function, don't print any verbose information,
526     // since that information is already present.
527     BB.print(OS, MST, Indexes, /*IsStandalone=*/false);
528   }
529 
530   OS << "\n# End machine code for function " << getName() << ".\n\n";
531 }
532 
533 namespace llvm {
534 
535   template<>
536   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
537     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
538 
539     static std::string getGraphName(const MachineFunction *F) {
540       return ("CFG for '" + F->getName() + "' function").str();
541     }
542 
543     std::string getNodeLabel(const MachineBasicBlock *Node,
544                              const MachineFunction *Graph) {
545       std::string OutStr;
546       {
547         raw_string_ostream OSS(OutStr);
548 
549         if (isSimple()) {
550           OSS << printMBBReference(*Node);
551           if (const BasicBlock *BB = Node->getBasicBlock())
552             OSS << ": " << BB->getName();
553         } else
554           Node->print(OSS);
555       }
556 
557       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
558 
559       // Process string output to make it nicer...
560       for (unsigned i = 0; i != OutStr.length(); ++i)
561         if (OutStr[i] == '\n') {                            // Left justify
562           OutStr[i] = '\\';
563           OutStr.insert(OutStr.begin()+i+1, 'l');
564         }
565       return OutStr;
566     }
567   };
568 
569 } // end namespace llvm
570 
571 void MachineFunction::viewCFG() const
572 {
573 #ifndef NDEBUG
574   ViewGraph(this, "mf" + getName());
575 #else
576   errs() << "MachineFunction::viewCFG is only available in debug builds on "
577          << "systems with Graphviz or gv!\n";
578 #endif // NDEBUG
579 }
580 
581 void MachineFunction::viewCFGOnly() const
582 {
583 #ifndef NDEBUG
584   ViewGraph(this, "mf" + getName(), true);
585 #else
586   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
587          << "systems with Graphviz or gv!\n";
588 #endif // NDEBUG
589 }
590 
591 /// Add the specified physical register as a live-in value and
592 /// create a corresponding virtual register for it.
593 unsigned MachineFunction::addLiveIn(unsigned PReg,
594                                     const TargetRegisterClass *RC) {
595   MachineRegisterInfo &MRI = getRegInfo();
596   unsigned VReg = MRI.getLiveInVirtReg(PReg);
597   if (VReg) {
598     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
599     (void)VRegRC;
600     // A physical register can be added several times.
601     // Between two calls, the register class of the related virtual register
602     // may have been constrained to match some operation constraints.
603     // In that case, check that the current register class includes the
604     // physical register and is a sub class of the specified RC.
605     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
606                              RC->hasSubClassEq(VRegRC))) &&
607             "Register class mismatch!");
608     return VReg;
609   }
610   VReg = MRI.createVirtualRegister(RC);
611   MRI.addLiveIn(PReg, VReg);
612   return VReg;
613 }
614 
615 /// Return the MCSymbol for the specified non-empty jump table.
616 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
617 /// normal 'L' label is returned.
618 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
619                                         bool isLinkerPrivate) const {
620   const DataLayout &DL = getDataLayout();
621   assert(JumpTableInfo && "No jump tables");
622   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
623 
624   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
625                                      : DL.getPrivateGlobalPrefix();
626   SmallString<60> Name;
627   raw_svector_ostream(Name)
628     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
629   return Ctx.getOrCreateSymbol(Name);
630 }
631 
632 /// Return a function-local symbol to represent the PIC base.
633 MCSymbol *MachineFunction::getPICBaseSymbol() const {
634   const DataLayout &DL = getDataLayout();
635   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
636                                Twine(getFunctionNumber()) + "$pb");
637 }
638 
639 /// \name Exception Handling
640 /// \{
641 
642 LandingPadInfo &
643 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
644   unsigned N = LandingPads.size();
645   for (unsigned i = 0; i < N; ++i) {
646     LandingPadInfo &LP = LandingPads[i];
647     if (LP.LandingPadBlock == LandingPad)
648       return LP;
649   }
650 
651   LandingPads.push_back(LandingPadInfo(LandingPad));
652   return LandingPads[N];
653 }
654 
655 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
656                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
657   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
658   LP.BeginLabels.push_back(BeginLabel);
659   LP.EndLabels.push_back(EndLabel);
660 }
661 
662 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
663   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
664   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
665   LP.LandingPadLabel = LandingPadLabel;
666   return LandingPadLabel;
667 }
668 
669 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
670                                        ArrayRef<const GlobalValue *> TyInfo) {
671   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
672   for (unsigned N = TyInfo.size(); N; --N)
673     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
674 }
675 
676 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
677                                         ArrayRef<const GlobalValue *> TyInfo) {
678   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
679   std::vector<unsigned> IdsInFilter(TyInfo.size());
680   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
681     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
682   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
683 }
684 
685 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
686   for (unsigned i = 0; i != LandingPads.size(); ) {
687     LandingPadInfo &LandingPad = LandingPads[i];
688     if (LandingPad.LandingPadLabel &&
689         !LandingPad.LandingPadLabel->isDefined() &&
690         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
691       LandingPad.LandingPadLabel = nullptr;
692 
693     // Special case: we *should* emit LPs with null LP MBB. This indicates
694     // "nounwind" case.
695     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
696       LandingPads.erase(LandingPads.begin() + i);
697       continue;
698     }
699 
700     for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
701       MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
702       MCSymbol *EndLabel = LandingPad.EndLabels[j];
703       if ((BeginLabel->isDefined() ||
704            (LPMap && (*LPMap)[BeginLabel] != 0)) &&
705           (EndLabel->isDefined() ||
706            (LPMap && (*LPMap)[EndLabel] != 0))) continue;
707 
708       LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
709       LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
710       --j;
711       --e;
712     }
713 
714     // Remove landing pads with no try-ranges.
715     if (LandingPads[i].BeginLabels.empty()) {
716       LandingPads.erase(LandingPads.begin() + i);
717       continue;
718     }
719 
720     // If there is no landing pad, ensure that the list of typeids is empty.
721     // If the only typeid is a cleanup, this is the same as having no typeids.
722     if (!LandingPad.LandingPadBlock ||
723         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
724       LandingPad.TypeIds.clear();
725     ++i;
726   }
727 }
728 
729 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
730   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
731   LP.TypeIds.push_back(0);
732 }
733 
734 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
735                                          const Function *Filter,
736                                          const BlockAddress *RecoverBA) {
737   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
738   SEHHandler Handler;
739   Handler.FilterOrFinally = Filter;
740   Handler.RecoverBA = RecoverBA;
741   LP.SEHHandlers.push_back(Handler);
742 }
743 
744 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
745                                            const Function *Cleanup) {
746   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
747   SEHHandler Handler;
748   Handler.FilterOrFinally = Cleanup;
749   Handler.RecoverBA = nullptr;
750   LP.SEHHandlers.push_back(Handler);
751 }
752 
753 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
754                                             ArrayRef<unsigned> Sites) {
755   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
756 }
757 
758 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
759   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
760     if (TypeInfos[i] == TI) return i + 1;
761 
762   TypeInfos.push_back(TI);
763   return TypeInfos.size();
764 }
765 
766 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
767   // If the new filter coincides with the tail of an existing filter, then
768   // re-use the existing filter.  Folding filters more than this requires
769   // re-ordering filters and/or their elements - probably not worth it.
770   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
771        E = FilterEnds.end(); I != E; ++I) {
772     unsigned i = *I, j = TyIds.size();
773 
774     while (i && j)
775       if (FilterIds[--i] != TyIds[--j])
776         goto try_next;
777 
778     if (!j)
779       // The new filter coincides with range [i, end) of the existing filter.
780       return -(1 + i);
781 
782 try_next:;
783   }
784 
785   // Add the new filter.
786   int FilterID = -(1 + FilterIds.size());
787   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
788   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
789   FilterEnds.push_back(FilterIds.size());
790   FilterIds.push_back(0); // terminator
791   return FilterID;
792 }
793 
794 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
795   MachineFunction &MF = *MBB.getParent();
796   if (const auto *PF = dyn_cast<Function>(
797           I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
798     MF.getMMI().addPersonality(PF);
799 
800   if (I.isCleanup())
801     MF.addCleanup(&MBB);
802 
803   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
804   //        but we need to do it this way because of how the DWARF EH emitter
805   //        processes the clauses.
806   for (unsigned i = I.getNumClauses(); i != 0; --i) {
807     Value *Val = I.getClause(i - 1);
808     if (I.isCatch(i - 1)) {
809       MF.addCatchTypeInfo(&MBB,
810                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
811     } else {
812       // Add filters in a list.
813       Constant *CVal = cast<Constant>(Val);
814       SmallVector<const GlobalValue *, 4> FilterList;
815       for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
816            II != IE; ++II)
817         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
818 
819       MF.addFilterTypeInfo(&MBB, FilterList);
820     }
821   }
822 }
823 
824 /// \}
825 
826 //===----------------------------------------------------------------------===//
827 //  MachineJumpTableInfo implementation
828 //===----------------------------------------------------------------------===//
829 
830 /// Return the size of each entry in the jump table.
831 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
832   // The size of a jump table entry is 4 bytes unless the entry is just the
833   // address of a block, in which case it is the pointer size.
834   switch (getEntryKind()) {
835   case MachineJumpTableInfo::EK_BlockAddress:
836     return TD.getPointerSize();
837   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
838     return 8;
839   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
840   case MachineJumpTableInfo::EK_LabelDifference32:
841   case MachineJumpTableInfo::EK_Custom32:
842     return 4;
843   case MachineJumpTableInfo::EK_Inline:
844     return 0;
845   }
846   llvm_unreachable("Unknown jump table encoding!");
847 }
848 
849 /// Return the alignment of each entry in the jump table.
850 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
851   // The alignment of a jump table entry is the alignment of int32 unless the
852   // entry is just the address of a block, in which case it is the pointer
853   // alignment.
854   switch (getEntryKind()) {
855   case MachineJumpTableInfo::EK_BlockAddress:
856     return TD.getPointerABIAlignment(0);
857   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
858     return TD.getABIIntegerTypeAlignment(64);
859   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
860   case MachineJumpTableInfo::EK_LabelDifference32:
861   case MachineJumpTableInfo::EK_Custom32:
862     return TD.getABIIntegerTypeAlignment(32);
863   case MachineJumpTableInfo::EK_Inline:
864     return 1;
865   }
866   llvm_unreachable("Unknown jump table encoding!");
867 }
868 
869 /// Create a new jump table entry in the jump table info.
870 unsigned MachineJumpTableInfo::createJumpTableIndex(
871                                const std::vector<MachineBasicBlock*> &DestBBs) {
872   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
873   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
874   return JumpTables.size()-1;
875 }
876 
877 /// If Old is the target of any jump tables, update the jump tables to branch
878 /// to New instead.
879 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
880                                                   MachineBasicBlock *New) {
881   assert(Old != New && "Not making a change?");
882   bool MadeChange = false;
883   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
884     ReplaceMBBInJumpTable(i, Old, New);
885   return MadeChange;
886 }
887 
888 /// If Old is a target of the jump tables, update the jump table to branch to
889 /// New instead.
890 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
891                                                  MachineBasicBlock *Old,
892                                                  MachineBasicBlock *New) {
893   assert(Old != New && "Not making a change?");
894   bool MadeChange = false;
895   MachineJumpTableEntry &JTE = JumpTables[Idx];
896   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
897     if (JTE.MBBs[j] == Old) {
898       JTE.MBBs[j] = New;
899       MadeChange = true;
900     }
901   return MadeChange;
902 }
903 
904 void MachineJumpTableInfo::print(raw_ostream &OS) const {
905   if (JumpTables.empty()) return;
906 
907   OS << "Jump Tables:\n";
908 
909   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
910     OS << printJumpTableEntryReference(i) << ": ";
911     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
912       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
913   }
914 
915   OS << '\n';
916 }
917 
918 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
919 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
920 #endif
921 
922 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
923   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
924 }
925 
926 //===----------------------------------------------------------------------===//
927 //  MachineConstantPool implementation
928 //===----------------------------------------------------------------------===//
929 
930 void MachineConstantPoolValue::anchor() {}
931 
932 Type *MachineConstantPoolEntry::getType() const {
933   if (isMachineConstantPoolEntry())
934     return Val.MachineCPVal->getType();
935   return Val.ConstVal->getType();
936 }
937 
938 bool MachineConstantPoolEntry::needsRelocation() const {
939   if (isMachineConstantPoolEntry())
940     return true;
941   return Val.ConstVal->needsRelocation();
942 }
943 
944 SectionKind
945 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
946   if (needsRelocation())
947     return SectionKind::getReadOnlyWithRel();
948   switch (DL->getTypeAllocSize(getType())) {
949   case 4:
950     return SectionKind::getMergeableConst4();
951   case 8:
952     return SectionKind::getMergeableConst8();
953   case 16:
954     return SectionKind::getMergeableConst16();
955   case 32:
956     return SectionKind::getMergeableConst32();
957   default:
958     return SectionKind::getReadOnly();
959   }
960 }
961 
962 MachineConstantPool::~MachineConstantPool() {
963   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
964   // so keep track of which we've deleted to avoid double deletions.
965   DenseSet<MachineConstantPoolValue*> Deleted;
966   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
967     if (Constants[i].isMachineConstantPoolEntry()) {
968       Deleted.insert(Constants[i].Val.MachineCPVal);
969       delete Constants[i].Val.MachineCPVal;
970     }
971   for (DenseSet<MachineConstantPoolValue*>::iterator I =
972        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
973        I != E; ++I) {
974     if (Deleted.count(*I) == 0)
975       delete *I;
976   }
977 }
978 
979 /// Test whether the given two constants can be allocated the same constant pool
980 /// entry.
981 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
982                                       const DataLayout &DL) {
983   // Handle the trivial case quickly.
984   if (A == B) return true;
985 
986   // If they have the same type but weren't the same constant, quickly
987   // reject them.
988   if (A->getType() == B->getType()) return false;
989 
990   // We can't handle structs or arrays.
991   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
992       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
993     return false;
994 
995   // For now, only support constants with the same size.
996   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
997   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
998     return false;
999 
1000   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1001 
1002   // Try constant folding a bitcast of both instructions to an integer.  If we
1003   // get two identical ConstantInt's, then we are good to share them.  We use
1004   // the constant folding APIs to do this so that we get the benefit of
1005   // DataLayout.
1006   if (isa<PointerType>(A->getType()))
1007     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1008                                 const_cast<Constant *>(A), IntTy, DL);
1009   else if (A->getType() != IntTy)
1010     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1011                                 IntTy, DL);
1012   if (isa<PointerType>(B->getType()))
1013     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1014                                 const_cast<Constant *>(B), IntTy, DL);
1015   else if (B->getType() != IntTy)
1016     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1017                                 IntTy, DL);
1018 
1019   return A == B;
1020 }
1021 
1022 /// Create a new entry in the constant pool or return an existing one.
1023 /// User must specify the log2 of the minimum required alignment for the object.
1024 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1025                                                    unsigned Alignment) {
1026   assert(Alignment && "Alignment must be specified!");
1027   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1028 
1029   // Check to see if we already have this constant.
1030   //
1031   // FIXME, this could be made much more efficient for large constant pools.
1032   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1033     if (!Constants[i].isMachineConstantPoolEntry() &&
1034         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1035       if ((unsigned)Constants[i].getAlignment() < Alignment)
1036         Constants[i].Alignment = Alignment;
1037       return i;
1038     }
1039 
1040   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1041   return Constants.size()-1;
1042 }
1043 
1044 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1045                                                    unsigned Alignment) {
1046   assert(Alignment && "Alignment must be specified!");
1047   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1048 
1049   // Check to see if we already have this constant.
1050   //
1051   // FIXME, this could be made much more efficient for large constant pools.
1052   int Idx = V->getExistingMachineCPValue(this, Alignment);
1053   if (Idx != -1) {
1054     MachineCPVsSharingEntries.insert(V);
1055     return (unsigned)Idx;
1056   }
1057 
1058   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1059   return Constants.size()-1;
1060 }
1061 
1062 void MachineConstantPool::print(raw_ostream &OS) const {
1063   if (Constants.empty()) return;
1064 
1065   OS << "Constant Pool:\n";
1066   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1067     OS << "  cp#" << i << ": ";
1068     if (Constants[i].isMachineConstantPoolEntry())
1069       Constants[i].Val.MachineCPVal->print(OS);
1070     else
1071       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1072     OS << ", align=" << Constants[i].getAlignment();
1073     OS << "\n";
1074   }
1075 }
1076 
1077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1078 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1079 #endif
1080