1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 //===----------------------------------------------------------------------===// 44 // MachineFunction implementation 45 //===----------------------------------------------------------------------===// 46 47 // Out of line virtual method. 48 MachineFunctionInfo::~MachineFunctionInfo() {} 49 50 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 51 MBB->getParent()->DeleteMachineBasicBlock(MBB); 52 } 53 54 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 55 unsigned FunctionNum, MachineModuleInfo &mmi, 56 GCModuleInfo* gmi) 57 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 58 if (TM.getRegisterInfo()) 59 RegInfo = new (Allocator) MachineRegisterInfo(TM); 60 else 61 RegInfo = nullptr; 62 63 MFInfo = nullptr; 64 FrameInfo = 65 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 66 67 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 68 Attribute::StackAlignment)) 69 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 70 getStackAlignment(AttributeSet::FunctionIndex)); 71 72 ConstantPool = new (Allocator) MachineConstantPool(TM); 73 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 74 75 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 76 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 77 Attribute::OptimizeForSize)) 78 Alignment = std::max(Alignment, 79 TM.getTargetLowering()->getPrefFunctionAlignment()); 80 81 FunctionNumber = FunctionNum; 82 JumpTableInfo = nullptr; 83 } 84 85 MachineFunction::~MachineFunction() { 86 // Don't call destructors on MachineInstr and MachineOperand. All of their 87 // memory comes from the BumpPtrAllocator which is about to be purged. 88 // 89 // Do call MachineBasicBlock destructors, it contains std::vectors. 90 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 91 I->Insts.clearAndLeakNodesUnsafely(); 92 93 InstructionRecycler.clear(Allocator); 94 OperandRecycler.clear(Allocator); 95 BasicBlockRecycler.clear(Allocator); 96 if (RegInfo) { 97 RegInfo->~MachineRegisterInfo(); 98 Allocator.Deallocate(RegInfo); 99 } 100 if (MFInfo) { 101 MFInfo->~MachineFunctionInfo(); 102 Allocator.Deallocate(MFInfo); 103 } 104 105 FrameInfo->~MachineFrameInfo(); 106 Allocator.Deallocate(FrameInfo); 107 108 ConstantPool->~MachineConstantPool(); 109 Allocator.Deallocate(ConstantPool); 110 111 if (JumpTableInfo) { 112 JumpTableInfo->~MachineJumpTableInfo(); 113 Allocator.Deallocate(JumpTableInfo); 114 } 115 } 116 117 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 118 /// does already exist, allocate one. 119 MachineJumpTableInfo *MachineFunction:: 120 getOrCreateJumpTableInfo(unsigned EntryKind) { 121 if (JumpTableInfo) return JumpTableInfo; 122 123 JumpTableInfo = new (Allocator) 124 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 125 return JumpTableInfo; 126 } 127 128 /// Should we be emitting segmented stack stuff for the function 129 bool MachineFunction::shouldSplitStack() { 130 return getFunction()->hasFnAttribute("split-stack"); 131 } 132 133 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 134 /// recomputes them. This guarantees that the MBB numbers are sequential, 135 /// dense, and match the ordering of the blocks within the function. If a 136 /// specific MachineBasicBlock is specified, only that block and those after 137 /// it are renumbered. 138 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 139 if (empty()) { MBBNumbering.clear(); return; } 140 MachineFunction::iterator MBBI, E = end(); 141 if (MBB == nullptr) 142 MBBI = begin(); 143 else 144 MBBI = MBB; 145 146 // Figure out the block number this should have. 147 unsigned BlockNo = 0; 148 if (MBBI != begin()) 149 BlockNo = std::prev(MBBI)->getNumber() + 1; 150 151 for (; MBBI != E; ++MBBI, ++BlockNo) { 152 if (MBBI->getNumber() != (int)BlockNo) { 153 // Remove use of the old number. 154 if (MBBI->getNumber() != -1) { 155 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 156 "MBB number mismatch!"); 157 MBBNumbering[MBBI->getNumber()] = nullptr; 158 } 159 160 // If BlockNo is already taken, set that block's number to -1. 161 if (MBBNumbering[BlockNo]) 162 MBBNumbering[BlockNo]->setNumber(-1); 163 164 MBBNumbering[BlockNo] = MBBI; 165 MBBI->setNumber(BlockNo); 166 } 167 } 168 169 // Okay, all the blocks are renumbered. If we have compactified the block 170 // numbering, shrink MBBNumbering now. 171 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 172 MBBNumbering.resize(BlockNo); 173 } 174 175 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 176 /// of `new MachineInstr'. 177 /// 178 MachineInstr * 179 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 180 DebugLoc DL, bool NoImp) { 181 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 182 MachineInstr(*this, MCID, DL, NoImp); 183 } 184 185 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 186 /// 'Orig' instruction, identical in all ways except the instruction 187 /// has no parent, prev, or next. 188 /// 189 MachineInstr * 190 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 191 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 192 MachineInstr(*this, *Orig); 193 } 194 195 /// DeleteMachineInstr - Delete the given MachineInstr. 196 /// 197 /// This function also serves as the MachineInstr destructor - the real 198 /// ~MachineInstr() destructor must be empty. 199 void 200 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 201 // Strip it for parts. The operand array and the MI object itself are 202 // independently recyclable. 203 if (MI->Operands) 204 deallocateOperandArray(MI->CapOperands, MI->Operands); 205 // Don't call ~MachineInstr() which must be trivial anyway because 206 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 207 // destructors. 208 InstructionRecycler.Deallocate(Allocator, MI); 209 } 210 211 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 212 /// instead of `new MachineBasicBlock'. 213 /// 214 MachineBasicBlock * 215 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 216 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 217 MachineBasicBlock(*this, bb); 218 } 219 220 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 221 /// 222 void 223 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 224 assert(MBB->getParent() == this && "MBB parent mismatch!"); 225 MBB->~MachineBasicBlock(); 226 BasicBlockRecycler.Deallocate(Allocator, MBB); 227 } 228 229 MachineMemOperand * 230 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 231 uint64_t s, unsigned base_alignment, 232 const MDNode *TBAAInfo, 233 const MDNode *Ranges) { 234 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 235 TBAAInfo, Ranges); 236 } 237 238 MachineMemOperand * 239 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 240 int64_t Offset, uint64_t Size) { 241 if (MMO->getValue()) 242 return new (Allocator) 243 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 244 MMO->getOffset()+Offset), 245 MMO->getFlags(), Size, 246 MMO->getBaseAlignment(), nullptr); 247 return new (Allocator) 248 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 249 MMO->getOffset()+Offset), 250 MMO->getFlags(), Size, 251 MMO->getBaseAlignment(), nullptr); 252 } 253 254 MachineInstr::mmo_iterator 255 MachineFunction::allocateMemRefsArray(unsigned long Num) { 256 return Allocator.Allocate<MachineMemOperand *>(Num); 257 } 258 259 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 260 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 261 MachineInstr::mmo_iterator End) { 262 // Count the number of load mem refs. 263 unsigned Num = 0; 264 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 265 if ((*I)->isLoad()) 266 ++Num; 267 268 // Allocate a new array and populate it with the load information. 269 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 270 unsigned Index = 0; 271 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 272 if ((*I)->isLoad()) { 273 if (!(*I)->isStore()) 274 // Reuse the MMO. 275 Result[Index] = *I; 276 else { 277 // Clone the MMO and unset the store flag. 278 MachineMemOperand *JustLoad = 279 getMachineMemOperand((*I)->getPointerInfo(), 280 (*I)->getFlags() & ~MachineMemOperand::MOStore, 281 (*I)->getSize(), (*I)->getBaseAlignment(), 282 (*I)->getTBAAInfo()); 283 Result[Index] = JustLoad; 284 } 285 ++Index; 286 } 287 } 288 return std::make_pair(Result, Result + Num); 289 } 290 291 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 292 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 293 MachineInstr::mmo_iterator End) { 294 // Count the number of load mem refs. 295 unsigned Num = 0; 296 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 297 if ((*I)->isStore()) 298 ++Num; 299 300 // Allocate a new array and populate it with the store information. 301 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 302 unsigned Index = 0; 303 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 304 if ((*I)->isStore()) { 305 if (!(*I)->isLoad()) 306 // Reuse the MMO. 307 Result[Index] = *I; 308 else { 309 // Clone the MMO and unset the load flag. 310 MachineMemOperand *JustStore = 311 getMachineMemOperand((*I)->getPointerInfo(), 312 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 313 (*I)->getSize(), (*I)->getBaseAlignment(), 314 (*I)->getTBAAInfo()); 315 Result[Index] = JustStore; 316 } 317 ++Index; 318 } 319 } 320 return std::make_pair(Result, Result + Num); 321 } 322 323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 324 void MachineFunction::dump() const { 325 print(dbgs()); 326 } 327 #endif 328 329 StringRef MachineFunction::getName() const { 330 assert(getFunction() && "No function!"); 331 return getFunction()->getName(); 332 } 333 334 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 335 OS << "# Machine code for function " << getName() << ": "; 336 if (RegInfo) { 337 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 338 if (!RegInfo->tracksLiveness()) 339 OS << ", not tracking liveness"; 340 } 341 OS << '\n'; 342 343 // Print Frame Information 344 FrameInfo->print(*this, OS); 345 346 // Print JumpTable Information 347 if (JumpTableInfo) 348 JumpTableInfo->print(OS); 349 350 // Print Constant Pool 351 ConstantPool->print(OS); 352 353 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 354 355 if (RegInfo && !RegInfo->livein_empty()) { 356 OS << "Function Live Ins: "; 357 for (MachineRegisterInfo::livein_iterator 358 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 359 OS << PrintReg(I->first, TRI); 360 if (I->second) 361 OS << " in " << PrintReg(I->second, TRI); 362 if (std::next(I) != E) 363 OS << ", "; 364 } 365 OS << '\n'; 366 } 367 368 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 369 OS << '\n'; 370 BB->print(OS, Indexes); 371 } 372 373 OS << "\n# End machine code for function " << getName() << ".\n\n"; 374 } 375 376 namespace llvm { 377 template<> 378 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 379 380 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 381 382 static std::string getGraphName(const MachineFunction *F) { 383 return "CFG for '" + F->getName().str() + "' function"; 384 } 385 386 std::string getNodeLabel(const MachineBasicBlock *Node, 387 const MachineFunction *Graph) { 388 std::string OutStr; 389 { 390 raw_string_ostream OSS(OutStr); 391 392 if (isSimple()) { 393 OSS << "BB#" << Node->getNumber(); 394 if (const BasicBlock *BB = Node->getBasicBlock()) 395 OSS << ": " << BB->getName(); 396 } else 397 Node->print(OSS); 398 } 399 400 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 401 402 // Process string output to make it nicer... 403 for (unsigned i = 0; i != OutStr.length(); ++i) 404 if (OutStr[i] == '\n') { // Left justify 405 OutStr[i] = '\\'; 406 OutStr.insert(OutStr.begin()+i+1, 'l'); 407 } 408 return OutStr; 409 } 410 }; 411 } 412 413 void MachineFunction::viewCFG() const 414 { 415 #ifndef NDEBUG 416 ViewGraph(this, "mf" + getName()); 417 #else 418 errs() << "MachineFunction::viewCFG is only available in debug builds on " 419 << "systems with Graphviz or gv!\n"; 420 #endif // NDEBUG 421 } 422 423 void MachineFunction::viewCFGOnly() const 424 { 425 #ifndef NDEBUG 426 ViewGraph(this, "mf" + getName(), true); 427 #else 428 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 429 << "systems with Graphviz or gv!\n"; 430 #endif // NDEBUG 431 } 432 433 /// addLiveIn - Add the specified physical register as a live-in value and 434 /// create a corresponding virtual register for it. 435 unsigned MachineFunction::addLiveIn(unsigned PReg, 436 const TargetRegisterClass *RC) { 437 MachineRegisterInfo &MRI = getRegInfo(); 438 unsigned VReg = MRI.getLiveInVirtReg(PReg); 439 if (VReg) { 440 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 441 (void)VRegRC; 442 // A physical register can be added several times. 443 // Between two calls, the register class of the related virtual register 444 // may have been constrained to match some operation constraints. 445 // In that case, check that the current register class includes the 446 // physical register and is a sub class of the specified RC. 447 assert((VRegRC == RC || (VRegRC->contains(PReg) && 448 RC->hasSubClassEq(VRegRC))) && 449 "Register class mismatch!"); 450 return VReg; 451 } 452 VReg = MRI.createVirtualRegister(RC); 453 MRI.addLiveIn(PReg, VReg); 454 return VReg; 455 } 456 457 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 458 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 459 /// normal 'L' label is returned. 460 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 461 bool isLinkerPrivate) const { 462 const DataLayout *DL = getTarget().getDataLayout(); 463 assert(JumpTableInfo && "No jump tables"); 464 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 465 466 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 467 DL->getPrivateGlobalPrefix(); 468 SmallString<60> Name; 469 raw_svector_ostream(Name) 470 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 471 return Ctx.GetOrCreateSymbol(Name.str()); 472 } 473 474 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 475 /// base. 476 MCSymbol *MachineFunction::getPICBaseSymbol() const { 477 const DataLayout *DL = getTarget().getDataLayout(); 478 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 479 Twine(getFunctionNumber())+"$pb"); 480 } 481 482 //===----------------------------------------------------------------------===// 483 // MachineFrameInfo implementation 484 //===----------------------------------------------------------------------===// 485 486 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 487 return TM.getFrameLowering(); 488 } 489 490 /// ensureMaxAlignment - Make sure the function is at least Align bytes 491 /// aligned. 492 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 493 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 494 assert(Align <= getFrameLowering()->getStackAlignment() && 495 "For targets without stack realignment, Align is out of limit!"); 496 if (MaxAlignment < Align) MaxAlignment = Align; 497 } 498 499 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 500 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 501 unsigned StackAlign) { 502 if (!ShouldClamp || Align <= StackAlign) 503 return Align; 504 DEBUG(dbgs() << "Warning: requested alignment " << Align 505 << " exceeds the stack alignment " << StackAlign 506 << " when stack realignment is off" << '\n'); 507 return StackAlign; 508 } 509 510 /// CreateStackObject - Create a new statically sized stack object, returning 511 /// a nonnegative identifier to represent it. 512 /// 513 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 514 bool isSS, const AllocaInst *Alloca) { 515 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 516 Alignment = 517 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 518 !RealignOption, 519 Alignment, getFrameLowering()->getStackAlignment()); 520 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 521 int Index = (int)Objects.size() - NumFixedObjects - 1; 522 assert(Index >= 0 && "Bad frame index!"); 523 ensureMaxAlignment(Alignment); 524 return Index; 525 } 526 527 /// CreateSpillStackObject - Create a new statically sized stack object that 528 /// represents a spill slot, returning a nonnegative identifier to represent 529 /// it. 530 /// 531 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 532 unsigned Alignment) { 533 Alignment = 534 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 535 !RealignOption, 536 Alignment, getFrameLowering()->getStackAlignment()); 537 CreateStackObject(Size, Alignment, true); 538 int Index = (int)Objects.size() - NumFixedObjects - 1; 539 ensureMaxAlignment(Alignment); 540 return Index; 541 } 542 543 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 544 /// variable sized object has been created. This must be created whenever a 545 /// variable sized object is created, whether or not the index returned is 546 /// actually used. 547 /// 548 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 549 const AllocaInst *Alloca) { 550 HasVarSizedObjects = true; 551 Alignment = 552 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 553 !RealignOption, 554 Alignment, getFrameLowering()->getStackAlignment()); 555 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 556 ensureMaxAlignment(Alignment); 557 return (int)Objects.size()-NumFixedObjects-1; 558 } 559 560 /// CreateFixedObject - Create a new object at a fixed location on the stack. 561 /// All fixed objects should be created before other objects are created for 562 /// efficiency. By default, fixed objects are immutable. This returns an 563 /// index with a negative value. 564 /// 565 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 566 bool Immutable) { 567 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 568 // The alignment of the frame index can be determined from its offset from 569 // the incoming frame position. If the frame object is at offset 32 and 570 // the stack is guaranteed to be 16-byte aligned, then we know that the 571 // object is 16-byte aligned. 572 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 573 unsigned Align = MinAlign(SPOffset, StackAlign); 574 Align = 575 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 576 !RealignOption, 577 Align, getFrameLowering()->getStackAlignment()); 578 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 579 /*isSS*/ false, 580 /*Alloca*/ nullptr)); 581 return -++NumFixedObjects; 582 } 583 584 585 BitVector 586 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 587 assert(MBB && "MBB must be valid"); 588 const MachineFunction *MF = MBB->getParent(); 589 assert(MF && "MBB must be part of a MachineFunction"); 590 const TargetMachine &TM = MF->getTarget(); 591 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 592 BitVector BV(TRI->getNumRegs()); 593 594 // Before CSI is calculated, no registers are considered pristine. They can be 595 // freely used and PEI will make sure they are saved. 596 if (!isCalleeSavedInfoValid()) 597 return BV; 598 599 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 600 BV.set(*CSR); 601 602 // The entry MBB always has all CSRs pristine. 603 if (MBB == &MF->front()) 604 return BV; 605 606 // On other MBBs the saved CSRs are not pristine. 607 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 608 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 609 E = CSI.end(); I != E; ++I) 610 BV.reset(I->getReg()); 611 612 return BV; 613 } 614 615 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 616 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 617 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 618 unsigned MaxAlign = getMaxAlignment(); 619 int Offset = 0; 620 621 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 622 // It really should be refactored to share code. Until then, changes 623 // should keep in mind that there's tight coupling between the two. 624 625 for (int i = getObjectIndexBegin(); i != 0; ++i) { 626 int FixedOff = -getObjectOffset(i); 627 if (FixedOff > Offset) Offset = FixedOff; 628 } 629 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 630 if (isDeadObjectIndex(i)) 631 continue; 632 Offset += getObjectSize(i); 633 unsigned Align = getObjectAlignment(i); 634 // Adjust to alignment boundary 635 Offset = (Offset+Align-1)/Align*Align; 636 637 MaxAlign = std::max(Align, MaxAlign); 638 } 639 640 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 641 Offset += getMaxCallFrameSize(); 642 643 // Round up the size to a multiple of the alignment. If the function has 644 // any calls or alloca's, align to the target's StackAlignment value to 645 // ensure that the callee's frame or the alloca data is suitably aligned; 646 // otherwise, for leaf functions, align to the TransientStackAlignment 647 // value. 648 unsigned StackAlign; 649 if (adjustsStack() || hasVarSizedObjects() || 650 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 651 StackAlign = TFI->getStackAlignment(); 652 else 653 StackAlign = TFI->getTransientStackAlignment(); 654 655 // If the frame pointer is eliminated, all frame offsets will be relative to 656 // SP not FP. Align to MaxAlign so this works. 657 StackAlign = std::max(StackAlign, MaxAlign); 658 unsigned AlignMask = StackAlign - 1; 659 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 660 661 return (unsigned)Offset; 662 } 663 664 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 665 if (Objects.empty()) return; 666 667 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 668 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 669 670 OS << "Frame Objects:\n"; 671 672 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 673 const StackObject &SO = Objects[i]; 674 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 675 if (SO.Size == ~0ULL) { 676 OS << "dead\n"; 677 continue; 678 } 679 if (SO.Size == 0) 680 OS << "variable sized"; 681 else 682 OS << "size=" << SO.Size; 683 OS << ", align=" << SO.Alignment; 684 685 if (i < NumFixedObjects) 686 OS << ", fixed"; 687 if (i < NumFixedObjects || SO.SPOffset != -1) { 688 int64_t Off = SO.SPOffset - ValOffset; 689 OS << ", at location [SP"; 690 if (Off > 0) 691 OS << "+" << Off; 692 else if (Off < 0) 693 OS << Off; 694 OS << "]"; 695 } 696 OS << "\n"; 697 } 698 } 699 700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 701 void MachineFrameInfo::dump(const MachineFunction &MF) const { 702 print(MF, dbgs()); 703 } 704 #endif 705 706 //===----------------------------------------------------------------------===// 707 // MachineJumpTableInfo implementation 708 //===----------------------------------------------------------------------===// 709 710 /// getEntrySize - Return the size of each entry in the jump table. 711 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 712 // The size of a jump table entry is 4 bytes unless the entry is just the 713 // address of a block, in which case it is the pointer size. 714 switch (getEntryKind()) { 715 case MachineJumpTableInfo::EK_BlockAddress: 716 return TD.getPointerSize(); 717 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 718 return 8; 719 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 720 case MachineJumpTableInfo::EK_LabelDifference32: 721 case MachineJumpTableInfo::EK_Custom32: 722 return 4; 723 case MachineJumpTableInfo::EK_Inline: 724 return 0; 725 } 726 llvm_unreachable("Unknown jump table encoding!"); 727 } 728 729 /// getEntryAlignment - Return the alignment of each entry in the jump table. 730 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 731 // The alignment of a jump table entry is the alignment of int32 unless the 732 // entry is just the address of a block, in which case it is the pointer 733 // alignment. 734 switch (getEntryKind()) { 735 case MachineJumpTableInfo::EK_BlockAddress: 736 return TD.getPointerABIAlignment(); 737 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 738 return TD.getABIIntegerTypeAlignment(64); 739 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 740 case MachineJumpTableInfo::EK_LabelDifference32: 741 case MachineJumpTableInfo::EK_Custom32: 742 return TD.getABIIntegerTypeAlignment(32); 743 case MachineJumpTableInfo::EK_Inline: 744 return 1; 745 } 746 llvm_unreachable("Unknown jump table encoding!"); 747 } 748 749 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 750 /// 751 unsigned MachineJumpTableInfo::createJumpTableIndex( 752 const std::vector<MachineBasicBlock*> &DestBBs) { 753 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 754 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 755 return JumpTables.size()-1; 756 } 757 758 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 759 /// the jump tables to branch to New instead. 760 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 761 MachineBasicBlock *New) { 762 assert(Old != New && "Not making a change?"); 763 bool MadeChange = false; 764 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 765 ReplaceMBBInJumpTable(i, Old, New); 766 return MadeChange; 767 } 768 769 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 770 /// the jump table to branch to New instead. 771 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 772 MachineBasicBlock *Old, 773 MachineBasicBlock *New) { 774 assert(Old != New && "Not making a change?"); 775 bool MadeChange = false; 776 MachineJumpTableEntry &JTE = JumpTables[Idx]; 777 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 778 if (JTE.MBBs[j] == Old) { 779 JTE.MBBs[j] = New; 780 MadeChange = true; 781 } 782 return MadeChange; 783 } 784 785 void MachineJumpTableInfo::print(raw_ostream &OS) const { 786 if (JumpTables.empty()) return; 787 788 OS << "Jump Tables:\n"; 789 790 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 791 OS << " jt#" << i << ": "; 792 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 793 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 794 } 795 796 OS << '\n'; 797 } 798 799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 800 void MachineJumpTableInfo::dump() const { print(dbgs()); } 801 #endif 802 803 804 //===----------------------------------------------------------------------===// 805 // MachineConstantPool implementation 806 //===----------------------------------------------------------------------===// 807 808 void MachineConstantPoolValue::anchor() { } 809 810 const DataLayout *MachineConstantPool::getDataLayout() const { 811 return TM.getDataLayout(); 812 } 813 814 Type *MachineConstantPoolEntry::getType() const { 815 if (isMachineConstantPoolEntry()) 816 return Val.MachineCPVal->getType(); 817 return Val.ConstVal->getType(); 818 } 819 820 821 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 822 if (isMachineConstantPoolEntry()) 823 return Val.MachineCPVal->getRelocationInfo(); 824 return Val.ConstVal->getRelocationInfo(); 825 } 826 827 MachineConstantPool::~MachineConstantPool() { 828 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 829 if (Constants[i].isMachineConstantPoolEntry()) 830 delete Constants[i].Val.MachineCPVal; 831 for (DenseSet<MachineConstantPoolValue*>::iterator I = 832 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 833 I != E; ++I) 834 delete *I; 835 } 836 837 /// CanShareConstantPoolEntry - Test whether the given two constants 838 /// can be allocated the same constant pool entry. 839 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 840 const DataLayout *TD) { 841 // Handle the trivial case quickly. 842 if (A == B) return true; 843 844 // If they have the same type but weren't the same constant, quickly 845 // reject them. 846 if (A->getType() == B->getType()) return false; 847 848 // We can't handle structs or arrays. 849 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 850 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 851 return false; 852 853 // For now, only support constants with the same size. 854 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 855 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 856 StoreSize > 128) 857 return false; 858 859 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 860 861 // Try constant folding a bitcast of both instructions to an integer. If we 862 // get two identical ConstantInt's, then we are good to share them. We use 863 // the constant folding APIs to do this so that we get the benefit of 864 // DataLayout. 865 if (isa<PointerType>(A->getType())) 866 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 867 const_cast<Constant*>(A), TD); 868 else if (A->getType() != IntTy) 869 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 870 const_cast<Constant*>(A), TD); 871 if (isa<PointerType>(B->getType())) 872 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 873 const_cast<Constant*>(B), TD); 874 else if (B->getType() != IntTy) 875 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 876 const_cast<Constant*>(B), TD); 877 878 return A == B; 879 } 880 881 /// getConstantPoolIndex - Create a new entry in the constant pool or return 882 /// an existing one. User must specify the log2 of the minimum required 883 /// alignment for the object. 884 /// 885 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 886 unsigned Alignment) { 887 assert(Alignment && "Alignment must be specified!"); 888 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 889 890 // Check to see if we already have this constant. 891 // 892 // FIXME, this could be made much more efficient for large constant pools. 893 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 894 if (!Constants[i].isMachineConstantPoolEntry() && 895 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 896 getDataLayout())) { 897 if ((unsigned)Constants[i].getAlignment() < Alignment) 898 Constants[i].Alignment = Alignment; 899 return i; 900 } 901 902 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 903 return Constants.size()-1; 904 } 905 906 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 907 unsigned Alignment) { 908 assert(Alignment && "Alignment must be specified!"); 909 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 910 911 // Check to see if we already have this constant. 912 // 913 // FIXME, this could be made much more efficient for large constant pools. 914 int Idx = V->getExistingMachineCPValue(this, Alignment); 915 if (Idx != -1) { 916 MachineCPVsSharingEntries.insert(V); 917 return (unsigned)Idx; 918 } 919 920 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 921 return Constants.size()-1; 922 } 923 924 void MachineConstantPool::print(raw_ostream &OS) const { 925 if (Constants.empty()) return; 926 927 OS << "Constant Pool:\n"; 928 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 929 OS << " cp#" << i << ": "; 930 if (Constants[i].isMachineConstantPoolEntry()) 931 Constants[i].Val.MachineCPVal->print(OS); 932 else 933 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 934 OS << ", align=" << Constants[i].getAlignment(); 935 OS << "\n"; 936 } 937 } 938 939 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 940 void MachineConstantPool::dump() const { print(dbgs()); } 941 #endif 942