1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> 82 AlignAllFunctions("align-all-functions", 83 cl::desc("Force the alignment of all functions."), 84 cl::init(0), cl::Hidden); 85 86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 87 using P = MachineFunctionProperties::Property; 88 89 switch(Prop) { 90 case P::FailedISel: return "FailedISel"; 91 case P::IsSSA: return "IsSSA"; 92 case P::Legalized: return "Legalized"; 93 case P::NoPHIs: return "NoPHIs"; 94 case P::NoVRegs: return "NoVRegs"; 95 case P::RegBankSelected: return "RegBankSelected"; 96 case P::Selected: return "Selected"; 97 case P::TracksLiveness: return "TracksLiveness"; 98 } 99 llvm_unreachable("Invalid machine function property"); 100 } 101 102 // Pin the vtable to this file. 103 void MachineFunction::Delegate::anchor() {} 104 105 void MachineFunctionProperties::print(raw_ostream &OS) const { 106 const char *Separator = ""; 107 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 108 if (!Properties[I]) 109 continue; 110 OS << Separator << getPropertyName(static_cast<Property>(I)); 111 Separator = ", "; 112 } 113 } 114 115 //===----------------------------------------------------------------------===// 116 // MachineFunction implementation 117 //===----------------------------------------------------------------------===// 118 119 // Out-of-line virtual method. 120 MachineFunctionInfo::~MachineFunctionInfo() = default; 121 122 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 123 MBB->getParent()->DeleteMachineBasicBlock(MBB); 124 } 125 126 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 127 const Function &F) { 128 if (F.hasFnAttribute(Attribute::StackAlignment)) 129 return F.getFnStackAlignment(); 130 return STI->getFrameLowering()->getStackAlignment(); 131 } 132 133 MachineFunction::MachineFunction(const Function &F, const TargetMachine &Target, 134 const TargetSubtargetInfo &STI, 135 unsigned FunctionNum, MachineModuleInfo &mmi) 136 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 137 FunctionNumber = FunctionNum; 138 init(); 139 } 140 141 void MachineFunction::handleInsertion(const MachineInstr &MI) { 142 if (TheDelegate) 143 TheDelegate->MF_HandleInsertion(MI); 144 } 145 146 void MachineFunction::handleRemoval(const MachineInstr &MI) { 147 if (TheDelegate) 148 TheDelegate->MF_HandleRemoval(MI); 149 } 150 151 void MachineFunction::init() { 152 // Assume the function starts in SSA form with correct liveness. 153 Properties.set(MachineFunctionProperties::Property::IsSSA); 154 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 155 if (STI->getRegisterInfo()) 156 RegInfo = new (Allocator) MachineRegisterInfo(this); 157 else 158 RegInfo = nullptr; 159 160 MFInfo = nullptr; 161 // We can realign the stack if the target supports it and the user hasn't 162 // explicitly asked us not to. 163 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 164 !F.hasFnAttribute("no-realign-stack"); 165 FrameInfo = new (Allocator) MachineFrameInfo( 166 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 167 /*ForceRealign=*/CanRealignSP && 168 F.hasFnAttribute(Attribute::StackAlignment)); 169 170 if (F.hasFnAttribute(Attribute::StackAlignment)) 171 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 172 173 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 174 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 175 176 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 177 // FIXME: Use Function::optForSize(). 178 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 179 Alignment = std::max(Alignment, 180 STI->getTargetLowering()->getPrefFunctionAlignment()); 181 182 if (AlignAllFunctions) 183 Alignment = AlignAllFunctions; 184 185 JumpTableInfo = nullptr; 186 187 if (isFuncletEHPersonality(classifyEHPersonality( 188 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 189 WinEHInfo = new (Allocator) WinEHFuncInfo(); 190 } 191 192 if (isScopedEHPersonality(classifyEHPersonality( 193 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 194 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 195 } 196 197 assert(Target.isCompatibleDataLayout(getDataLayout()) && 198 "Can't create a MachineFunction using a Module with a " 199 "Target-incompatible DataLayout attached\n"); 200 201 PSVManager = 202 llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 203 getInstrInfo())); 204 } 205 206 MachineFunction::~MachineFunction() { 207 clear(); 208 } 209 210 void MachineFunction::clear() { 211 Properties.reset(); 212 // Don't call destructors on MachineInstr and MachineOperand. All of their 213 // memory comes from the BumpPtrAllocator which is about to be purged. 214 // 215 // Do call MachineBasicBlock destructors, it contains std::vectors. 216 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 217 I->Insts.clearAndLeakNodesUnsafely(); 218 MBBNumbering.clear(); 219 220 InstructionRecycler.clear(Allocator); 221 OperandRecycler.clear(Allocator); 222 BasicBlockRecycler.clear(Allocator); 223 CodeViewAnnotations.clear(); 224 VariableDbgInfos.clear(); 225 if (RegInfo) { 226 RegInfo->~MachineRegisterInfo(); 227 Allocator.Deallocate(RegInfo); 228 } 229 if (MFInfo) { 230 MFInfo->~MachineFunctionInfo(); 231 Allocator.Deallocate(MFInfo); 232 } 233 234 FrameInfo->~MachineFrameInfo(); 235 Allocator.Deallocate(FrameInfo); 236 237 ConstantPool->~MachineConstantPool(); 238 Allocator.Deallocate(ConstantPool); 239 240 if (JumpTableInfo) { 241 JumpTableInfo->~MachineJumpTableInfo(); 242 Allocator.Deallocate(JumpTableInfo); 243 } 244 245 if (WinEHInfo) { 246 WinEHInfo->~WinEHFuncInfo(); 247 Allocator.Deallocate(WinEHInfo); 248 } 249 } 250 251 const DataLayout &MachineFunction::getDataLayout() const { 252 return F.getParent()->getDataLayout(); 253 } 254 255 /// Get the JumpTableInfo for this function. 256 /// If it does not already exist, allocate one. 257 MachineJumpTableInfo *MachineFunction:: 258 getOrCreateJumpTableInfo(unsigned EntryKind) { 259 if (JumpTableInfo) return JumpTableInfo; 260 261 JumpTableInfo = new (Allocator) 262 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 263 return JumpTableInfo; 264 } 265 266 /// Should we be emitting segmented stack stuff for the function 267 bool MachineFunction::shouldSplitStack() const { 268 return getFunction().hasFnAttribute("split-stack"); 269 } 270 271 /// This discards all of the MachineBasicBlock numbers and recomputes them. 272 /// This guarantees that the MBB numbers are sequential, dense, and match the 273 /// ordering of the blocks within the function. If a specific MachineBasicBlock 274 /// is specified, only that block and those after it are renumbered. 275 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 276 if (empty()) { MBBNumbering.clear(); return; } 277 MachineFunction::iterator MBBI, E = end(); 278 if (MBB == nullptr) 279 MBBI = begin(); 280 else 281 MBBI = MBB->getIterator(); 282 283 // Figure out the block number this should have. 284 unsigned BlockNo = 0; 285 if (MBBI != begin()) 286 BlockNo = std::prev(MBBI)->getNumber() + 1; 287 288 for (; MBBI != E; ++MBBI, ++BlockNo) { 289 if (MBBI->getNumber() != (int)BlockNo) { 290 // Remove use of the old number. 291 if (MBBI->getNumber() != -1) { 292 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 293 "MBB number mismatch!"); 294 MBBNumbering[MBBI->getNumber()] = nullptr; 295 } 296 297 // If BlockNo is already taken, set that block's number to -1. 298 if (MBBNumbering[BlockNo]) 299 MBBNumbering[BlockNo]->setNumber(-1); 300 301 MBBNumbering[BlockNo] = &*MBBI; 302 MBBI->setNumber(BlockNo); 303 } 304 } 305 306 // Okay, all the blocks are renumbered. If we have compactified the block 307 // numbering, shrink MBBNumbering now. 308 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 309 MBBNumbering.resize(BlockNo); 310 } 311 312 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 313 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 314 const DebugLoc &DL, 315 bool NoImp) { 316 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 317 MachineInstr(*this, MCID, DL, NoImp); 318 } 319 320 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 321 /// identical in all ways except the instruction has no parent, prev, or next. 322 MachineInstr * 323 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 324 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 325 MachineInstr(*this, *Orig); 326 } 327 328 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 329 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 330 MachineInstr *FirstClone = nullptr; 331 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 332 while (true) { 333 MachineInstr *Cloned = CloneMachineInstr(&*I); 334 MBB.insert(InsertBefore, Cloned); 335 if (FirstClone == nullptr) { 336 FirstClone = Cloned; 337 } else { 338 Cloned->bundleWithPred(); 339 } 340 341 if (!I->isBundledWithSucc()) 342 break; 343 ++I; 344 } 345 return *FirstClone; 346 } 347 348 /// Delete the given MachineInstr. 349 /// 350 /// This function also serves as the MachineInstr destructor - the real 351 /// ~MachineInstr() destructor must be empty. 352 void 353 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 354 // Strip it for parts. The operand array and the MI object itself are 355 // independently recyclable. 356 if (MI->Operands) 357 deallocateOperandArray(MI->CapOperands, MI->Operands); 358 // Don't call ~MachineInstr() which must be trivial anyway because 359 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 360 // destructors. 361 InstructionRecycler.Deallocate(Allocator, MI); 362 } 363 364 /// Allocate a new MachineBasicBlock. Use this instead of 365 /// `new MachineBasicBlock'. 366 MachineBasicBlock * 367 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 368 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 369 MachineBasicBlock(*this, bb); 370 } 371 372 /// Delete the given MachineBasicBlock. 373 void 374 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 375 assert(MBB->getParent() == this && "MBB parent mismatch!"); 376 MBB->~MachineBasicBlock(); 377 BasicBlockRecycler.Deallocate(Allocator, MBB); 378 } 379 380 MachineMemOperand *MachineFunction::getMachineMemOperand( 381 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 382 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 383 SyncScope::ID SSID, AtomicOrdering Ordering, 384 AtomicOrdering FailureOrdering) { 385 return new (Allocator) 386 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 387 SSID, Ordering, FailureOrdering); 388 } 389 390 MachineMemOperand * 391 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 392 int64_t Offset, uint64_t Size) { 393 if (MMO->getValue()) 394 return new (Allocator) 395 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 396 MMO->getOffset()+Offset), 397 MMO->getFlags(), Size, MMO->getBaseAlignment(), 398 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 399 MMO->getOrdering(), MMO->getFailureOrdering()); 400 return new (Allocator) 401 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 402 MMO->getOffset()+Offset), 403 MMO->getFlags(), Size, MMO->getBaseAlignment(), 404 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 405 MMO->getOrdering(), MMO->getFailureOrdering()); 406 } 407 408 MachineMemOperand * 409 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 410 const AAMDNodes &AAInfo) { 411 MachinePointerInfo MPI = MMO->getValue() ? 412 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 413 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 414 415 return new (Allocator) 416 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 417 MMO->getBaseAlignment(), AAInfo, 418 MMO->getRanges(), MMO->getSyncScopeID(), 419 MMO->getOrdering(), MMO->getFailureOrdering()); 420 } 421 422 MachineInstr::ExtraInfo * 423 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs, 424 MCSymbol *PreInstrSymbol, 425 MCSymbol *PostInstrSymbol) { 426 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 427 PostInstrSymbol); 428 } 429 430 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 431 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 432 std::copy(Name.begin(), Name.end(), Dest); 433 Dest[Name.size()] = 0; 434 return Dest; 435 } 436 437 uint32_t *MachineFunction::allocateRegMask() { 438 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 439 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 440 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 441 memset(Mask, 0, Size * sizeof(Mask[0])); 442 return Mask; 443 } 444 445 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 446 LLVM_DUMP_METHOD void MachineFunction::dump() const { 447 print(dbgs()); 448 } 449 #endif 450 451 StringRef MachineFunction::getName() const { 452 return getFunction().getName(); 453 } 454 455 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 456 OS << "# Machine code for function " << getName() << ": "; 457 getProperties().print(OS); 458 OS << '\n'; 459 460 // Print Frame Information 461 FrameInfo->print(*this, OS); 462 463 // Print JumpTable Information 464 if (JumpTableInfo) 465 JumpTableInfo->print(OS); 466 467 // Print Constant Pool 468 ConstantPool->print(OS); 469 470 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 471 472 if (RegInfo && !RegInfo->livein_empty()) { 473 OS << "Function Live Ins: "; 474 for (MachineRegisterInfo::livein_iterator 475 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 476 OS << printReg(I->first, TRI); 477 if (I->second) 478 OS << " in " << printReg(I->second, TRI); 479 if (std::next(I) != E) 480 OS << ", "; 481 } 482 OS << '\n'; 483 } 484 485 ModuleSlotTracker MST(getFunction().getParent()); 486 MST.incorporateFunction(getFunction()); 487 for (const auto &BB : *this) { 488 OS << '\n'; 489 // If we print the whole function, print it at its most verbose level. 490 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 491 } 492 493 OS << "\n# End machine code for function " << getName() << ".\n\n"; 494 } 495 496 namespace llvm { 497 498 template<> 499 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 500 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 501 502 static std::string getGraphName(const MachineFunction *F) { 503 return ("CFG for '" + F->getName() + "' function").str(); 504 } 505 506 std::string getNodeLabel(const MachineBasicBlock *Node, 507 const MachineFunction *Graph) { 508 std::string OutStr; 509 { 510 raw_string_ostream OSS(OutStr); 511 512 if (isSimple()) { 513 OSS << printMBBReference(*Node); 514 if (const BasicBlock *BB = Node->getBasicBlock()) 515 OSS << ": " << BB->getName(); 516 } else 517 Node->print(OSS); 518 } 519 520 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 521 522 // Process string output to make it nicer... 523 for (unsigned i = 0; i != OutStr.length(); ++i) 524 if (OutStr[i] == '\n') { // Left justify 525 OutStr[i] = '\\'; 526 OutStr.insert(OutStr.begin()+i+1, 'l'); 527 } 528 return OutStr; 529 } 530 }; 531 532 } // end namespace llvm 533 534 void MachineFunction::viewCFG() const 535 { 536 #ifndef NDEBUG 537 ViewGraph(this, "mf" + getName()); 538 #else 539 errs() << "MachineFunction::viewCFG is only available in debug builds on " 540 << "systems with Graphviz or gv!\n"; 541 #endif // NDEBUG 542 } 543 544 void MachineFunction::viewCFGOnly() const 545 { 546 #ifndef NDEBUG 547 ViewGraph(this, "mf" + getName(), true); 548 #else 549 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 550 << "systems with Graphviz or gv!\n"; 551 #endif // NDEBUG 552 } 553 554 /// Add the specified physical register as a live-in value and 555 /// create a corresponding virtual register for it. 556 unsigned MachineFunction::addLiveIn(unsigned PReg, 557 const TargetRegisterClass *RC) { 558 MachineRegisterInfo &MRI = getRegInfo(); 559 unsigned VReg = MRI.getLiveInVirtReg(PReg); 560 if (VReg) { 561 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 562 (void)VRegRC; 563 // A physical register can be added several times. 564 // Between two calls, the register class of the related virtual register 565 // may have been constrained to match some operation constraints. 566 // In that case, check that the current register class includes the 567 // physical register and is a sub class of the specified RC. 568 assert((VRegRC == RC || (VRegRC->contains(PReg) && 569 RC->hasSubClassEq(VRegRC))) && 570 "Register class mismatch!"); 571 return VReg; 572 } 573 VReg = MRI.createVirtualRegister(RC); 574 MRI.addLiveIn(PReg, VReg); 575 return VReg; 576 } 577 578 /// Return the MCSymbol for the specified non-empty jump table. 579 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 580 /// normal 'L' label is returned. 581 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 582 bool isLinkerPrivate) const { 583 const DataLayout &DL = getDataLayout(); 584 assert(JumpTableInfo && "No jump tables"); 585 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 586 587 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 588 : DL.getPrivateGlobalPrefix(); 589 SmallString<60> Name; 590 raw_svector_ostream(Name) 591 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 592 return Ctx.getOrCreateSymbol(Name); 593 } 594 595 /// Return a function-local symbol to represent the PIC base. 596 MCSymbol *MachineFunction::getPICBaseSymbol() const { 597 const DataLayout &DL = getDataLayout(); 598 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 599 Twine(getFunctionNumber()) + "$pb"); 600 } 601 602 /// \name Exception Handling 603 /// \{ 604 605 LandingPadInfo & 606 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 607 unsigned N = LandingPads.size(); 608 for (unsigned i = 0; i < N; ++i) { 609 LandingPadInfo &LP = LandingPads[i]; 610 if (LP.LandingPadBlock == LandingPad) 611 return LP; 612 } 613 614 LandingPads.push_back(LandingPadInfo(LandingPad)); 615 return LandingPads[N]; 616 } 617 618 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 619 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 620 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 621 LP.BeginLabels.push_back(BeginLabel); 622 LP.EndLabels.push_back(EndLabel); 623 } 624 625 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 626 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 627 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 628 LP.LandingPadLabel = LandingPadLabel; 629 return LandingPadLabel; 630 } 631 632 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 633 ArrayRef<const GlobalValue *> TyInfo) { 634 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 635 for (unsigned N = TyInfo.size(); N; --N) 636 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 637 } 638 639 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 640 ArrayRef<const GlobalValue *> TyInfo) { 641 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 642 std::vector<unsigned> IdsInFilter(TyInfo.size()); 643 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 644 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 645 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 646 } 647 648 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { 649 for (unsigned i = 0; i != LandingPads.size(); ) { 650 LandingPadInfo &LandingPad = LandingPads[i]; 651 if (LandingPad.LandingPadLabel && 652 !LandingPad.LandingPadLabel->isDefined() && 653 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 654 LandingPad.LandingPadLabel = nullptr; 655 656 // Special case: we *should* emit LPs with null LP MBB. This indicates 657 // "nounwind" case. 658 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 659 LandingPads.erase(LandingPads.begin() + i); 660 continue; 661 } 662 663 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 664 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 665 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 666 if ((BeginLabel->isDefined() || 667 (LPMap && (*LPMap)[BeginLabel] != 0)) && 668 (EndLabel->isDefined() || 669 (LPMap && (*LPMap)[EndLabel] != 0))) continue; 670 671 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 672 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 673 --j; 674 --e; 675 } 676 677 // Remove landing pads with no try-ranges. 678 if (LandingPads[i].BeginLabels.empty()) { 679 LandingPads.erase(LandingPads.begin() + i); 680 continue; 681 } 682 683 // If there is no landing pad, ensure that the list of typeids is empty. 684 // If the only typeid is a cleanup, this is the same as having no typeids. 685 if (!LandingPad.LandingPadBlock || 686 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 687 LandingPad.TypeIds.clear(); 688 ++i; 689 } 690 } 691 692 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 693 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 694 LP.TypeIds.push_back(0); 695 } 696 697 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 698 const Function *Filter, 699 const BlockAddress *RecoverBA) { 700 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 701 SEHHandler Handler; 702 Handler.FilterOrFinally = Filter; 703 Handler.RecoverBA = RecoverBA; 704 LP.SEHHandlers.push_back(Handler); 705 } 706 707 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 708 const Function *Cleanup) { 709 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 710 SEHHandler Handler; 711 Handler.FilterOrFinally = Cleanup; 712 Handler.RecoverBA = nullptr; 713 LP.SEHHandlers.push_back(Handler); 714 } 715 716 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 717 ArrayRef<unsigned> Sites) { 718 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 719 } 720 721 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 722 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 723 if (TypeInfos[i] == TI) return i + 1; 724 725 TypeInfos.push_back(TI); 726 return TypeInfos.size(); 727 } 728 729 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 730 // If the new filter coincides with the tail of an existing filter, then 731 // re-use the existing filter. Folding filters more than this requires 732 // re-ordering filters and/or their elements - probably not worth it. 733 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 734 E = FilterEnds.end(); I != E; ++I) { 735 unsigned i = *I, j = TyIds.size(); 736 737 while (i && j) 738 if (FilterIds[--i] != TyIds[--j]) 739 goto try_next; 740 741 if (!j) 742 // The new filter coincides with range [i, end) of the existing filter. 743 return -(1 + i); 744 745 try_next:; 746 } 747 748 // Add the new filter. 749 int FilterID = -(1 + FilterIds.size()); 750 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 751 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 752 FilterEnds.push_back(FilterIds.size()); 753 FilterIds.push_back(0); // terminator 754 return FilterID; 755 } 756 757 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) { 758 MachineFunction &MF = *MBB.getParent(); 759 if (const auto *PF = dyn_cast<Function>( 760 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 761 MF.getMMI().addPersonality(PF); 762 763 if (I.isCleanup()) 764 MF.addCleanup(&MBB); 765 766 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 767 // but we need to do it this way because of how the DWARF EH emitter 768 // processes the clauses. 769 for (unsigned i = I.getNumClauses(); i != 0; --i) { 770 Value *Val = I.getClause(i - 1); 771 if (I.isCatch(i - 1)) { 772 MF.addCatchTypeInfo(&MBB, 773 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 774 } else { 775 // Add filters in a list. 776 Constant *CVal = cast<Constant>(Val); 777 SmallVector<const GlobalValue *, 4> FilterList; 778 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 779 II != IE; ++II) 780 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 781 782 MF.addFilterTypeInfo(&MBB, FilterList); 783 } 784 } 785 } 786 787 /// \} 788 789 //===----------------------------------------------------------------------===// 790 // MachineJumpTableInfo implementation 791 //===----------------------------------------------------------------------===// 792 793 /// Return the size of each entry in the jump table. 794 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 795 // The size of a jump table entry is 4 bytes unless the entry is just the 796 // address of a block, in which case it is the pointer size. 797 switch (getEntryKind()) { 798 case MachineJumpTableInfo::EK_BlockAddress: 799 return TD.getPointerSize(); 800 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 801 return 8; 802 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 803 case MachineJumpTableInfo::EK_LabelDifference32: 804 case MachineJumpTableInfo::EK_Custom32: 805 return 4; 806 case MachineJumpTableInfo::EK_Inline: 807 return 0; 808 } 809 llvm_unreachable("Unknown jump table encoding!"); 810 } 811 812 /// Return the alignment of each entry in the jump table. 813 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 814 // The alignment of a jump table entry is the alignment of int32 unless the 815 // entry is just the address of a block, in which case it is the pointer 816 // alignment. 817 switch (getEntryKind()) { 818 case MachineJumpTableInfo::EK_BlockAddress: 819 return TD.getPointerABIAlignment(0); 820 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 821 return TD.getABIIntegerTypeAlignment(64); 822 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 823 case MachineJumpTableInfo::EK_LabelDifference32: 824 case MachineJumpTableInfo::EK_Custom32: 825 return TD.getABIIntegerTypeAlignment(32); 826 case MachineJumpTableInfo::EK_Inline: 827 return 1; 828 } 829 llvm_unreachable("Unknown jump table encoding!"); 830 } 831 832 /// Create a new jump table entry in the jump table info. 833 unsigned MachineJumpTableInfo::createJumpTableIndex( 834 const std::vector<MachineBasicBlock*> &DestBBs) { 835 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 836 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 837 return JumpTables.size()-1; 838 } 839 840 /// If Old is the target of any jump tables, update the jump tables to branch 841 /// to New instead. 842 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 843 MachineBasicBlock *New) { 844 assert(Old != New && "Not making a change?"); 845 bool MadeChange = false; 846 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 847 ReplaceMBBInJumpTable(i, Old, New); 848 return MadeChange; 849 } 850 851 /// If Old is a target of the jump tables, update the jump table to branch to 852 /// New instead. 853 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 854 MachineBasicBlock *Old, 855 MachineBasicBlock *New) { 856 assert(Old != New && "Not making a change?"); 857 bool MadeChange = false; 858 MachineJumpTableEntry &JTE = JumpTables[Idx]; 859 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 860 if (JTE.MBBs[j] == Old) { 861 JTE.MBBs[j] = New; 862 MadeChange = true; 863 } 864 return MadeChange; 865 } 866 867 void MachineJumpTableInfo::print(raw_ostream &OS) const { 868 if (JumpTables.empty()) return; 869 870 OS << "Jump Tables:\n"; 871 872 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 873 OS << printJumpTableEntryReference(i) << ": "; 874 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 875 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 876 } 877 878 OS << '\n'; 879 } 880 881 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 882 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 883 #endif 884 885 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 886 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 887 } 888 889 //===----------------------------------------------------------------------===// 890 // MachineConstantPool implementation 891 //===----------------------------------------------------------------------===// 892 893 void MachineConstantPoolValue::anchor() {} 894 895 Type *MachineConstantPoolEntry::getType() const { 896 if (isMachineConstantPoolEntry()) 897 return Val.MachineCPVal->getType(); 898 return Val.ConstVal->getType(); 899 } 900 901 bool MachineConstantPoolEntry::needsRelocation() const { 902 if (isMachineConstantPoolEntry()) 903 return true; 904 return Val.ConstVal->needsRelocation(); 905 } 906 907 SectionKind 908 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 909 if (needsRelocation()) 910 return SectionKind::getReadOnlyWithRel(); 911 switch (DL->getTypeAllocSize(getType())) { 912 case 4: 913 return SectionKind::getMergeableConst4(); 914 case 8: 915 return SectionKind::getMergeableConst8(); 916 case 16: 917 return SectionKind::getMergeableConst16(); 918 case 32: 919 return SectionKind::getMergeableConst32(); 920 default: 921 return SectionKind::getReadOnly(); 922 } 923 } 924 925 MachineConstantPool::~MachineConstantPool() { 926 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 927 // so keep track of which we've deleted to avoid double deletions. 928 DenseSet<MachineConstantPoolValue*> Deleted; 929 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 930 if (Constants[i].isMachineConstantPoolEntry()) { 931 Deleted.insert(Constants[i].Val.MachineCPVal); 932 delete Constants[i].Val.MachineCPVal; 933 } 934 for (DenseSet<MachineConstantPoolValue*>::iterator I = 935 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 936 I != E; ++I) { 937 if (Deleted.count(*I) == 0) 938 delete *I; 939 } 940 } 941 942 /// Test whether the given two constants can be allocated the same constant pool 943 /// entry. 944 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 945 const DataLayout &DL) { 946 // Handle the trivial case quickly. 947 if (A == B) return true; 948 949 // If they have the same type but weren't the same constant, quickly 950 // reject them. 951 if (A->getType() == B->getType()) return false; 952 953 // We can't handle structs or arrays. 954 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 955 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 956 return false; 957 958 // For now, only support constants with the same size. 959 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 960 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 961 return false; 962 963 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 964 965 // Try constant folding a bitcast of both instructions to an integer. If we 966 // get two identical ConstantInt's, then we are good to share them. We use 967 // the constant folding APIs to do this so that we get the benefit of 968 // DataLayout. 969 if (isa<PointerType>(A->getType())) 970 A = ConstantFoldCastOperand(Instruction::PtrToInt, 971 const_cast<Constant *>(A), IntTy, DL); 972 else if (A->getType() != IntTy) 973 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 974 IntTy, DL); 975 if (isa<PointerType>(B->getType())) 976 B = ConstantFoldCastOperand(Instruction::PtrToInt, 977 const_cast<Constant *>(B), IntTy, DL); 978 else if (B->getType() != IntTy) 979 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 980 IntTy, DL); 981 982 return A == B; 983 } 984 985 /// Create a new entry in the constant pool or return an existing one. 986 /// User must specify the log2 of the minimum required alignment for the object. 987 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 988 unsigned Alignment) { 989 assert(Alignment && "Alignment must be specified!"); 990 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 991 992 // Check to see if we already have this constant. 993 // 994 // FIXME, this could be made much more efficient for large constant pools. 995 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 996 if (!Constants[i].isMachineConstantPoolEntry() && 997 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 998 if ((unsigned)Constants[i].getAlignment() < Alignment) 999 Constants[i].Alignment = Alignment; 1000 return i; 1001 } 1002 1003 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1004 return Constants.size()-1; 1005 } 1006 1007 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1008 unsigned Alignment) { 1009 assert(Alignment && "Alignment must be specified!"); 1010 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1011 1012 // Check to see if we already have this constant. 1013 // 1014 // FIXME, this could be made much more efficient for large constant pools. 1015 int Idx = V->getExistingMachineCPValue(this, Alignment); 1016 if (Idx != -1) { 1017 MachineCPVsSharingEntries.insert(V); 1018 return (unsigned)Idx; 1019 } 1020 1021 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1022 return Constants.size()-1; 1023 } 1024 1025 void MachineConstantPool::print(raw_ostream &OS) const { 1026 if (Constants.empty()) return; 1027 1028 OS << "Constant Pool:\n"; 1029 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1030 OS << " cp#" << i << ": "; 1031 if (Constants[i].isMachineConstantPoolEntry()) 1032 Constants[i].Val.MachineCPVal->print(OS); 1033 else 1034 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1035 OS << ", align=" << Constants[i].getAlignment(); 1036 OS << "\n"; 1037 } 1038 } 1039 1040 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1041 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1042 #endif 1043