1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/WinEHFuncInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSlotTracker.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetFrameLowering.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 #define DEBUG_TYPE "codegen" 48 49 static cl::opt<unsigned> 50 AlignAllFunctions("align-all-functions", 51 cl::desc("Force the alignment of all functions."), 52 cl::init(0), cl::Hidden); 53 54 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 55 typedef MachineFunctionProperties::Property P; 56 switch(Prop) { 57 case P::FailedISel: return "FailedISel"; 58 case P::IsSSA: return "IsSSA"; 59 case P::Legalized: return "Legalized"; 60 case P::NoPHIs: return "NoPHIs"; 61 case P::NoVRegs: return "NoVRegs"; 62 case P::RegBankSelected: return "RegBankSelected"; 63 case P::Selected: return "Selected"; 64 case P::TracksLiveness: return "TracksLiveness"; 65 } 66 llvm_unreachable("Invalid machine function property"); 67 } 68 69 void MachineFunctionProperties::print(raw_ostream &OS) const { 70 const char *Separator = ""; 71 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 72 if (!Properties[I]) 73 continue; 74 OS << Separator << getPropertyName(static_cast<Property>(I)); 75 Separator = ", "; 76 } 77 } 78 79 //===----------------------------------------------------------------------===// 80 // MachineFunction implementation 81 //===----------------------------------------------------------------------===// 82 83 // Out-of-line virtual method. 84 MachineFunctionInfo::~MachineFunctionInfo() {} 85 86 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 87 MBB->getParent()->DeleteMachineBasicBlock(MBB); 88 } 89 90 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 91 const Function *Fn) { 92 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 93 return Fn->getFnStackAlignment(); 94 return STI->getFrameLowering()->getStackAlignment(); 95 } 96 97 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 98 unsigned FunctionNum, MachineModuleInfo &mmi) 99 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 100 MMI(mmi) { 101 FunctionNumber = FunctionNum; 102 init(); 103 } 104 105 void MachineFunction::init() { 106 // Assume the function starts in SSA form with correct liveness. 107 Properties.set(MachineFunctionProperties::Property::IsSSA); 108 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 109 if (STI->getRegisterInfo()) 110 RegInfo = new (Allocator) MachineRegisterInfo(this); 111 else 112 RegInfo = nullptr; 113 114 MFInfo = nullptr; 115 // We can realign the stack if the target supports it and the user hasn't 116 // explicitly asked us not to. 117 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 118 !Fn->hasFnAttribute("no-realign-stack"); 119 FrameInfo = new (Allocator) MachineFrameInfo( 120 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 121 /*ForceRealign=*/CanRealignSP && 122 Fn->hasFnAttribute(Attribute::StackAlignment)); 123 124 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 125 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 126 127 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 128 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 129 130 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 131 // FIXME: Use Function::optForSize(). 132 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 133 Alignment = std::max(Alignment, 134 STI->getTargetLowering()->getPrefFunctionAlignment()); 135 136 if (AlignAllFunctions) 137 Alignment = AlignAllFunctions; 138 139 JumpTableInfo = nullptr; 140 141 if (isFuncletEHPersonality(classifyEHPersonality( 142 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) { 143 WinEHInfo = new (Allocator) WinEHFuncInfo(); 144 } 145 146 assert(Target.isCompatibleDataLayout(getDataLayout()) && 147 "Can't create a MachineFunction using a Module with a " 148 "Target-incompatible DataLayout attached\n"); 149 150 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 151 } 152 153 MachineFunction::~MachineFunction() { 154 clear(); 155 } 156 157 void MachineFunction::clear() { 158 Properties.reset(); 159 // Don't call destructors on MachineInstr and MachineOperand. All of their 160 // memory comes from the BumpPtrAllocator which is about to be purged. 161 // 162 // Do call MachineBasicBlock destructors, it contains std::vectors. 163 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 164 I->Insts.clearAndLeakNodesUnsafely(); 165 166 InstructionRecycler.clear(Allocator); 167 OperandRecycler.clear(Allocator); 168 BasicBlockRecycler.clear(Allocator); 169 CodeViewAnnotations.clear(); 170 VariableDbgInfos.clear(); 171 if (RegInfo) { 172 RegInfo->~MachineRegisterInfo(); 173 Allocator.Deallocate(RegInfo); 174 } 175 if (MFInfo) { 176 MFInfo->~MachineFunctionInfo(); 177 Allocator.Deallocate(MFInfo); 178 } 179 180 FrameInfo->~MachineFrameInfo(); 181 Allocator.Deallocate(FrameInfo); 182 183 ConstantPool->~MachineConstantPool(); 184 Allocator.Deallocate(ConstantPool); 185 186 if (JumpTableInfo) { 187 JumpTableInfo->~MachineJumpTableInfo(); 188 Allocator.Deallocate(JumpTableInfo); 189 } 190 191 if (WinEHInfo) { 192 WinEHInfo->~WinEHFuncInfo(); 193 Allocator.Deallocate(WinEHInfo); 194 } 195 } 196 197 const DataLayout &MachineFunction::getDataLayout() const { 198 return Fn->getParent()->getDataLayout(); 199 } 200 201 /// Get the JumpTableInfo for this function. 202 /// If it does not already exist, allocate one. 203 MachineJumpTableInfo *MachineFunction:: 204 getOrCreateJumpTableInfo(unsigned EntryKind) { 205 if (JumpTableInfo) return JumpTableInfo; 206 207 JumpTableInfo = new (Allocator) 208 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 209 return JumpTableInfo; 210 } 211 212 /// Should we be emitting segmented stack stuff for the function 213 bool MachineFunction::shouldSplitStack() const { 214 return getFunction()->hasFnAttribute("split-stack"); 215 } 216 217 /// This discards all of the MachineBasicBlock numbers and recomputes them. 218 /// This guarantees that the MBB numbers are sequential, dense, and match the 219 /// ordering of the blocks within the function. If a specific MachineBasicBlock 220 /// is specified, only that block and those after it are renumbered. 221 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 222 if (empty()) { MBBNumbering.clear(); return; } 223 MachineFunction::iterator MBBI, E = end(); 224 if (MBB == nullptr) 225 MBBI = begin(); 226 else 227 MBBI = MBB->getIterator(); 228 229 // Figure out the block number this should have. 230 unsigned BlockNo = 0; 231 if (MBBI != begin()) 232 BlockNo = std::prev(MBBI)->getNumber() + 1; 233 234 for (; MBBI != E; ++MBBI, ++BlockNo) { 235 if (MBBI->getNumber() != (int)BlockNo) { 236 // Remove use of the old number. 237 if (MBBI->getNumber() != -1) { 238 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 239 "MBB number mismatch!"); 240 MBBNumbering[MBBI->getNumber()] = nullptr; 241 } 242 243 // If BlockNo is already taken, set that block's number to -1. 244 if (MBBNumbering[BlockNo]) 245 MBBNumbering[BlockNo]->setNumber(-1); 246 247 MBBNumbering[BlockNo] = &*MBBI; 248 MBBI->setNumber(BlockNo); 249 } 250 } 251 252 // Okay, all the blocks are renumbered. If we have compactified the block 253 // numbering, shrink MBBNumbering now. 254 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 255 MBBNumbering.resize(BlockNo); 256 } 257 258 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 259 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 260 const DebugLoc &DL, 261 bool NoImp) { 262 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 263 MachineInstr(*this, MCID, DL, NoImp); 264 } 265 266 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 267 /// identical in all ways except the instruction has no parent, prev, or next. 268 MachineInstr * 269 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 270 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 271 MachineInstr(*this, *Orig); 272 } 273 274 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 275 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 276 MachineInstr *FirstClone = nullptr; 277 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 278 for (;;) { 279 MachineInstr *Cloned = CloneMachineInstr(&*I); 280 MBB.insert(InsertBefore, Cloned); 281 if (FirstClone == nullptr) { 282 FirstClone = Cloned; 283 } else { 284 Cloned->bundleWithPred(); 285 } 286 287 if (!I->isBundledWithSucc()) 288 break; 289 ++I; 290 } 291 return *FirstClone; 292 } 293 294 /// Delete the given MachineInstr. 295 /// 296 /// This function also serves as the MachineInstr destructor - the real 297 /// ~MachineInstr() destructor must be empty. 298 void 299 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 300 // Strip it for parts. The operand array and the MI object itself are 301 // independently recyclable. 302 if (MI->Operands) 303 deallocateOperandArray(MI->CapOperands, MI->Operands); 304 // Don't call ~MachineInstr() which must be trivial anyway because 305 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 306 // destructors. 307 InstructionRecycler.Deallocate(Allocator, MI); 308 } 309 310 /// Allocate a new MachineBasicBlock. Use this instead of 311 /// `new MachineBasicBlock'. 312 MachineBasicBlock * 313 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 314 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 315 MachineBasicBlock(*this, bb); 316 } 317 318 /// Delete the given MachineBasicBlock. 319 void 320 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 321 assert(MBB->getParent() == this && "MBB parent mismatch!"); 322 MBB->~MachineBasicBlock(); 323 BasicBlockRecycler.Deallocate(Allocator, MBB); 324 } 325 326 MachineMemOperand *MachineFunction::getMachineMemOperand( 327 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 328 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 329 SyncScope::ID SSID, AtomicOrdering Ordering, 330 AtomicOrdering FailureOrdering) { 331 return new (Allocator) 332 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 333 SSID, Ordering, FailureOrdering); 334 } 335 336 MachineMemOperand * 337 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 338 int64_t Offset, uint64_t Size) { 339 if (MMO->getValue()) 340 return new (Allocator) 341 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 342 MMO->getOffset()+Offset), 343 MMO->getFlags(), Size, MMO->getBaseAlignment(), 344 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 345 MMO->getOrdering(), MMO->getFailureOrdering()); 346 return new (Allocator) 347 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 348 MMO->getOffset()+Offset), 349 MMO->getFlags(), Size, MMO->getBaseAlignment(), 350 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 351 MMO->getOrdering(), MMO->getFailureOrdering()); 352 } 353 354 MachineMemOperand * 355 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 356 const AAMDNodes &AAInfo) { 357 MachinePointerInfo MPI = MMO->getValue() ? 358 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 359 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 360 361 return new (Allocator) 362 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 363 MMO->getBaseAlignment(), AAInfo, 364 MMO->getRanges(), MMO->getSyncScopeID(), 365 MMO->getOrdering(), MMO->getFailureOrdering()); 366 } 367 368 MachineInstr::mmo_iterator 369 MachineFunction::allocateMemRefsArray(unsigned long Num) { 370 return Allocator.Allocate<MachineMemOperand *>(Num); 371 } 372 373 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 374 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 375 MachineInstr::mmo_iterator End) { 376 // Count the number of load mem refs. 377 unsigned Num = 0; 378 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 379 if ((*I)->isLoad()) 380 ++Num; 381 382 // Allocate a new array and populate it with the load information. 383 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 384 unsigned Index = 0; 385 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 386 if ((*I)->isLoad()) { 387 if (!(*I)->isStore()) 388 // Reuse the MMO. 389 Result[Index] = *I; 390 else { 391 // Clone the MMO and unset the store flag. 392 MachineMemOperand *JustLoad = 393 getMachineMemOperand((*I)->getPointerInfo(), 394 (*I)->getFlags() & ~MachineMemOperand::MOStore, 395 (*I)->getSize(), (*I)->getBaseAlignment(), 396 (*I)->getAAInfo(), nullptr, 397 (*I)->getSyncScopeID(), (*I)->getOrdering(), 398 (*I)->getFailureOrdering()); 399 Result[Index] = JustLoad; 400 } 401 ++Index; 402 } 403 } 404 return std::make_pair(Result, Result + Num); 405 } 406 407 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 408 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 409 MachineInstr::mmo_iterator End) { 410 // Count the number of load mem refs. 411 unsigned Num = 0; 412 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 413 if ((*I)->isStore()) 414 ++Num; 415 416 // Allocate a new array and populate it with the store information. 417 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 418 unsigned Index = 0; 419 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 420 if ((*I)->isStore()) { 421 if (!(*I)->isLoad()) 422 // Reuse the MMO. 423 Result[Index] = *I; 424 else { 425 // Clone the MMO and unset the load flag. 426 MachineMemOperand *JustStore = 427 getMachineMemOperand((*I)->getPointerInfo(), 428 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 429 (*I)->getSize(), (*I)->getBaseAlignment(), 430 (*I)->getAAInfo(), nullptr, 431 (*I)->getSyncScopeID(), (*I)->getOrdering(), 432 (*I)->getFailureOrdering()); 433 Result[Index] = JustStore; 434 } 435 ++Index; 436 } 437 } 438 return std::make_pair(Result, Result + Num); 439 } 440 441 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 442 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 443 std::copy(Name.begin(), Name.end(), Dest); 444 Dest[Name.size()] = 0; 445 return Dest; 446 } 447 448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 449 LLVM_DUMP_METHOD void MachineFunction::dump() const { 450 print(dbgs()); 451 } 452 #endif 453 454 StringRef MachineFunction::getName() const { 455 assert(getFunction() && "No function!"); 456 return getFunction()->getName(); 457 } 458 459 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 460 OS << "# Machine code for function " << getName() << ": "; 461 getProperties().print(OS); 462 OS << '\n'; 463 464 // Print Frame Information 465 FrameInfo->print(*this, OS); 466 467 // Print JumpTable Information 468 if (JumpTableInfo) 469 JumpTableInfo->print(OS); 470 471 // Print Constant Pool 472 ConstantPool->print(OS); 473 474 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 475 476 if (RegInfo && !RegInfo->livein_empty()) { 477 OS << "Function Live Ins: "; 478 for (MachineRegisterInfo::livein_iterator 479 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 480 OS << PrintReg(I->first, TRI); 481 if (I->second) 482 OS << " in " << PrintReg(I->second, TRI); 483 if (std::next(I) != E) 484 OS << ", "; 485 } 486 OS << '\n'; 487 } 488 489 ModuleSlotTracker MST(getFunction()->getParent()); 490 MST.incorporateFunction(*getFunction()); 491 for (const auto &BB : *this) { 492 OS << '\n'; 493 BB.print(OS, MST, Indexes); 494 } 495 496 OS << "\n# End machine code for function " << getName() << ".\n\n"; 497 } 498 499 namespace llvm { 500 template<> 501 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 502 503 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 504 505 static std::string getGraphName(const MachineFunction *F) { 506 return ("CFG for '" + F->getName() + "' function").str(); 507 } 508 509 std::string getNodeLabel(const MachineBasicBlock *Node, 510 const MachineFunction *Graph) { 511 std::string OutStr; 512 { 513 raw_string_ostream OSS(OutStr); 514 515 if (isSimple()) { 516 OSS << "BB#" << Node->getNumber(); 517 if (const BasicBlock *BB = Node->getBasicBlock()) 518 OSS << ": " << BB->getName(); 519 } else 520 Node->print(OSS); 521 } 522 523 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 524 525 // Process string output to make it nicer... 526 for (unsigned i = 0; i != OutStr.length(); ++i) 527 if (OutStr[i] == '\n') { // Left justify 528 OutStr[i] = '\\'; 529 OutStr.insert(OutStr.begin()+i+1, 'l'); 530 } 531 return OutStr; 532 } 533 }; 534 } 535 536 void MachineFunction::viewCFG() const 537 { 538 #ifndef NDEBUG 539 ViewGraph(this, "mf" + getName()); 540 #else 541 errs() << "MachineFunction::viewCFG is only available in debug builds on " 542 << "systems with Graphviz or gv!\n"; 543 #endif // NDEBUG 544 } 545 546 void MachineFunction::viewCFGOnly() const 547 { 548 #ifndef NDEBUG 549 ViewGraph(this, "mf" + getName(), true); 550 #else 551 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 552 << "systems with Graphviz or gv!\n"; 553 #endif // NDEBUG 554 } 555 556 /// Add the specified physical register as a live-in value and 557 /// create a corresponding virtual register for it. 558 unsigned MachineFunction::addLiveIn(unsigned PReg, 559 const TargetRegisterClass *RC) { 560 MachineRegisterInfo &MRI = getRegInfo(); 561 unsigned VReg = MRI.getLiveInVirtReg(PReg); 562 if (VReg) { 563 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 564 (void)VRegRC; 565 // A physical register can be added several times. 566 // Between two calls, the register class of the related virtual register 567 // may have been constrained to match some operation constraints. 568 // In that case, check that the current register class includes the 569 // physical register and is a sub class of the specified RC. 570 assert((VRegRC == RC || (VRegRC->contains(PReg) && 571 RC->hasSubClassEq(VRegRC))) && 572 "Register class mismatch!"); 573 return VReg; 574 } 575 VReg = MRI.createVirtualRegister(RC); 576 MRI.addLiveIn(PReg, VReg); 577 return VReg; 578 } 579 580 /// Return the MCSymbol for the specified non-empty jump table. 581 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 582 /// normal 'L' label is returned. 583 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 584 bool isLinkerPrivate) const { 585 const DataLayout &DL = getDataLayout(); 586 assert(JumpTableInfo && "No jump tables"); 587 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 588 589 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 590 : DL.getPrivateGlobalPrefix(); 591 SmallString<60> Name; 592 raw_svector_ostream(Name) 593 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 594 return Ctx.getOrCreateSymbol(Name); 595 } 596 597 /// Return a function-local symbol to represent the PIC base. 598 MCSymbol *MachineFunction::getPICBaseSymbol() const { 599 const DataLayout &DL = getDataLayout(); 600 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 601 Twine(getFunctionNumber()) + "$pb"); 602 } 603 604 /// \name Exception Handling 605 /// \{ 606 607 LandingPadInfo & 608 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 609 unsigned N = LandingPads.size(); 610 for (unsigned i = 0; i < N; ++i) { 611 LandingPadInfo &LP = LandingPads[i]; 612 if (LP.LandingPadBlock == LandingPad) 613 return LP; 614 } 615 616 LandingPads.push_back(LandingPadInfo(LandingPad)); 617 return LandingPads[N]; 618 } 619 620 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 621 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 622 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 623 LP.BeginLabels.push_back(BeginLabel); 624 LP.EndLabels.push_back(EndLabel); 625 } 626 627 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 628 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 629 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 630 LP.LandingPadLabel = LandingPadLabel; 631 return LandingPadLabel; 632 } 633 634 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 635 ArrayRef<const GlobalValue *> TyInfo) { 636 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 637 for (unsigned N = TyInfo.size(); N; --N) 638 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 639 } 640 641 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 642 ArrayRef<const GlobalValue *> TyInfo) { 643 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 644 std::vector<unsigned> IdsInFilter(TyInfo.size()); 645 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 646 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 647 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 648 } 649 650 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { 651 for (unsigned i = 0; i != LandingPads.size(); ) { 652 LandingPadInfo &LandingPad = LandingPads[i]; 653 if (LandingPad.LandingPadLabel && 654 !LandingPad.LandingPadLabel->isDefined() && 655 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 656 LandingPad.LandingPadLabel = nullptr; 657 658 // Special case: we *should* emit LPs with null LP MBB. This indicates 659 // "nounwind" case. 660 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 661 LandingPads.erase(LandingPads.begin() + i); 662 continue; 663 } 664 665 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 666 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 667 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 668 if ((BeginLabel->isDefined() || 669 (LPMap && (*LPMap)[BeginLabel] != 0)) && 670 (EndLabel->isDefined() || 671 (LPMap && (*LPMap)[EndLabel] != 0))) continue; 672 673 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 674 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 675 --j; 676 --e; 677 } 678 679 // Remove landing pads with no try-ranges. 680 if (LandingPads[i].BeginLabels.empty()) { 681 LandingPads.erase(LandingPads.begin() + i); 682 continue; 683 } 684 685 // If there is no landing pad, ensure that the list of typeids is empty. 686 // If the only typeid is a cleanup, this is the same as having no typeids. 687 if (!LandingPad.LandingPadBlock || 688 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 689 LandingPad.TypeIds.clear(); 690 ++i; 691 } 692 } 693 694 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 695 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 696 LP.TypeIds.push_back(0); 697 } 698 699 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 700 const Function *Filter, 701 const BlockAddress *RecoverBA) { 702 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 703 SEHHandler Handler; 704 Handler.FilterOrFinally = Filter; 705 Handler.RecoverBA = RecoverBA; 706 LP.SEHHandlers.push_back(Handler); 707 } 708 709 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 710 const Function *Cleanup) { 711 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 712 SEHHandler Handler; 713 Handler.FilterOrFinally = Cleanup; 714 Handler.RecoverBA = nullptr; 715 LP.SEHHandlers.push_back(Handler); 716 } 717 718 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 719 ArrayRef<unsigned> Sites) { 720 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 721 } 722 723 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 724 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 725 if (TypeInfos[i] == TI) return i + 1; 726 727 TypeInfos.push_back(TI); 728 return TypeInfos.size(); 729 } 730 731 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 732 // If the new filter coincides with the tail of an existing filter, then 733 // re-use the existing filter. Folding filters more than this requires 734 // re-ordering filters and/or their elements - probably not worth it. 735 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 736 E = FilterEnds.end(); I != E; ++I) { 737 unsigned i = *I, j = TyIds.size(); 738 739 while (i && j) 740 if (FilterIds[--i] != TyIds[--j]) 741 goto try_next; 742 743 if (!j) 744 // The new filter coincides with range [i, end) of the existing filter. 745 return -(1 + i); 746 747 try_next:; 748 } 749 750 // Add the new filter. 751 int FilterID = -(1 + FilterIds.size()); 752 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 753 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 754 FilterEnds.push_back(FilterIds.size()); 755 FilterIds.push_back(0); // terminator 756 return FilterID; 757 } 758 759 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) { 760 MachineFunction &MF = *MBB.getParent(); 761 if (const auto *PF = dyn_cast<Function>( 762 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 763 MF.getMMI().addPersonality(PF); 764 765 if (I.isCleanup()) 766 MF.addCleanup(&MBB); 767 768 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 769 // but we need to do it this way because of how the DWARF EH emitter 770 // processes the clauses. 771 for (unsigned i = I.getNumClauses(); i != 0; --i) { 772 Value *Val = I.getClause(i - 1); 773 if (I.isCatch(i - 1)) { 774 MF.addCatchTypeInfo(&MBB, 775 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 776 } else { 777 // Add filters in a list. 778 Constant *CVal = cast<Constant>(Val); 779 SmallVector<const GlobalValue *, 4> FilterList; 780 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 781 II != IE; ++II) 782 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 783 784 MF.addFilterTypeInfo(&MBB, FilterList); 785 } 786 } 787 } 788 789 /// \} 790 791 //===----------------------------------------------------------------------===// 792 // MachineJumpTableInfo implementation 793 //===----------------------------------------------------------------------===// 794 795 /// Return the size of each entry in the jump table. 796 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 797 // The size of a jump table entry is 4 bytes unless the entry is just the 798 // address of a block, in which case it is the pointer size. 799 switch (getEntryKind()) { 800 case MachineJumpTableInfo::EK_BlockAddress: 801 return TD.getPointerSize(); 802 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 803 return 8; 804 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 805 case MachineJumpTableInfo::EK_LabelDifference32: 806 case MachineJumpTableInfo::EK_Custom32: 807 return 4; 808 case MachineJumpTableInfo::EK_Inline: 809 return 0; 810 } 811 llvm_unreachable("Unknown jump table encoding!"); 812 } 813 814 /// Return the alignment of each entry in the jump table. 815 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 816 // The alignment of a jump table entry is the alignment of int32 unless the 817 // entry is just the address of a block, in which case it is the pointer 818 // alignment. 819 switch (getEntryKind()) { 820 case MachineJumpTableInfo::EK_BlockAddress: 821 return TD.getPointerABIAlignment(); 822 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 823 return TD.getABIIntegerTypeAlignment(64); 824 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 825 case MachineJumpTableInfo::EK_LabelDifference32: 826 case MachineJumpTableInfo::EK_Custom32: 827 return TD.getABIIntegerTypeAlignment(32); 828 case MachineJumpTableInfo::EK_Inline: 829 return 1; 830 } 831 llvm_unreachable("Unknown jump table encoding!"); 832 } 833 834 /// Create a new jump table entry in the jump table info. 835 unsigned MachineJumpTableInfo::createJumpTableIndex( 836 const std::vector<MachineBasicBlock*> &DestBBs) { 837 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 838 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 839 return JumpTables.size()-1; 840 } 841 842 /// If Old is the target of any jump tables, update the jump tables to branch 843 /// to New instead. 844 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 845 MachineBasicBlock *New) { 846 assert(Old != New && "Not making a change?"); 847 bool MadeChange = false; 848 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 849 ReplaceMBBInJumpTable(i, Old, New); 850 return MadeChange; 851 } 852 853 /// If Old is a target of the jump tables, update the jump table to branch to 854 /// New instead. 855 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 856 MachineBasicBlock *Old, 857 MachineBasicBlock *New) { 858 assert(Old != New && "Not making a change?"); 859 bool MadeChange = false; 860 MachineJumpTableEntry &JTE = JumpTables[Idx]; 861 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 862 if (JTE.MBBs[j] == Old) { 863 JTE.MBBs[j] = New; 864 MadeChange = true; 865 } 866 return MadeChange; 867 } 868 869 void MachineJumpTableInfo::print(raw_ostream &OS) const { 870 if (JumpTables.empty()) return; 871 872 OS << "Jump Tables:\n"; 873 874 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 875 OS << " jt#" << i << ": "; 876 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 877 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 878 } 879 880 OS << '\n'; 881 } 882 883 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 884 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 885 #endif 886 887 888 //===----------------------------------------------------------------------===// 889 // MachineConstantPool implementation 890 //===----------------------------------------------------------------------===// 891 892 void MachineConstantPoolValue::anchor() { } 893 894 Type *MachineConstantPoolEntry::getType() const { 895 if (isMachineConstantPoolEntry()) 896 return Val.MachineCPVal->getType(); 897 return Val.ConstVal->getType(); 898 } 899 900 bool MachineConstantPoolEntry::needsRelocation() const { 901 if (isMachineConstantPoolEntry()) 902 return true; 903 return Val.ConstVal->needsRelocation(); 904 } 905 906 SectionKind 907 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 908 if (needsRelocation()) 909 return SectionKind::getReadOnlyWithRel(); 910 switch (DL->getTypeAllocSize(getType())) { 911 case 4: 912 return SectionKind::getMergeableConst4(); 913 case 8: 914 return SectionKind::getMergeableConst8(); 915 case 16: 916 return SectionKind::getMergeableConst16(); 917 case 32: 918 return SectionKind::getMergeableConst32(); 919 default: 920 return SectionKind::getReadOnly(); 921 } 922 } 923 924 MachineConstantPool::~MachineConstantPool() { 925 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 926 // so keep track of which we've deleted to avoid double deletions. 927 DenseSet<MachineConstantPoolValue*> Deleted; 928 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 929 if (Constants[i].isMachineConstantPoolEntry()) { 930 Deleted.insert(Constants[i].Val.MachineCPVal); 931 delete Constants[i].Val.MachineCPVal; 932 } 933 for (DenseSet<MachineConstantPoolValue*>::iterator I = 934 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 935 I != E; ++I) { 936 if (Deleted.count(*I) == 0) 937 delete *I; 938 } 939 } 940 941 /// Test whether the given two constants can be allocated the same constant pool 942 /// entry. 943 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 944 const DataLayout &DL) { 945 // Handle the trivial case quickly. 946 if (A == B) return true; 947 948 // If they have the same type but weren't the same constant, quickly 949 // reject them. 950 if (A->getType() == B->getType()) return false; 951 952 // We can't handle structs or arrays. 953 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 954 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 955 return false; 956 957 // For now, only support constants with the same size. 958 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 959 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 960 return false; 961 962 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 963 964 // Try constant folding a bitcast of both instructions to an integer. If we 965 // get two identical ConstantInt's, then we are good to share them. We use 966 // the constant folding APIs to do this so that we get the benefit of 967 // DataLayout. 968 if (isa<PointerType>(A->getType())) 969 A = ConstantFoldCastOperand(Instruction::PtrToInt, 970 const_cast<Constant *>(A), IntTy, DL); 971 else if (A->getType() != IntTy) 972 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 973 IntTy, DL); 974 if (isa<PointerType>(B->getType())) 975 B = ConstantFoldCastOperand(Instruction::PtrToInt, 976 const_cast<Constant *>(B), IntTy, DL); 977 else if (B->getType() != IntTy) 978 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 979 IntTy, DL); 980 981 return A == B; 982 } 983 984 /// Create a new entry in the constant pool or return an existing one. 985 /// User must specify the log2 of the minimum required alignment for the object. 986 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 987 unsigned Alignment) { 988 assert(Alignment && "Alignment must be specified!"); 989 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 990 991 // Check to see if we already have this constant. 992 // 993 // FIXME, this could be made much more efficient for large constant pools. 994 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 995 if (!Constants[i].isMachineConstantPoolEntry() && 996 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 997 if ((unsigned)Constants[i].getAlignment() < Alignment) 998 Constants[i].Alignment = Alignment; 999 return i; 1000 } 1001 1002 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1003 return Constants.size()-1; 1004 } 1005 1006 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1007 unsigned Alignment) { 1008 assert(Alignment && "Alignment must be specified!"); 1009 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1010 1011 // Check to see if we already have this constant. 1012 // 1013 // FIXME, this could be made much more efficient for large constant pools. 1014 int Idx = V->getExistingMachineCPValue(this, Alignment); 1015 if (Idx != -1) { 1016 MachineCPVsSharingEntries.insert(V); 1017 return (unsigned)Idx; 1018 } 1019 1020 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1021 return Constants.size()-1; 1022 } 1023 1024 void MachineConstantPool::print(raw_ostream &OS) const { 1025 if (Constants.empty()) return; 1026 1027 OS << "Constant Pool:\n"; 1028 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1029 OS << " cp#" << i << ": "; 1030 if (Constants[i].isMachineConstantPoolEntry()) 1031 Constants[i].Val.MachineCPVal->print(OS); 1032 else 1033 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1034 OS << ", align=" << Constants[i].getAlignment(); 1035 OS << "\n"; 1036 } 1037 } 1038 1039 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1040 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1041 #endif 1042