1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/GraphWriter.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <string> 73 #include <type_traits> 74 #include <utility> 75 #include <vector> 76 77 #include "LiveDebugValues/LiveDebugValues.h" 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 111 if (!F.hasFnAttribute(Attribute::SafeStack)) 112 return; 113 114 auto *Existing = 115 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 116 117 if (!Existing || Existing->getNumOperands() != 2) 118 return; 119 120 auto *MetadataName = "unsafe-stack-size"; 121 if (auto &N = Existing->getOperand(0)) { 122 if (cast<MDString>(N.get())->getString() == MetadataName) { 123 if (auto &Op = Existing->getOperand(1)) { 124 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 125 FrameInfo.setUnsafeStackSize(Val); 126 } 127 } 128 } 129 } 130 131 // Pin the vtable to this file. 132 void MachineFunction::Delegate::anchor() {} 133 134 void MachineFunctionProperties::print(raw_ostream &OS) const { 135 const char *Separator = ""; 136 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 137 if (!Properties[I]) 138 continue; 139 OS << Separator << getPropertyName(static_cast<Property>(I)); 140 Separator = ", "; 141 } 142 } 143 144 //===----------------------------------------------------------------------===// 145 // MachineFunction implementation 146 //===----------------------------------------------------------------------===// 147 148 // Out-of-line virtual method. 149 MachineFunctionInfo::~MachineFunctionInfo() = default; 150 151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 152 MBB->getParent()->deleteMachineBasicBlock(MBB); 153 } 154 155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 156 const Function &F) { 157 if (auto MA = F.getFnStackAlign()) 158 return *MA; 159 return STI->getFrameLowering()->getStackAlign(); 160 } 161 162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 163 const TargetSubtargetInfo &STI, 164 unsigned FunctionNum, MachineModuleInfo &mmi) 165 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 166 FunctionNumber = FunctionNum; 167 init(); 168 } 169 170 void MachineFunction::handleInsertion(MachineInstr &MI) { 171 if (TheDelegate) 172 TheDelegate->MF_HandleInsertion(MI); 173 } 174 175 void MachineFunction::handleRemoval(MachineInstr &MI) { 176 if (TheDelegate) 177 TheDelegate->MF_HandleRemoval(MI); 178 } 179 180 void MachineFunction::init() { 181 // Assume the function starts in SSA form with correct liveness. 182 Properties.set(MachineFunctionProperties::Property::IsSSA); 183 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 184 if (STI->getRegisterInfo()) 185 RegInfo = new (Allocator) MachineRegisterInfo(this); 186 else 187 RegInfo = nullptr; 188 189 MFInfo = nullptr; 190 191 // We can realign the stack if the target supports it and the user hasn't 192 // explicitly asked us not to. 193 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 194 !F.hasFnAttribute("no-realign-stack"); 195 FrameInfo = new (Allocator) MachineFrameInfo( 196 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 197 /*ForcedRealign=*/CanRealignSP && 198 F.hasFnAttribute(Attribute::StackAlignment)); 199 200 setUnsafeStackSize(F, *FrameInfo); 201 202 if (F.hasFnAttribute(Attribute::StackAlignment)) 203 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 204 205 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 206 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 207 208 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 209 // FIXME: Use Function::hasOptSize(). 210 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 211 Alignment = std::max(Alignment, 212 STI->getTargetLowering()->getPrefFunctionAlignment()); 213 214 if (AlignAllFunctions) 215 Alignment = Align(1ULL << AlignAllFunctions); 216 217 JumpTableInfo = nullptr; 218 219 if (isFuncletEHPersonality(classifyEHPersonality( 220 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 221 WinEHInfo = new (Allocator) WinEHFuncInfo(); 222 } 223 224 if (isScopedEHPersonality(classifyEHPersonality( 225 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 226 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 227 } 228 229 assert(Target.isCompatibleDataLayout(getDataLayout()) && 230 "Can't create a MachineFunction using a Module with a " 231 "Target-incompatible DataLayout attached\n"); 232 233 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 234 } 235 236 void MachineFunction::initTargetMachineFunctionInfo( 237 const TargetSubtargetInfo &STI) { 238 assert(!MFInfo && "MachineFunctionInfo already set"); 239 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 240 } 241 242 MachineFunction::~MachineFunction() { 243 clear(); 244 } 245 246 void MachineFunction::clear() { 247 Properties.reset(); 248 // Don't call destructors on MachineInstr and MachineOperand. All of their 249 // memory comes from the BumpPtrAllocator which is about to be purged. 250 // 251 // Do call MachineBasicBlock destructors, it contains std::vectors. 252 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 253 I->Insts.clearAndLeakNodesUnsafely(); 254 MBBNumbering.clear(); 255 256 InstructionRecycler.clear(Allocator); 257 OperandRecycler.clear(Allocator); 258 BasicBlockRecycler.clear(Allocator); 259 CodeViewAnnotations.clear(); 260 VariableDbgInfos.clear(); 261 if (RegInfo) { 262 RegInfo->~MachineRegisterInfo(); 263 Allocator.Deallocate(RegInfo); 264 } 265 if (MFInfo) { 266 MFInfo->~MachineFunctionInfo(); 267 Allocator.Deallocate(MFInfo); 268 } 269 270 FrameInfo->~MachineFrameInfo(); 271 Allocator.Deallocate(FrameInfo); 272 273 ConstantPool->~MachineConstantPool(); 274 Allocator.Deallocate(ConstantPool); 275 276 if (JumpTableInfo) { 277 JumpTableInfo->~MachineJumpTableInfo(); 278 Allocator.Deallocate(JumpTableInfo); 279 } 280 281 if (WinEHInfo) { 282 WinEHInfo->~WinEHFuncInfo(); 283 Allocator.Deallocate(WinEHInfo); 284 } 285 286 if (WasmEHInfo) { 287 WasmEHInfo->~WasmEHFuncInfo(); 288 Allocator.Deallocate(WasmEHInfo); 289 } 290 } 291 292 const DataLayout &MachineFunction::getDataLayout() const { 293 return F.getParent()->getDataLayout(); 294 } 295 296 /// Get the JumpTableInfo for this function. 297 /// If it does not already exist, allocate one. 298 MachineJumpTableInfo *MachineFunction:: 299 getOrCreateJumpTableInfo(unsigned EntryKind) { 300 if (JumpTableInfo) return JumpTableInfo; 301 302 JumpTableInfo = new (Allocator) 303 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 304 return JumpTableInfo; 305 } 306 307 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 308 return F.getDenormalMode(FPType); 309 } 310 311 /// Should we be emitting segmented stack stuff for the function 312 bool MachineFunction::shouldSplitStack() const { 313 return getFunction().hasFnAttribute("split-stack"); 314 } 315 316 [[nodiscard]] unsigned 317 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 318 FrameInstructions.push_back(Inst); 319 return FrameInstructions.size() - 1; 320 } 321 322 /// This discards all of the MachineBasicBlock numbers and recomputes them. 323 /// This guarantees that the MBB numbers are sequential, dense, and match the 324 /// ordering of the blocks within the function. If a specific MachineBasicBlock 325 /// is specified, only that block and those after it are renumbered. 326 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 327 if (empty()) { MBBNumbering.clear(); return; } 328 MachineFunction::iterator MBBI, E = end(); 329 if (MBB == nullptr) 330 MBBI = begin(); 331 else 332 MBBI = MBB->getIterator(); 333 334 // Figure out the block number this should have. 335 unsigned BlockNo = 0; 336 if (MBBI != begin()) 337 BlockNo = std::prev(MBBI)->getNumber() + 1; 338 339 for (; MBBI != E; ++MBBI, ++BlockNo) { 340 if (MBBI->getNumber() != (int)BlockNo) { 341 // Remove use of the old number. 342 if (MBBI->getNumber() != -1) { 343 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 344 "MBB number mismatch!"); 345 MBBNumbering[MBBI->getNumber()] = nullptr; 346 } 347 348 // If BlockNo is already taken, set that block's number to -1. 349 if (MBBNumbering[BlockNo]) 350 MBBNumbering[BlockNo]->setNumber(-1); 351 352 MBBNumbering[BlockNo] = &*MBBI; 353 MBBI->setNumber(BlockNo); 354 } 355 } 356 357 // Okay, all the blocks are renumbered. If we have compactified the block 358 // numbering, shrink MBBNumbering now. 359 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 360 MBBNumbering.resize(BlockNo); 361 } 362 363 /// This method iterates over the basic blocks and assigns their IsBeginSection 364 /// and IsEndSection fields. This must be called after MBB layout is finalized 365 /// and the SectionID's are assigned to MBBs. 366 void MachineFunction::assignBeginEndSections() { 367 front().setIsBeginSection(); 368 auto CurrentSectionID = front().getSectionID(); 369 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 370 if (MBBI->getSectionID() == CurrentSectionID) 371 continue; 372 MBBI->setIsBeginSection(); 373 std::prev(MBBI)->setIsEndSection(); 374 CurrentSectionID = MBBI->getSectionID(); 375 } 376 back().setIsEndSection(); 377 } 378 379 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 380 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 381 DebugLoc DL, 382 bool NoImplicit) { 383 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 384 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 385 } 386 387 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 388 /// identical in all ways except the instruction has no parent, prev, or next. 389 MachineInstr * 390 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 391 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 392 MachineInstr(*this, *Orig); 393 } 394 395 MachineInstr &MachineFunction::cloneMachineInstrBundle( 396 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 397 const MachineInstr &Orig) { 398 MachineInstr *FirstClone = nullptr; 399 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 400 while (true) { 401 MachineInstr *Cloned = CloneMachineInstr(&*I); 402 MBB.insert(InsertBefore, Cloned); 403 if (FirstClone == nullptr) { 404 FirstClone = Cloned; 405 } else { 406 Cloned->bundleWithPred(); 407 } 408 409 if (!I->isBundledWithSucc()) 410 break; 411 ++I; 412 } 413 // Copy over call site info to the cloned instruction if needed. If Orig is in 414 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 415 // the bundle. 416 if (Orig.shouldUpdateCallSiteInfo()) 417 copyCallSiteInfo(&Orig, FirstClone); 418 return *FirstClone; 419 } 420 421 /// Delete the given MachineInstr. 422 /// 423 /// This function also serves as the MachineInstr destructor - the real 424 /// ~MachineInstr() destructor must be empty. 425 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 426 // Verify that a call site info is at valid state. This assertion should 427 // be triggered during the implementation of support for the 428 // call site info of a new architecture. If the assertion is triggered, 429 // back trace will tell where to insert a call to updateCallSiteInfo(). 430 assert((!MI->isCandidateForCallSiteEntry() || 431 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 432 "Call site info was not updated!"); 433 // Strip it for parts. The operand array and the MI object itself are 434 // independently recyclable. 435 if (MI->Operands) 436 deallocateOperandArray(MI->CapOperands, MI->Operands); 437 // Don't call ~MachineInstr() which must be trivial anyway because 438 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 439 // destructors. 440 InstructionRecycler.Deallocate(Allocator, MI); 441 } 442 443 /// Allocate a new MachineBasicBlock. Use this instead of 444 /// `new MachineBasicBlock'. 445 MachineBasicBlock * 446 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 447 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 448 MachineBasicBlock(*this, bb); 449 } 450 451 /// Delete the given MachineBasicBlock. 452 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 453 assert(MBB->getParent() == this && "MBB parent mismatch!"); 454 // Clean up any references to MBB in jump tables before deleting it. 455 if (JumpTableInfo) 456 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 457 MBB->~MachineBasicBlock(); 458 BasicBlockRecycler.Deallocate(Allocator, MBB); 459 } 460 461 MachineMemOperand *MachineFunction::getMachineMemOperand( 462 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 463 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 464 SyncScope::ID SSID, AtomicOrdering Ordering, 465 AtomicOrdering FailureOrdering) { 466 return new (Allocator) 467 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 468 SSID, Ordering, FailureOrdering); 469 } 470 471 MachineMemOperand *MachineFunction::getMachineMemOperand( 472 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 473 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 474 SyncScope::ID SSID, AtomicOrdering Ordering, 475 AtomicOrdering FailureOrdering) { 476 return new (Allocator) 477 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 478 Ordering, FailureOrdering); 479 } 480 481 MachineMemOperand *MachineFunction::getMachineMemOperand( 482 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 483 return new (Allocator) 484 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 485 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 486 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 487 } 488 489 MachineMemOperand *MachineFunction::getMachineMemOperand( 490 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 491 return new (Allocator) 492 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 493 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 494 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 495 } 496 497 MachineMemOperand * 498 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 499 int64_t Offset, LLT Ty) { 500 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 501 502 // If there is no pointer value, the offset isn't tracked so we need to adjust 503 // the base alignment. 504 Align Alignment = PtrInfo.V.isNull() 505 ? commonAlignment(MMO->getBaseAlign(), Offset) 506 : MMO->getBaseAlign(); 507 508 // Do not preserve ranges, since we don't necessarily know what the high bits 509 // are anymore. 510 return new (Allocator) MachineMemOperand( 511 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 512 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 513 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 514 } 515 516 MachineMemOperand * 517 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 518 const AAMDNodes &AAInfo) { 519 MachinePointerInfo MPI = MMO->getValue() ? 520 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 521 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 522 523 return new (Allocator) MachineMemOperand( 524 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 525 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 526 MMO->getFailureOrdering()); 527 } 528 529 MachineMemOperand * 530 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 531 MachineMemOperand::Flags Flags) { 532 return new (Allocator) MachineMemOperand( 533 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 534 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 535 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 536 } 537 538 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 539 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 540 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 541 uint32_t CFIType) { 542 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 543 PostInstrSymbol, HeapAllocMarker, 544 PCSections, CFIType); 545 } 546 547 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 548 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 549 llvm::copy(Name, Dest); 550 Dest[Name.size()] = 0; 551 return Dest; 552 } 553 554 uint32_t *MachineFunction::allocateRegMask() { 555 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 556 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 557 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 558 memset(Mask, 0, Size * sizeof(Mask[0])); 559 return Mask; 560 } 561 562 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 563 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 564 copy(Mask, AllocMask); 565 return {AllocMask, Mask.size()}; 566 } 567 568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 569 LLVM_DUMP_METHOD void MachineFunction::dump() const { 570 print(dbgs()); 571 } 572 #endif 573 574 StringRef MachineFunction::getName() const { 575 return getFunction().getName(); 576 } 577 578 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 579 OS << "# Machine code for function " << getName() << ": "; 580 getProperties().print(OS); 581 OS << '\n'; 582 583 // Print Frame Information 584 FrameInfo->print(*this, OS); 585 586 // Print JumpTable Information 587 if (JumpTableInfo) 588 JumpTableInfo->print(OS); 589 590 // Print Constant Pool 591 ConstantPool->print(OS); 592 593 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 594 595 if (RegInfo && !RegInfo->livein_empty()) { 596 OS << "Function Live Ins: "; 597 for (MachineRegisterInfo::livein_iterator 598 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 599 OS << printReg(I->first, TRI); 600 if (I->second) 601 OS << " in " << printReg(I->second, TRI); 602 if (std::next(I) != E) 603 OS << ", "; 604 } 605 OS << '\n'; 606 } 607 608 ModuleSlotTracker MST(getFunction().getParent()); 609 MST.incorporateFunction(getFunction()); 610 for (const auto &BB : *this) { 611 OS << '\n'; 612 // If we print the whole function, print it at its most verbose level. 613 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 614 } 615 616 OS << "\n# End machine code for function " << getName() << ".\n\n"; 617 } 618 619 /// True if this function needs frame moves for debug or exceptions. 620 bool MachineFunction::needsFrameMoves() const { 621 return getMMI().hasDebugInfo() || 622 getTarget().Options.ForceDwarfFrameSection || 623 F.needsUnwindTableEntry(); 624 } 625 626 namespace llvm { 627 628 template<> 629 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 630 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 631 632 static std::string getGraphName(const MachineFunction *F) { 633 return ("CFG for '" + F->getName() + "' function").str(); 634 } 635 636 std::string getNodeLabel(const MachineBasicBlock *Node, 637 const MachineFunction *Graph) { 638 std::string OutStr; 639 { 640 raw_string_ostream OSS(OutStr); 641 642 if (isSimple()) { 643 OSS << printMBBReference(*Node); 644 if (const BasicBlock *BB = Node->getBasicBlock()) 645 OSS << ": " << BB->getName(); 646 } else 647 Node->print(OSS); 648 } 649 650 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 651 652 // Process string output to make it nicer... 653 for (unsigned i = 0; i != OutStr.length(); ++i) 654 if (OutStr[i] == '\n') { // Left justify 655 OutStr[i] = '\\'; 656 OutStr.insert(OutStr.begin()+i+1, 'l'); 657 } 658 return OutStr; 659 } 660 }; 661 662 } // end namespace llvm 663 664 void MachineFunction::viewCFG() const 665 { 666 #ifndef NDEBUG 667 ViewGraph(this, "mf" + getName()); 668 #else 669 errs() << "MachineFunction::viewCFG is only available in debug builds on " 670 << "systems with Graphviz or gv!\n"; 671 #endif // NDEBUG 672 } 673 674 void MachineFunction::viewCFGOnly() const 675 { 676 #ifndef NDEBUG 677 ViewGraph(this, "mf" + getName(), true); 678 #else 679 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 680 << "systems with Graphviz or gv!\n"; 681 #endif // NDEBUG 682 } 683 684 /// Add the specified physical register as a live-in value and 685 /// create a corresponding virtual register for it. 686 Register MachineFunction::addLiveIn(MCRegister PReg, 687 const TargetRegisterClass *RC) { 688 MachineRegisterInfo &MRI = getRegInfo(); 689 Register VReg = MRI.getLiveInVirtReg(PReg); 690 if (VReg) { 691 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 692 (void)VRegRC; 693 // A physical register can be added several times. 694 // Between two calls, the register class of the related virtual register 695 // may have been constrained to match some operation constraints. 696 // In that case, check that the current register class includes the 697 // physical register and is a sub class of the specified RC. 698 assert((VRegRC == RC || (VRegRC->contains(PReg) && 699 RC->hasSubClassEq(VRegRC))) && 700 "Register class mismatch!"); 701 return VReg; 702 } 703 VReg = MRI.createVirtualRegister(RC); 704 MRI.addLiveIn(PReg, VReg); 705 return VReg; 706 } 707 708 /// Return the MCSymbol for the specified non-empty jump table. 709 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 710 /// normal 'L' label is returned. 711 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 712 bool isLinkerPrivate) const { 713 const DataLayout &DL = getDataLayout(); 714 assert(JumpTableInfo && "No jump tables"); 715 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 716 717 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 718 : DL.getPrivateGlobalPrefix(); 719 SmallString<60> Name; 720 raw_svector_ostream(Name) 721 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 722 return Ctx.getOrCreateSymbol(Name); 723 } 724 725 /// Return a function-local symbol to represent the PIC base. 726 MCSymbol *MachineFunction::getPICBaseSymbol() const { 727 const DataLayout &DL = getDataLayout(); 728 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 729 Twine(getFunctionNumber()) + "$pb"); 730 } 731 732 /// \name Exception Handling 733 /// \{ 734 735 LandingPadInfo & 736 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 737 unsigned N = LandingPads.size(); 738 for (unsigned i = 0; i < N; ++i) { 739 LandingPadInfo &LP = LandingPads[i]; 740 if (LP.LandingPadBlock == LandingPad) 741 return LP; 742 } 743 744 LandingPads.push_back(LandingPadInfo(LandingPad)); 745 return LandingPads[N]; 746 } 747 748 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 749 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 750 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 751 LP.BeginLabels.push_back(BeginLabel); 752 LP.EndLabels.push_back(EndLabel); 753 } 754 755 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 756 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 757 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 758 LP.LandingPadLabel = LandingPadLabel; 759 760 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 761 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 762 if (const auto *PF = 763 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 764 getMMI().addPersonality(PF); 765 766 if (LPI->isCleanup()) 767 addCleanup(LandingPad); 768 769 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 770 // correct, but we need to do it this way because of how the DWARF EH 771 // emitter processes the clauses. 772 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 773 Value *Val = LPI->getClause(I - 1); 774 if (LPI->isCatch(I - 1)) { 775 addCatchTypeInfo(LandingPad, 776 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 777 } else { 778 // Add filters in a list. 779 auto *CVal = cast<Constant>(Val); 780 SmallVector<const GlobalValue *, 4> FilterList; 781 for (const Use &U : CVal->operands()) 782 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 783 784 addFilterTypeInfo(LandingPad, FilterList); 785 } 786 } 787 788 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 789 for (unsigned I = CPI->arg_size(); I != 0; --I) { 790 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 791 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 792 } 793 794 } else { 795 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 796 } 797 798 return LandingPadLabel; 799 } 800 801 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 802 ArrayRef<const GlobalValue *> TyInfo) { 803 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 804 for (const GlobalValue *GV : llvm::reverse(TyInfo)) 805 LP.TypeIds.push_back(getTypeIDFor(GV)); 806 } 807 808 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 809 ArrayRef<const GlobalValue *> TyInfo) { 810 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 811 std::vector<unsigned> IdsInFilter(TyInfo.size()); 812 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 813 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 814 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 815 } 816 817 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 818 bool TidyIfNoBeginLabels) { 819 for (unsigned i = 0; i != LandingPads.size(); ) { 820 LandingPadInfo &LandingPad = LandingPads[i]; 821 if (LandingPad.LandingPadLabel && 822 !LandingPad.LandingPadLabel->isDefined() && 823 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 824 LandingPad.LandingPadLabel = nullptr; 825 826 // Special case: we *should* emit LPs with null LP MBB. This indicates 827 // "nounwind" case. 828 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 829 LandingPads.erase(LandingPads.begin() + i); 830 continue; 831 } 832 833 if (TidyIfNoBeginLabels) { 834 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 835 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 836 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 837 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 838 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 839 continue; 840 841 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 842 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 843 --j; 844 --e; 845 } 846 847 // Remove landing pads with no try-ranges. 848 if (LandingPads[i].BeginLabels.empty()) { 849 LandingPads.erase(LandingPads.begin() + i); 850 continue; 851 } 852 } 853 854 // If there is no landing pad, ensure that the list of typeids is empty. 855 // If the only typeid is a cleanup, this is the same as having no typeids. 856 if (!LandingPad.LandingPadBlock || 857 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 858 LandingPad.TypeIds.clear(); 859 ++i; 860 } 861 } 862 863 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 864 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 865 LP.TypeIds.push_back(0); 866 } 867 868 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 869 ArrayRef<unsigned> Sites) { 870 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 871 } 872 873 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 874 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 875 if (TypeInfos[i] == TI) return i + 1; 876 877 TypeInfos.push_back(TI); 878 return TypeInfos.size(); 879 } 880 881 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 882 // If the new filter coincides with the tail of an existing filter, then 883 // re-use the existing filter. Folding filters more than this requires 884 // re-ordering filters and/or their elements - probably not worth it. 885 for (unsigned i : FilterEnds) { 886 unsigned j = TyIds.size(); 887 888 while (i && j) 889 if (FilterIds[--i] != TyIds[--j]) 890 goto try_next; 891 892 if (!j) 893 // The new filter coincides with range [i, end) of the existing filter. 894 return -(1 + i); 895 896 try_next:; 897 } 898 899 // Add the new filter. 900 int FilterID = -(1 + FilterIds.size()); 901 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 902 llvm::append_range(FilterIds, TyIds); 903 FilterEnds.push_back(FilterIds.size()); 904 FilterIds.push_back(0); // terminator 905 return FilterID; 906 } 907 908 MachineFunction::CallSiteInfoMap::iterator 909 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 910 assert(MI->isCandidateForCallSiteEntry() && 911 "Call site info refers only to call (MI) candidates"); 912 913 if (!Target.Options.EmitCallSiteInfo) 914 return CallSitesInfo.end(); 915 return CallSitesInfo.find(MI); 916 } 917 918 /// Return the call machine instruction or find a call within bundle. 919 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 920 if (!MI->isBundle()) 921 return MI; 922 923 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 924 getBundleEnd(MI->getIterator()))) 925 if (BMI.isCandidateForCallSiteEntry()) 926 return &BMI; 927 928 llvm_unreachable("Unexpected bundle without a call site candidate"); 929 } 930 931 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 932 assert(MI->shouldUpdateCallSiteInfo() && 933 "Call site info refers only to call (MI) candidates or " 934 "candidates inside bundles"); 935 936 const MachineInstr *CallMI = getCallInstr(MI); 937 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 938 if (CSIt == CallSitesInfo.end()) 939 return; 940 CallSitesInfo.erase(CSIt); 941 } 942 943 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 944 const MachineInstr *New) { 945 assert(Old->shouldUpdateCallSiteInfo() && 946 "Call site info refers only to call (MI) candidates or " 947 "candidates inside bundles"); 948 949 if (!New->isCandidateForCallSiteEntry()) 950 return eraseCallSiteInfo(Old); 951 952 const MachineInstr *OldCallMI = getCallInstr(Old); 953 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 954 if (CSIt == CallSitesInfo.end()) 955 return; 956 957 CallSiteInfo CSInfo = CSIt->second; 958 CallSitesInfo[New] = CSInfo; 959 } 960 961 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 962 const MachineInstr *New) { 963 assert(Old->shouldUpdateCallSiteInfo() && 964 "Call site info refers only to call (MI) candidates or " 965 "candidates inside bundles"); 966 967 if (!New->isCandidateForCallSiteEntry()) 968 return eraseCallSiteInfo(Old); 969 970 const MachineInstr *OldCallMI = getCallInstr(Old); 971 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 972 if (CSIt == CallSitesInfo.end()) 973 return; 974 975 CallSiteInfo CSInfo = std::move(CSIt->second); 976 CallSitesInfo.erase(CSIt); 977 CallSitesInfo[New] = CSInfo; 978 } 979 980 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 981 DebugInstrNumberingCount = Num; 982 } 983 984 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 985 DebugInstrOperandPair B, 986 unsigned Subreg) { 987 // Catch any accidental self-loops. 988 assert(A.first != B.first); 989 // Don't allow any substitutions _from_ the memory operand number. 990 assert(A.second != DebugOperandMemNumber); 991 992 DebugValueSubstitutions.push_back({A, B, Subreg}); 993 } 994 995 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 996 MachineInstr &New, 997 unsigned MaxOperand) { 998 // If the Old instruction wasn't tracked at all, there is no work to do. 999 unsigned OldInstrNum = Old.peekDebugInstrNum(); 1000 if (!OldInstrNum) 1001 return; 1002 1003 // Iterate over all operands looking for defs to create substitutions for. 1004 // Avoid creating new instr numbers unless we create a new substitution. 1005 // While this has no functional effect, it risks confusing someone reading 1006 // MIR output. 1007 // Examine all the operands, or the first N specified by the caller. 1008 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 1009 for (unsigned int I = 0; I < MaxOperand; ++I) { 1010 const auto &OldMO = Old.getOperand(I); 1011 auto &NewMO = New.getOperand(I); 1012 (void)NewMO; 1013 1014 if (!OldMO.isReg() || !OldMO.isDef()) 1015 continue; 1016 assert(NewMO.isDef()); 1017 1018 unsigned NewInstrNum = New.getDebugInstrNum(); 1019 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1020 std::make_pair(NewInstrNum, I)); 1021 } 1022 } 1023 1024 auto MachineFunction::salvageCopySSA( 1025 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1026 -> DebugInstrOperandPair { 1027 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1028 1029 // Check whether this copy-like instruction has already been salvaged into 1030 // an operand pair. 1031 Register Dest; 1032 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1033 Dest = CopyDstSrc->Destination->getReg(); 1034 } else { 1035 assert(MI.isSubregToReg()); 1036 Dest = MI.getOperand(0).getReg(); 1037 } 1038 1039 auto CacheIt = DbgPHICache.find(Dest); 1040 if (CacheIt != DbgPHICache.end()) 1041 return CacheIt->second; 1042 1043 // Calculate the instruction number to use, or install a DBG_PHI. 1044 auto OperandPair = salvageCopySSAImpl(MI); 1045 DbgPHICache.insert({Dest, OperandPair}); 1046 return OperandPair; 1047 } 1048 1049 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1050 -> DebugInstrOperandPair { 1051 MachineRegisterInfo &MRI = getRegInfo(); 1052 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1053 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1054 1055 // Chase the value read by a copy-like instruction back to the instruction 1056 // that ultimately _defines_ that value. This may pass: 1057 // * Through multiple intermediate copies, including subregister moves / 1058 // copies, 1059 // * Copies from physical registers that must then be traced back to the 1060 // defining instruction, 1061 // * Or, physical registers may be live-in to (only) the entry block, which 1062 // requires a DBG_PHI to be created. 1063 // We can pursue this problem in that order: trace back through copies, 1064 // optionally through a physical register, to a defining instruction. We 1065 // should never move from physreg to vreg. As we're still in SSA form, no need 1066 // to worry about partial definitions of registers. 1067 1068 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1069 // returns the register read and any subregister identifying which part is 1070 // read. 1071 auto GetRegAndSubreg = 1072 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1073 Register NewReg, OldReg; 1074 unsigned SubReg; 1075 if (Cpy.isCopy()) { 1076 OldReg = Cpy.getOperand(0).getReg(); 1077 NewReg = Cpy.getOperand(1).getReg(); 1078 SubReg = Cpy.getOperand(1).getSubReg(); 1079 } else if (Cpy.isSubregToReg()) { 1080 OldReg = Cpy.getOperand(0).getReg(); 1081 NewReg = Cpy.getOperand(2).getReg(); 1082 SubReg = Cpy.getOperand(3).getImm(); 1083 } else { 1084 auto CopyDetails = *TII.isCopyInstr(Cpy); 1085 const MachineOperand &Src = *CopyDetails.Source; 1086 const MachineOperand &Dest = *CopyDetails.Destination; 1087 OldReg = Dest.getReg(); 1088 NewReg = Src.getReg(); 1089 SubReg = Src.getSubReg(); 1090 } 1091 1092 return {NewReg, SubReg}; 1093 }; 1094 1095 // First seek either the defining instruction, or a copy from a physreg. 1096 // During search, the current state is the current copy instruction, and which 1097 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1098 // deal with those later. 1099 auto State = GetRegAndSubreg(MI); 1100 auto CurInst = MI.getIterator(); 1101 SmallVector<unsigned, 4> SubregsSeen; 1102 while (true) { 1103 // If we've found a copy from a physreg, first portion of search is over. 1104 if (!State.first.isVirtual()) 1105 break; 1106 1107 // Record any subregister qualifier. 1108 if (State.second) 1109 SubregsSeen.push_back(State.second); 1110 1111 assert(MRI.hasOneDef(State.first)); 1112 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1113 CurInst = Inst.getIterator(); 1114 1115 // Any non-copy instruction is the defining instruction we're seeking. 1116 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1117 break; 1118 State = GetRegAndSubreg(Inst); 1119 }; 1120 1121 // Helper lambda to apply additional subregister substitutions to a known 1122 // instruction/operand pair. Adds new (fake) substitutions so that we can 1123 // record the subregister. FIXME: this isn't very space efficient if multiple 1124 // values are tracked back through the same copies; cache something later. 1125 auto ApplySubregisters = 1126 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1127 for (unsigned Subreg : reverse(SubregsSeen)) { 1128 // Fetch a new instruction number, not attached to an actual instruction. 1129 unsigned NewInstrNumber = getNewDebugInstrNum(); 1130 // Add a substitution from the "new" number to the known one, with a 1131 // qualifying subreg. 1132 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1133 // Return the new number; to find the underlying value, consumers need to 1134 // deal with the qualifying subreg. 1135 P = {NewInstrNumber, 0}; 1136 } 1137 return P; 1138 }; 1139 1140 // If we managed to find the defining instruction after COPYs, return an 1141 // instruction / operand pair after adding subregister qualifiers. 1142 if (State.first.isVirtual()) { 1143 // Virtual register def -- we can just look up where this happens. 1144 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1145 for (auto &MO : Inst->operands()) { 1146 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1147 continue; 1148 return ApplySubregisters( 1149 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1150 } 1151 1152 llvm_unreachable("Vreg def with no corresponding operand?"); 1153 } 1154 1155 // Our search ended in a copy from a physreg: walk back up the function 1156 // looking for whatever defines the physreg. 1157 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1158 State = GetRegAndSubreg(*CurInst); 1159 Register RegToSeek = State.first; 1160 1161 auto RMII = CurInst->getReverseIterator(); 1162 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1163 for (auto &ToExamine : PrevInstrs) { 1164 for (auto &MO : ToExamine.operands()) { 1165 // Test for operand that defines something aliasing RegToSeek. 1166 if (!MO.isReg() || !MO.isDef() || 1167 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1168 continue; 1169 1170 return ApplySubregisters( 1171 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1172 } 1173 } 1174 1175 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1176 1177 // We reached the start of the block before finding a defining instruction. 1178 // There are numerous scenarios where this can happen: 1179 // * Constant physical registers, 1180 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1181 // * Arguments in the entry block, 1182 // * Exception handling landing pads. 1183 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1184 // the variable value at this position, rather than checking it makes sense. 1185 1186 // Create DBG_PHI for specified physreg. 1187 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1188 TII.get(TargetOpcode::DBG_PHI)); 1189 Builder.addReg(State.first); 1190 unsigned NewNum = getNewDebugInstrNum(); 1191 Builder.addImm(NewNum); 1192 return ApplySubregisters({NewNum, 0u}); 1193 } 1194 1195 void MachineFunction::finalizeDebugInstrRefs() { 1196 auto *TII = getSubtarget().getInstrInfo(); 1197 1198 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1199 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1200 MI.setDesc(RefII); 1201 MI.getDebugOperand(0).setReg(0); 1202 }; 1203 1204 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1205 for (auto &MBB : *this) { 1206 for (auto &MI : MBB) { 1207 if (!MI.isDebugRef() || !MI.getDebugOperand(0).isReg()) 1208 continue; 1209 1210 Register Reg = MI.getDebugOperand(0).getReg(); 1211 1212 // Some vregs can be deleted as redundant in the meantime. Mark those 1213 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1214 // quickly deleted, leaving dangling references to vregs with no def. 1215 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1216 MakeUndefDbgValue(MI); 1217 continue; 1218 } 1219 1220 assert(Reg.isVirtual()); 1221 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1222 1223 // If we've found a copy-like instruction, follow it back to the 1224 // instruction that defines the source value, see salvageCopySSA docs 1225 // for why this is important. 1226 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1227 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1228 MI.getDebugOperand(0).ChangeToDbgInstrRef(Result.first, Result.second); 1229 } else { 1230 // Otherwise, identify the operand number that the VReg refers to. 1231 unsigned OperandIdx = 0; 1232 for (const auto &MO : DefMI.operands()) { 1233 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1234 break; 1235 ++OperandIdx; 1236 } 1237 assert(OperandIdx < DefMI.getNumOperands()); 1238 1239 // Morph this instr ref to point at the given instruction and operand. 1240 unsigned ID = DefMI.getDebugInstrNum(); 1241 MI.getDebugOperand(0).ChangeToDbgInstrRef(ID, OperandIdx); 1242 } 1243 } 1244 } 1245 } 1246 1247 bool MachineFunction::useDebugInstrRef() const { 1248 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1249 // have optimized code inlined into this unoptimized code, however with 1250 // fewer and less aggressive optimizations happening, coverage and accuracy 1251 // should not suffer. 1252 if (getTarget().getOptLevel() == CodeGenOpt::None) 1253 return false; 1254 1255 // Don't use instr-ref if this function is marked optnone. 1256 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1257 return false; 1258 1259 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 // Use one million as a high / reserved number. 1266 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1267 1268 /// \} 1269 1270 //===----------------------------------------------------------------------===// 1271 // MachineJumpTableInfo implementation 1272 //===----------------------------------------------------------------------===// 1273 1274 /// Return the size of each entry in the jump table. 1275 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1276 // The size of a jump table entry is 4 bytes unless the entry is just the 1277 // address of a block, in which case it is the pointer size. 1278 switch (getEntryKind()) { 1279 case MachineJumpTableInfo::EK_BlockAddress: 1280 return TD.getPointerSize(); 1281 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1282 return 8; 1283 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1284 case MachineJumpTableInfo::EK_LabelDifference32: 1285 case MachineJumpTableInfo::EK_Custom32: 1286 return 4; 1287 case MachineJumpTableInfo::EK_Inline: 1288 return 0; 1289 } 1290 llvm_unreachable("Unknown jump table encoding!"); 1291 } 1292 1293 /// Return the alignment of each entry in the jump table. 1294 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1295 // The alignment of a jump table entry is the alignment of int32 unless the 1296 // entry is just the address of a block, in which case it is the pointer 1297 // alignment. 1298 switch (getEntryKind()) { 1299 case MachineJumpTableInfo::EK_BlockAddress: 1300 return TD.getPointerABIAlignment(0).value(); 1301 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1302 return TD.getABIIntegerTypeAlignment(64).value(); 1303 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1304 case MachineJumpTableInfo::EK_LabelDifference32: 1305 case MachineJumpTableInfo::EK_Custom32: 1306 return TD.getABIIntegerTypeAlignment(32).value(); 1307 case MachineJumpTableInfo::EK_Inline: 1308 return 1; 1309 } 1310 llvm_unreachable("Unknown jump table encoding!"); 1311 } 1312 1313 /// Create a new jump table entry in the jump table info. 1314 unsigned MachineJumpTableInfo::createJumpTableIndex( 1315 const std::vector<MachineBasicBlock*> &DestBBs) { 1316 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1317 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1318 return JumpTables.size()-1; 1319 } 1320 1321 /// If Old is the target of any jump tables, update the jump tables to branch 1322 /// to New instead. 1323 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1324 MachineBasicBlock *New) { 1325 assert(Old != New && "Not making a change?"); 1326 bool MadeChange = false; 1327 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1328 ReplaceMBBInJumpTable(i, Old, New); 1329 return MadeChange; 1330 } 1331 1332 /// If MBB is present in any jump tables, remove it. 1333 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1334 bool MadeChange = false; 1335 for (MachineJumpTableEntry &JTE : JumpTables) { 1336 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1337 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1338 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1339 } 1340 return MadeChange; 1341 } 1342 1343 /// If Old is a target of the jump tables, update the jump table to branch to 1344 /// New instead. 1345 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1346 MachineBasicBlock *Old, 1347 MachineBasicBlock *New) { 1348 assert(Old != New && "Not making a change?"); 1349 bool MadeChange = false; 1350 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1351 for (MachineBasicBlock *&MBB : JTE.MBBs) 1352 if (MBB == Old) { 1353 MBB = New; 1354 MadeChange = true; 1355 } 1356 return MadeChange; 1357 } 1358 1359 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1360 if (JumpTables.empty()) return; 1361 1362 OS << "Jump Tables:\n"; 1363 1364 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1365 OS << printJumpTableEntryReference(i) << ':'; 1366 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1367 OS << ' ' << printMBBReference(*MBB); 1368 if (i != e) 1369 OS << '\n'; 1370 } 1371 1372 OS << '\n'; 1373 } 1374 1375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1376 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1377 #endif 1378 1379 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1380 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1381 } 1382 1383 //===----------------------------------------------------------------------===// 1384 // MachineConstantPool implementation 1385 //===----------------------------------------------------------------------===// 1386 1387 void MachineConstantPoolValue::anchor() {} 1388 1389 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1390 return DL.getTypeAllocSize(Ty); 1391 } 1392 1393 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1394 if (isMachineConstantPoolEntry()) 1395 return Val.MachineCPVal->getSizeInBytes(DL); 1396 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1397 } 1398 1399 bool MachineConstantPoolEntry::needsRelocation() const { 1400 if (isMachineConstantPoolEntry()) 1401 return true; 1402 return Val.ConstVal->needsDynamicRelocation(); 1403 } 1404 1405 SectionKind 1406 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1407 if (needsRelocation()) 1408 return SectionKind::getReadOnlyWithRel(); 1409 switch (getSizeInBytes(*DL)) { 1410 case 4: 1411 return SectionKind::getMergeableConst4(); 1412 case 8: 1413 return SectionKind::getMergeableConst8(); 1414 case 16: 1415 return SectionKind::getMergeableConst16(); 1416 case 32: 1417 return SectionKind::getMergeableConst32(); 1418 default: 1419 return SectionKind::getReadOnly(); 1420 } 1421 } 1422 1423 MachineConstantPool::~MachineConstantPool() { 1424 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1425 // so keep track of which we've deleted to avoid double deletions. 1426 DenseSet<MachineConstantPoolValue*> Deleted; 1427 for (const MachineConstantPoolEntry &C : Constants) 1428 if (C.isMachineConstantPoolEntry()) { 1429 Deleted.insert(C.Val.MachineCPVal); 1430 delete C.Val.MachineCPVal; 1431 } 1432 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1433 if (Deleted.count(CPV) == 0) 1434 delete CPV; 1435 } 1436 } 1437 1438 /// Test whether the given two constants can be allocated the same constant pool 1439 /// entry. 1440 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1441 const DataLayout &DL) { 1442 // Handle the trivial case quickly. 1443 if (A == B) return true; 1444 1445 // If they have the same type but weren't the same constant, quickly 1446 // reject them. 1447 if (A->getType() == B->getType()) return false; 1448 1449 // We can't handle structs or arrays. 1450 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1451 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1452 return false; 1453 1454 // For now, only support constants with the same size. 1455 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1456 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1457 return false; 1458 1459 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1460 1461 // Try constant folding a bitcast of both instructions to an integer. If we 1462 // get two identical ConstantInt's, then we are good to share them. We use 1463 // the constant folding APIs to do this so that we get the benefit of 1464 // DataLayout. 1465 if (isa<PointerType>(A->getType())) 1466 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1467 const_cast<Constant *>(A), IntTy, DL); 1468 else if (A->getType() != IntTy) 1469 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1470 IntTy, DL); 1471 if (isa<PointerType>(B->getType())) 1472 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1473 const_cast<Constant *>(B), IntTy, DL); 1474 else if (B->getType() != IntTy) 1475 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1476 IntTy, DL); 1477 1478 return A == B; 1479 } 1480 1481 /// Create a new entry in the constant pool or return an existing one. 1482 /// User must specify the log2 of the minimum required alignment for the object. 1483 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1484 Align Alignment) { 1485 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1486 1487 // Check to see if we already have this constant. 1488 // 1489 // FIXME, this could be made much more efficient for large constant pools. 1490 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1491 if (!Constants[i].isMachineConstantPoolEntry() && 1492 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1493 if (Constants[i].getAlign() < Alignment) 1494 Constants[i].Alignment = Alignment; 1495 return i; 1496 } 1497 1498 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1499 return Constants.size()-1; 1500 } 1501 1502 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1503 Align Alignment) { 1504 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1505 1506 // Check to see if we already have this constant. 1507 // 1508 // FIXME, this could be made much more efficient for large constant pools. 1509 int Idx = V->getExistingMachineCPValue(this, Alignment); 1510 if (Idx != -1) { 1511 MachineCPVsSharingEntries.insert(V); 1512 return (unsigned)Idx; 1513 } 1514 1515 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1516 return Constants.size()-1; 1517 } 1518 1519 void MachineConstantPool::print(raw_ostream &OS) const { 1520 if (Constants.empty()) return; 1521 1522 OS << "Constant Pool:\n"; 1523 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1524 OS << " cp#" << i << ": "; 1525 if (Constants[i].isMachineConstantPoolEntry()) 1526 Constants[i].Val.MachineCPVal->print(OS); 1527 else 1528 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1529 OS << ", align=" << Constants[i].getAlign().value(); 1530 OS << "\n"; 1531 } 1532 } 1533 1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1535 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1536 #endif 1537