xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision de209fa11b5455155228bcdba012b6074388b917)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #include "LiveDebugValues/LiveDebugValues.h"
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "codegen"
83 
84 static cl::opt<unsigned> AlignAllFunctions(
85     "align-all-functions",
86     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87              "means align on 16B boundaries)."),
88     cl::init(0), cl::Hidden);
89 
90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91   using P = MachineFunctionProperties::Property;
92 
93   // clang-format off
94   switch(Prop) {
95   case P::FailedISel: return "FailedISel";
96   case P::IsSSA: return "IsSSA";
97   case P::Legalized: return "Legalized";
98   case P::NoPHIs: return "NoPHIs";
99   case P::NoVRegs: return "NoVRegs";
100   case P::RegBankSelected: return "RegBankSelected";
101   case P::Selected: return "Selected";
102   case P::TracksLiveness: return "TracksLiveness";
103   case P::TiedOpsRewritten: return "TiedOpsRewritten";
104   case P::FailsVerification: return "FailsVerification";
105   case P::FailedRegAlloc: return "FailedRegAlloc";
106   case P::TracksDebugUserValues: return "TracksDebugUserValues";
107   }
108   // clang-format on
109   llvm_unreachable("Invalid machine function property");
110 }
111 
112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113   if (!F.hasFnAttribute(Attribute::SafeStack))
114     return;
115 
116   auto *Existing =
117       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118 
119   if (!Existing || Existing->getNumOperands() != 2)
120     return;
121 
122   auto *MetadataName = "unsafe-stack-size";
123   if (auto &N = Existing->getOperand(0)) {
124     if (N.equalsStr(MetadataName)) {
125       if (auto &Op = Existing->getOperand(1)) {
126         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127         FrameInfo.setUnsafeStackSize(Val);
128       }
129     }
130   }
131 }
132 
133 // Pin the vtable to this file.
134 void MachineFunction::Delegate::anchor() {}
135 
136 void MachineFunctionProperties::print(raw_ostream &OS) const {
137   const char *Separator = "";
138   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139     if (!Properties[I])
140       continue;
141     OS << Separator << getPropertyName(static_cast<Property>(I));
142     Separator = ", ";
143   }
144 }
145 
146 //===----------------------------------------------------------------------===//
147 // MachineFunction implementation
148 //===----------------------------------------------------------------------===//
149 
150 // Out-of-line virtual method.
151 MachineFunctionInfo::~MachineFunctionInfo() = default;
152 
153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154   MBB->getParent()->deleteMachineBasicBlock(MBB);
155 }
156 
157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
158                                            const Function &F) {
159   if (auto MA = F.getFnStackAlign())
160     return *MA;
161   return STI->getFrameLowering()->getStackAlign();
162 }
163 
164 MachineFunction::MachineFunction(Function &F, const TargetMachine &Target,
165                                  const TargetSubtargetInfo &STI, MCContext &Ctx,
166                                  unsigned FunctionNum)
167     : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
168   FunctionNumber = FunctionNum;
169   init();
170 }
171 
172 void MachineFunction::handleInsertion(MachineInstr &MI) {
173   if (TheDelegate)
174     TheDelegate->MF_HandleInsertion(MI);
175 }
176 
177 void MachineFunction::handleRemoval(MachineInstr &MI) {
178   if (TheDelegate)
179     TheDelegate->MF_HandleRemoval(MI);
180 }
181 
182 void MachineFunction::handleChangeDesc(MachineInstr &MI,
183                                        const MCInstrDesc &TID) {
184   if (TheDelegate)
185     TheDelegate->MF_HandleChangeDesc(MI, TID);
186 }
187 
188 void MachineFunction::init() {
189   // Assume the function starts in SSA form with correct liveness.
190   Properties.set(MachineFunctionProperties::Property::IsSSA);
191   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
192   if (STI->getRegisterInfo())
193     RegInfo = new (Allocator) MachineRegisterInfo(this);
194   else
195     RegInfo = nullptr;
196 
197   MFInfo = nullptr;
198 
199   // We can realign the stack if the target supports it and the user hasn't
200   // explicitly asked us not to.
201   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202                       !F.hasFnAttribute("no-realign-stack");
203   bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) ||
204                         F.hasFnAttribute("stackrealign");
205   FrameInfo = new (Allocator) MachineFrameInfo(
206       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
207       /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
208 
209   setUnsafeStackSize(F, *FrameInfo);
210 
211   if (F.hasFnAttribute(Attribute::StackAlignment))
212     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
213 
214   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
215   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
216 
217   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
218   // FIXME: Use Function::hasOptSize().
219   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
220     Alignment = std::max(Alignment,
221                          STI->getTargetLowering()->getPrefFunctionAlignment());
222 
223   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
224   // to load a type hash before the function label. Ensure functions are aligned
225   // by a least 4 to avoid unaligned access, which is especially important for
226   // -mno-unaligned-access.
227   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
228       F.getMetadata(LLVMContext::MD_kcfi_type))
229     Alignment = std::max(Alignment, Align(4));
230 
231   if (AlignAllFunctions)
232     Alignment = Align(1ULL << AlignAllFunctions);
233 
234   JumpTableInfo = nullptr;
235 
236   if (isFuncletEHPersonality(classifyEHPersonality(
237           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
238     WinEHInfo = new (Allocator) WinEHFuncInfo();
239   }
240 
241   if (isScopedEHPersonality(classifyEHPersonality(
242           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
243     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
244   }
245 
246   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
247          "Can't create a MachineFunction using a Module with a "
248          "Target-incompatible DataLayout attached\n");
249 
250   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
251 }
252 
253 void MachineFunction::initTargetMachineFunctionInfo(
254     const TargetSubtargetInfo &STI) {
255   assert(!MFInfo && "MachineFunctionInfo already set");
256   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
257 }
258 
259 MachineFunction::~MachineFunction() {
260   clear();
261 }
262 
263 void MachineFunction::clear() {
264   Properties.reset();
265   // Don't call destructors on MachineInstr and MachineOperand. All of their
266   // memory comes from the BumpPtrAllocator which is about to be purged.
267   //
268   // Do call MachineBasicBlock destructors, it contains std::vectors.
269   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
270     I->Insts.clearAndLeakNodesUnsafely();
271   MBBNumbering.clear();
272 
273   InstructionRecycler.clear(Allocator);
274   OperandRecycler.clear(Allocator);
275   BasicBlockRecycler.clear(Allocator);
276   CodeViewAnnotations.clear();
277   VariableDbgInfos.clear();
278   if (RegInfo) {
279     RegInfo->~MachineRegisterInfo();
280     Allocator.Deallocate(RegInfo);
281   }
282   if (MFInfo) {
283     MFInfo->~MachineFunctionInfo();
284     Allocator.Deallocate(MFInfo);
285   }
286 
287   FrameInfo->~MachineFrameInfo();
288   Allocator.Deallocate(FrameInfo);
289 
290   ConstantPool->~MachineConstantPool();
291   Allocator.Deallocate(ConstantPool);
292 
293   if (JumpTableInfo) {
294     JumpTableInfo->~MachineJumpTableInfo();
295     Allocator.Deallocate(JumpTableInfo);
296   }
297 
298   if (WinEHInfo) {
299     WinEHInfo->~WinEHFuncInfo();
300     Allocator.Deallocate(WinEHInfo);
301   }
302 
303   if (WasmEHInfo) {
304     WasmEHInfo->~WasmEHFuncInfo();
305     Allocator.Deallocate(WasmEHInfo);
306   }
307 }
308 
309 const DataLayout &MachineFunction::getDataLayout() const {
310   return F.getDataLayout();
311 }
312 
313 /// Get the JumpTableInfo for this function.
314 /// If it does not already exist, allocate one.
315 MachineJumpTableInfo *MachineFunction::
316 getOrCreateJumpTableInfo(unsigned EntryKind) {
317   if (JumpTableInfo) return JumpTableInfo;
318 
319   JumpTableInfo = new (Allocator)
320     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
321   return JumpTableInfo;
322 }
323 
324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
325   return F.getDenormalMode(FPType);
326 }
327 
328 /// Should we be emitting segmented stack stuff for the function
329 bool MachineFunction::shouldSplitStack() const {
330   return getFunction().hasFnAttribute("split-stack");
331 }
332 
333 [[nodiscard]] unsigned
334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
335   FrameInstructions.push_back(Inst);
336   return FrameInstructions.size() - 1;
337 }
338 
339 /// This discards all of the MachineBasicBlock numbers and recomputes them.
340 /// This guarantees that the MBB numbers are sequential, dense, and match the
341 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
342 /// is specified, only that block and those after it are renumbered.
343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
344   if (empty()) { MBBNumbering.clear(); return; }
345   MachineFunction::iterator MBBI, E = end();
346   if (MBB == nullptr)
347     MBBI = begin();
348   else
349     MBBI = MBB->getIterator();
350 
351   // Figure out the block number this should have.
352   unsigned BlockNo = 0;
353   if (MBBI != begin())
354     BlockNo = std::prev(MBBI)->getNumber() + 1;
355 
356   for (; MBBI != E; ++MBBI, ++BlockNo) {
357     if (MBBI->getNumber() != (int)BlockNo) {
358       // Remove use of the old number.
359       if (MBBI->getNumber() != -1) {
360         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
361                "MBB number mismatch!");
362         MBBNumbering[MBBI->getNumber()] = nullptr;
363       }
364 
365       // If BlockNo is already taken, set that block's number to -1.
366       if (MBBNumbering[BlockNo])
367         MBBNumbering[BlockNo]->setNumber(-1);
368 
369       MBBNumbering[BlockNo] = &*MBBI;
370       MBBI->setNumber(BlockNo);
371     }
372   }
373 
374   // Okay, all the blocks are renumbered.  If we have compactified the block
375   // numbering, shrink MBBNumbering now.
376   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
377   MBBNumbering.resize(BlockNo);
378   MBBNumberingEpoch++;
379 }
380 
381 int64_t MachineFunction::estimateFunctionSizeInBytes() {
382   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
383   const Align FunctionAlignment = getAlignment();
384   MachineFunction::iterator MBBI = begin(), E = end();
385   /// Offset - Distance from the beginning of the function to the end
386   /// of the basic block.
387   int64_t Offset = 0;
388 
389   for (; MBBI != E; ++MBBI) {
390     const Align Alignment = MBBI->getAlignment();
391     int64_t BlockSize = 0;
392 
393     for (auto &MI : *MBBI) {
394       BlockSize += TII.getInstSizeInBytes(MI);
395     }
396 
397     int64_t OffsetBB;
398     if (Alignment <= FunctionAlignment) {
399       OffsetBB = alignTo(Offset, Alignment);
400     } else {
401       // The alignment of this MBB is larger than the function's alignment, so
402       // we can't tell whether or not it will insert nops. Assume that it will.
403       OffsetBB = alignTo(Offset, Alignment) + Alignment.value() -
404                  FunctionAlignment.value();
405     }
406     Offset = OffsetBB + BlockSize;
407   }
408 
409   return Offset;
410 }
411 
412 /// This method iterates over the basic blocks and assigns their IsBeginSection
413 /// and IsEndSection fields. This must be called after MBB layout is finalized
414 /// and the SectionID's are assigned to MBBs.
415 void MachineFunction::assignBeginEndSections() {
416   front().setIsBeginSection();
417   auto CurrentSectionID = front().getSectionID();
418   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
419     if (MBBI->getSectionID() == CurrentSectionID)
420       continue;
421     MBBI->setIsBeginSection();
422     std::prev(MBBI)->setIsEndSection();
423     CurrentSectionID = MBBI->getSectionID();
424   }
425   back().setIsEndSection();
426 }
427 
428 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
429 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
430                                                   DebugLoc DL,
431                                                   bool NoImplicit) {
432   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
433       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
434 }
435 
436 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
437 /// identical in all ways except the instruction has no parent, prev, or next.
438 MachineInstr *
439 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
440   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
441              MachineInstr(*this, *Orig);
442 }
443 
444 MachineInstr &MachineFunction::cloneMachineInstrBundle(
445     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
446     const MachineInstr &Orig) {
447   MachineInstr *FirstClone = nullptr;
448   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
449   while (true) {
450     MachineInstr *Cloned = CloneMachineInstr(&*I);
451     MBB.insert(InsertBefore, Cloned);
452     if (FirstClone == nullptr) {
453       FirstClone = Cloned;
454     } else {
455       Cloned->bundleWithPred();
456     }
457 
458     if (!I->isBundledWithSucc())
459       break;
460     ++I;
461   }
462   // Copy over call info to the cloned instruction if needed. If Orig is in
463   // a bundle, copyAdditionalCallInfo takes care of finding the call instruction
464   // in the bundle.
465   if (Orig.shouldUpdateAdditionalCallInfo())
466     copyAdditionalCallInfo(&Orig, FirstClone);
467   return *FirstClone;
468 }
469 
470 /// Delete the given MachineInstr.
471 ///
472 /// This function also serves as the MachineInstr destructor - the real
473 /// ~MachineInstr() destructor must be empty.
474 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
475   // Verify that a call site info is at valid state. This assertion should
476   // be triggered during the implementation of support for the
477   // call site info of a new architecture. If the assertion is triggered,
478   // back trace will tell where to insert a call to updateCallSiteInfo().
479   assert((!MI->isCandidateForAdditionalCallInfo() ||
480           !CallSitesInfo.contains(MI)) &&
481          "Call site info was not updated!");
482   // Verify that the "called globals" info is in a valid state.
483   assert((!MI->isCandidateForAdditionalCallInfo() ||
484           !CalledGlobalsInfo.contains(MI)) &&
485          "Called globals info was not updated!");
486   // Strip it for parts. The operand array and the MI object itself are
487   // independently recyclable.
488   if (MI->Operands)
489     deallocateOperandArray(MI->CapOperands, MI->Operands);
490   // Don't call ~MachineInstr() which must be trivial anyway because
491   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
492   // destructors.
493   InstructionRecycler.Deallocate(Allocator, MI);
494 }
495 
496 /// Allocate a new MachineBasicBlock. Use this instead of
497 /// `new MachineBasicBlock'.
498 MachineBasicBlock *
499 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
500                                          std::optional<UniqueBBID> BBID) {
501   MachineBasicBlock *MBB =
502       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
503           MachineBasicBlock(*this, BB);
504   // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
505   // allow robust mapping of profiles to basic blocks.
506   if (Target.Options.BBAddrMap ||
507       Target.getBBSectionsType() == BasicBlockSection::List)
508     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
509   return MBB;
510 }
511 
512 /// Delete the given MachineBasicBlock.
513 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
514   assert(MBB->getParent() == this && "MBB parent mismatch!");
515   // Clean up any references to MBB in jump tables before deleting it.
516   if (JumpTableInfo)
517     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
518   MBB->~MachineBasicBlock();
519   BasicBlockRecycler.Deallocate(Allocator, MBB);
520 }
521 
522 MachineMemOperand *MachineFunction::getMachineMemOperand(
523     MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
524     Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
525     SyncScope::ID SSID, AtomicOrdering Ordering,
526     AtomicOrdering FailureOrdering) {
527   assert((!Size.hasValue() ||
528           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
529          "Unexpected an unknown size to be represented using "
530          "LocationSize::beforeOrAfter()");
531   return new (Allocator)
532       MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
533                         Ordering, FailureOrdering);
534 }
535 
536 MachineMemOperand *MachineFunction::getMachineMemOperand(
537     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
538     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
539     SyncScope::ID SSID, AtomicOrdering Ordering,
540     AtomicOrdering FailureOrdering) {
541   return new (Allocator)
542       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
543                         Ordering, FailureOrdering);
544 }
545 
546 MachineMemOperand *
547 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
548                                       const MachinePointerInfo &PtrInfo,
549                                       LocationSize Size) {
550   assert((!Size.hasValue() ||
551           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
552          "Unexpected an unknown size to be represented using "
553          "LocationSize::beforeOrAfter()");
554   return new (Allocator)
555       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
556                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
557                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
558 }
559 
560 MachineMemOperand *MachineFunction::getMachineMemOperand(
561     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
562   return new (Allocator)
563       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
564                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
565                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
566 }
567 
568 MachineMemOperand *
569 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
570                                       int64_t Offset, LLT Ty) {
571   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
572 
573   // If there is no pointer value, the offset isn't tracked so we need to adjust
574   // the base alignment.
575   Align Alignment = PtrInfo.V.isNull()
576                         ? commonAlignment(MMO->getBaseAlign(), Offset)
577                         : MMO->getBaseAlign();
578 
579   // Do not preserve ranges, since we don't necessarily know what the high bits
580   // are anymore.
581   return new (Allocator) MachineMemOperand(
582       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
583       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
584       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
585 }
586 
587 MachineMemOperand *
588 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
589                                       const AAMDNodes &AAInfo) {
590   MachinePointerInfo MPI = MMO->getValue() ?
591              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
592              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
593 
594   return new (Allocator) MachineMemOperand(
595       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
596       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
597       MMO->getFailureOrdering());
598 }
599 
600 MachineMemOperand *
601 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
602                                       MachineMemOperand::Flags Flags) {
603   return new (Allocator) MachineMemOperand(
604       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
605       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
606       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
607 }
608 
609 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
610     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
611     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
612     uint32_t CFIType, MDNode *MMRAs) {
613   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
614                                          PostInstrSymbol, HeapAllocMarker,
615                                          PCSections, CFIType, MMRAs);
616 }
617 
618 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
619   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
620   llvm::copy(Name, Dest);
621   Dest[Name.size()] = 0;
622   return Dest;
623 }
624 
625 uint32_t *MachineFunction::allocateRegMask() {
626   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
627   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
628   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
629   memset(Mask, 0, Size * sizeof(Mask[0]));
630   return Mask;
631 }
632 
633 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
634   int* AllocMask = Allocator.Allocate<int>(Mask.size());
635   copy(Mask, AllocMask);
636   return {AllocMask, Mask.size()};
637 }
638 
639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
640 LLVM_DUMP_METHOD void MachineFunction::dump() const {
641   print(dbgs());
642 }
643 #endif
644 
645 StringRef MachineFunction::getName() const {
646   return getFunction().getName();
647 }
648 
649 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
650   OS << "# Machine code for function " << getName() << ": ";
651   getProperties().print(OS);
652   OS << '\n';
653 
654   // Print Frame Information
655   FrameInfo->print(*this, OS);
656 
657   // Print JumpTable Information
658   if (JumpTableInfo)
659     JumpTableInfo->print(OS);
660 
661   // Print Constant Pool
662   ConstantPool->print(OS);
663 
664   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
665 
666   if (RegInfo && !RegInfo->livein_empty()) {
667     OS << "Function Live Ins: ";
668     for (MachineRegisterInfo::livein_iterator
669          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
670       OS << printReg(I->first, TRI);
671       if (I->second)
672         OS << " in " << printReg(I->second, TRI);
673       if (std::next(I) != E)
674         OS << ", ";
675     }
676     OS << '\n';
677   }
678 
679   ModuleSlotTracker MST(getFunction().getParent());
680   MST.incorporateFunction(getFunction());
681   for (const auto &BB : *this) {
682     OS << '\n';
683     // If we print the whole function, print it at its most verbose level.
684     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
685   }
686 
687   OS << "\n# End machine code for function " << getName() << ".\n\n";
688 }
689 
690 /// True if this function needs frame moves for debug or exceptions.
691 bool MachineFunction::needsFrameMoves() const {
692   // TODO: Ideally, what we'd like is to have a switch that allows emitting
693   // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
694   // under this switch, we'd like .debug_frame to be precise when using -g. At
695   // this moment, there's no way to specify that some CFI directives go into
696   // .eh_frame only, while others go into .debug_frame only.
697   return getTarget().Options.ForceDwarfFrameSection ||
698          F.needsUnwindTableEntry() ||
699          !F.getParent()->debug_compile_units().empty();
700 }
701 
702 namespace llvm {
703 
704   template<>
705   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
706     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
707 
708     static std::string getGraphName(const MachineFunction *F) {
709       return ("CFG for '" + F->getName() + "' function").str();
710     }
711 
712     std::string getNodeLabel(const MachineBasicBlock *Node,
713                              const MachineFunction *Graph) {
714       std::string OutStr;
715       {
716         raw_string_ostream OSS(OutStr);
717 
718         if (isSimple()) {
719           OSS << printMBBReference(*Node);
720           if (const BasicBlock *BB = Node->getBasicBlock())
721             OSS << ": " << BB->getName();
722         } else
723           Node->print(OSS);
724       }
725 
726       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
727 
728       // Process string output to make it nicer...
729       for (unsigned i = 0; i != OutStr.length(); ++i)
730         if (OutStr[i] == '\n') {                            // Left justify
731           OutStr[i] = '\\';
732           OutStr.insert(OutStr.begin()+i+1, 'l');
733         }
734       return OutStr;
735     }
736   };
737 
738 } // end namespace llvm
739 
740 void MachineFunction::viewCFG() const
741 {
742 #ifndef NDEBUG
743   ViewGraph(this, "mf" + getName());
744 #else
745   errs() << "MachineFunction::viewCFG is only available in debug builds on "
746          << "systems with Graphviz or gv!\n";
747 #endif // NDEBUG
748 }
749 
750 void MachineFunction::viewCFGOnly() const
751 {
752 #ifndef NDEBUG
753   ViewGraph(this, "mf" + getName(), true);
754 #else
755   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
756          << "systems with Graphviz or gv!\n";
757 #endif // NDEBUG
758 }
759 
760 /// Add the specified physical register as a live-in value and
761 /// create a corresponding virtual register for it.
762 Register MachineFunction::addLiveIn(MCRegister PReg,
763                                     const TargetRegisterClass *RC) {
764   MachineRegisterInfo &MRI = getRegInfo();
765   Register VReg = MRI.getLiveInVirtReg(PReg);
766   if (VReg) {
767     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
768     (void)VRegRC;
769     // A physical register can be added several times.
770     // Between two calls, the register class of the related virtual register
771     // may have been constrained to match some operation constraints.
772     // In that case, check that the current register class includes the
773     // physical register and is a sub class of the specified RC.
774     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
775                              RC->hasSubClassEq(VRegRC))) &&
776             "Register class mismatch!");
777     return VReg;
778   }
779   VReg = MRI.createVirtualRegister(RC);
780   MRI.addLiveIn(PReg, VReg);
781   return VReg;
782 }
783 
784 /// Return the MCSymbol for the specified non-empty jump table.
785 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
786 /// normal 'L' label is returned.
787 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
788                                         bool isLinkerPrivate) const {
789   const DataLayout &DL = getDataLayout();
790   assert(JumpTableInfo && "No jump tables");
791   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
792 
793   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
794                                      : DL.getPrivateGlobalPrefix();
795   SmallString<60> Name;
796   raw_svector_ostream(Name)
797     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
798   return Ctx.getOrCreateSymbol(Name);
799 }
800 
801 /// Return a function-local symbol to represent the PIC base.
802 MCSymbol *MachineFunction::getPICBaseSymbol() const {
803   const DataLayout &DL = getDataLayout();
804   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
805                                Twine(getFunctionNumber()) + "$pb");
806 }
807 
808 /// \name Exception Handling
809 /// \{
810 
811 LandingPadInfo &
812 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
813   unsigned N = LandingPads.size();
814   for (unsigned i = 0; i < N; ++i) {
815     LandingPadInfo &LP = LandingPads[i];
816     if (LP.LandingPadBlock == LandingPad)
817       return LP;
818   }
819 
820   LandingPads.push_back(LandingPadInfo(LandingPad));
821   return LandingPads[N];
822 }
823 
824 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
825                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
826   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
827   LP.BeginLabels.push_back(BeginLabel);
828   LP.EndLabels.push_back(EndLabel);
829 }
830 
831 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
832   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
833   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
834   LP.LandingPadLabel = LandingPadLabel;
835 
836   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
837   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
838     // If there's no typeid list specified, then "cleanup" is implicit.
839     // Otherwise, id 0 is reserved for the cleanup action.
840     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
841       LP.TypeIds.push_back(0);
842 
843     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
844     //        correct, but we need to do it this way because of how the DWARF EH
845     //        emitter processes the clauses.
846     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
847       Value *Val = LPI->getClause(I - 1);
848       if (LPI->isCatch(I - 1)) {
849         LP.TypeIds.push_back(
850             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
851       } else {
852         // Add filters in a list.
853         auto *CVal = cast<Constant>(Val);
854         SmallVector<unsigned, 4> FilterList;
855         for (const Use &U : CVal->operands())
856           FilterList.push_back(
857               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
858 
859         LP.TypeIds.push_back(getFilterIDFor(FilterList));
860       }
861     }
862 
863   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
864     for (unsigned I = CPI->arg_size(); I != 0; --I) {
865       auto *TypeInfo =
866           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
867       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
868     }
869 
870   } else {
871     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
872   }
873 
874   return LandingPadLabel;
875 }
876 
877 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
878                                             ArrayRef<unsigned> Sites) {
879   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
880 }
881 
882 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
883   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
884     if (TypeInfos[i] == TI) return i + 1;
885 
886   TypeInfos.push_back(TI);
887   return TypeInfos.size();
888 }
889 
890 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
891   // If the new filter coincides with the tail of an existing filter, then
892   // re-use the existing filter.  Folding filters more than this requires
893   // re-ordering filters and/or their elements - probably not worth it.
894   for (unsigned i : FilterEnds) {
895     unsigned j = TyIds.size();
896 
897     while (i && j)
898       if (FilterIds[--i] != TyIds[--j])
899         goto try_next;
900 
901     if (!j)
902       // The new filter coincides with range [i, end) of the existing filter.
903       return -(1 + i);
904 
905 try_next:;
906   }
907 
908   // Add the new filter.
909   int FilterID = -(1 + FilterIds.size());
910   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
911   llvm::append_range(FilterIds, TyIds);
912   FilterEnds.push_back(FilterIds.size());
913   FilterIds.push_back(0); // terminator
914   return FilterID;
915 }
916 
917 MachineFunction::CallSiteInfoMap::iterator
918 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
919   assert(MI->isCandidateForAdditionalCallInfo() &&
920          "Call site info refers only to call (MI) candidates");
921 
922   if (!Target.Options.EmitCallSiteInfo)
923     return CallSitesInfo.end();
924   return CallSitesInfo.find(MI);
925 }
926 
927 /// Return the call machine instruction or find a call within bundle.
928 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
929   if (!MI->isBundle())
930     return MI;
931 
932   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
933                                     getBundleEnd(MI->getIterator())))
934     if (BMI.isCandidateForAdditionalCallInfo())
935       return &BMI;
936 
937   llvm_unreachable("Unexpected bundle without a call site candidate");
938 }
939 
940 void MachineFunction::eraseAdditionalCallInfo(const MachineInstr *MI) {
941   assert(MI->shouldUpdateAdditionalCallInfo() &&
942          "Call info refers only to call (MI) candidates or "
943          "candidates inside bundles");
944 
945   const MachineInstr *CallMI = getCallInstr(MI);
946 
947   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
948   if (CSIt != CallSitesInfo.end())
949     CallSitesInfo.erase(CSIt);
950 
951   CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(CallMI);
952   if (CGIt != CalledGlobalsInfo.end())
953     CalledGlobalsInfo.erase(CGIt);
954 }
955 
956 void MachineFunction::copyAdditionalCallInfo(const MachineInstr *Old,
957                                              const MachineInstr *New) {
958   assert(Old->shouldUpdateAdditionalCallInfo() &&
959          "Call info refers only to call (MI) candidates or "
960          "candidates inside bundles");
961 
962   if (!New->isCandidateForAdditionalCallInfo())
963     return eraseAdditionalCallInfo(Old);
964 
965   const MachineInstr *OldCallMI = getCallInstr(Old);
966   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
967   if (CSIt != CallSitesInfo.end()) {
968     CallSiteInfo CSInfo = CSIt->second;
969     CallSitesInfo[New] = CSInfo;
970   }
971 
972   CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
973   if (CGIt != CalledGlobalsInfo.end()) {
974     CalledGlobalInfo CGInfo = CGIt->second;
975     CalledGlobalsInfo[New] = CGInfo;
976   }
977 }
978 
979 void MachineFunction::moveAdditionalCallInfo(const MachineInstr *Old,
980                                              const MachineInstr *New) {
981   assert(Old->shouldUpdateAdditionalCallInfo() &&
982          "Call info refers only to call (MI) candidates or "
983          "candidates inside bundles");
984 
985   if (!New->isCandidateForAdditionalCallInfo())
986     return eraseAdditionalCallInfo(Old);
987 
988   const MachineInstr *OldCallMI = getCallInstr(Old);
989   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
990   if (CSIt != CallSitesInfo.end()) {
991     CallSiteInfo CSInfo = std::move(CSIt->second);
992     CallSitesInfo.erase(CSIt);
993     CallSitesInfo[New] = CSInfo;
994   }
995 
996   CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
997   if (CGIt != CalledGlobalsInfo.end()) {
998     CalledGlobalInfo CGInfo = std::move(CGIt->second);
999     CalledGlobalsInfo.erase(CGIt);
1000     CalledGlobalsInfo[New] = CGInfo;
1001   }
1002 }
1003 
1004 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
1005   DebugInstrNumberingCount = Num;
1006 }
1007 
1008 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
1009                                                  DebugInstrOperandPair B,
1010                                                  unsigned Subreg) {
1011   // Catch any accidental self-loops.
1012   assert(A.first != B.first);
1013   // Don't allow any substitutions _from_ the memory operand number.
1014   assert(A.second != DebugOperandMemNumber);
1015 
1016   DebugValueSubstitutions.push_back({A, B, Subreg});
1017 }
1018 
1019 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
1020                                                    MachineInstr &New,
1021                                                    unsigned MaxOperand) {
1022   // If the Old instruction wasn't tracked at all, there is no work to do.
1023   unsigned OldInstrNum = Old.peekDebugInstrNum();
1024   if (!OldInstrNum)
1025     return;
1026 
1027   // Iterate over all operands looking for defs to create substitutions for.
1028   // Avoid creating new instr numbers unless we create a new substitution.
1029   // While this has no functional effect, it risks confusing someone reading
1030   // MIR output.
1031   // Examine all the operands, or the first N specified by the caller.
1032   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
1033   for (unsigned int I = 0; I < MaxOperand; ++I) {
1034     const auto &OldMO = Old.getOperand(I);
1035     auto &NewMO = New.getOperand(I);
1036     (void)NewMO;
1037 
1038     if (!OldMO.isReg() || !OldMO.isDef())
1039       continue;
1040     assert(NewMO.isDef());
1041 
1042     unsigned NewInstrNum = New.getDebugInstrNum();
1043     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1044                                std::make_pair(NewInstrNum, I));
1045   }
1046 }
1047 
1048 auto MachineFunction::salvageCopySSA(
1049     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
1050     -> DebugInstrOperandPair {
1051   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1052 
1053   // Check whether this copy-like instruction has already been salvaged into
1054   // an operand pair.
1055   Register Dest;
1056   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1057     Dest = CopyDstSrc->Destination->getReg();
1058   } else {
1059     assert(MI.isSubregToReg());
1060     Dest = MI.getOperand(0).getReg();
1061   }
1062 
1063   auto CacheIt = DbgPHICache.find(Dest);
1064   if (CacheIt != DbgPHICache.end())
1065     return CacheIt->second;
1066 
1067   // Calculate the instruction number to use, or install a DBG_PHI.
1068   auto OperandPair = salvageCopySSAImpl(MI);
1069   DbgPHICache.insert({Dest, OperandPair});
1070   return OperandPair;
1071 }
1072 
1073 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1074     -> DebugInstrOperandPair {
1075   MachineRegisterInfo &MRI = getRegInfo();
1076   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1077   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1078 
1079   // Chase the value read by a copy-like instruction back to the instruction
1080   // that ultimately _defines_ that value. This may pass:
1081   //  * Through multiple intermediate copies, including subregister moves /
1082   //    copies,
1083   //  * Copies from physical registers that must then be traced back to the
1084   //    defining instruction,
1085   //  * Or, physical registers may be live-in to (only) the entry block, which
1086   //    requires a DBG_PHI to be created.
1087   // We can pursue this problem in that order: trace back through copies,
1088   // optionally through a physical register, to a defining instruction. We
1089   // should never move from physreg to vreg. As we're still in SSA form, no need
1090   // to worry about partial definitions of registers.
1091 
1092   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1093   // returns the register read and any subregister identifying which part is
1094   // read.
1095   auto GetRegAndSubreg =
1096       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1097     Register NewReg, OldReg;
1098     unsigned SubReg;
1099     if (Cpy.isCopy()) {
1100       OldReg = Cpy.getOperand(0).getReg();
1101       NewReg = Cpy.getOperand(1).getReg();
1102       SubReg = Cpy.getOperand(1).getSubReg();
1103     } else if (Cpy.isSubregToReg()) {
1104       OldReg = Cpy.getOperand(0).getReg();
1105       NewReg = Cpy.getOperand(2).getReg();
1106       SubReg = Cpy.getOperand(3).getImm();
1107     } else {
1108       auto CopyDetails = *TII.isCopyInstr(Cpy);
1109       const MachineOperand &Src = *CopyDetails.Source;
1110       const MachineOperand &Dest = *CopyDetails.Destination;
1111       OldReg = Dest.getReg();
1112       NewReg = Src.getReg();
1113       SubReg = Src.getSubReg();
1114     }
1115 
1116     return {NewReg, SubReg};
1117   };
1118 
1119   // First seek either the defining instruction, or a copy from a physreg.
1120   // During search, the current state is the current copy instruction, and which
1121   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1122   // deal with those later.
1123   auto State = GetRegAndSubreg(MI);
1124   auto CurInst = MI.getIterator();
1125   SmallVector<unsigned, 4> SubregsSeen;
1126   while (true) {
1127     // If we've found a copy from a physreg, first portion of search is over.
1128     if (!State.first.isVirtual())
1129       break;
1130 
1131     // Record any subregister qualifier.
1132     if (State.second)
1133       SubregsSeen.push_back(State.second);
1134 
1135     assert(MRI.hasOneDef(State.first));
1136     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1137     CurInst = Inst.getIterator();
1138 
1139     // Any non-copy instruction is the defining instruction we're seeking.
1140     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1141       break;
1142     State = GetRegAndSubreg(Inst);
1143   };
1144 
1145   // Helper lambda to apply additional subregister substitutions to a known
1146   // instruction/operand pair. Adds new (fake) substitutions so that we can
1147   // record the subregister. FIXME: this isn't very space efficient if multiple
1148   // values are tracked back through the same copies; cache something later.
1149   auto ApplySubregisters =
1150       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1151     for (unsigned Subreg : reverse(SubregsSeen)) {
1152       // Fetch a new instruction number, not attached to an actual instruction.
1153       unsigned NewInstrNumber = getNewDebugInstrNum();
1154       // Add a substitution from the "new" number to the known one, with a
1155       // qualifying subreg.
1156       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1157       // Return the new number; to find the underlying value, consumers need to
1158       // deal with the qualifying subreg.
1159       P = {NewInstrNumber, 0};
1160     }
1161     return P;
1162   };
1163 
1164   // If we managed to find the defining instruction after COPYs, return an
1165   // instruction / operand pair after adding subregister qualifiers.
1166   if (State.first.isVirtual()) {
1167     // Virtual register def -- we can just look up where this happens.
1168     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1169     for (auto &MO : Inst->all_defs()) {
1170       if (MO.getReg() != State.first)
1171         continue;
1172       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1173     }
1174 
1175     llvm_unreachable("Vreg def with no corresponding operand?");
1176   }
1177 
1178   // Our search ended in a copy from a physreg: walk back up the function
1179   // looking for whatever defines the physreg.
1180   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1181   State = GetRegAndSubreg(*CurInst);
1182   Register RegToSeek = State.first;
1183 
1184   auto RMII = CurInst->getReverseIterator();
1185   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1186   for (auto &ToExamine : PrevInstrs) {
1187     for (auto &MO : ToExamine.all_defs()) {
1188       // Test for operand that defines something aliasing RegToSeek.
1189       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1190         continue;
1191 
1192       return ApplySubregisters(
1193           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1194     }
1195   }
1196 
1197   MachineBasicBlock &InsertBB = *CurInst->getParent();
1198 
1199   // We reached the start of the block before finding a defining instruction.
1200   // There are numerous scenarios where this can happen:
1201   // * Constant physical registers,
1202   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1203   // * Arguments in the entry block,
1204   // * Exception handling landing pads.
1205   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1206   // the variable value at this position, rather than checking it makes sense.
1207 
1208   // Create DBG_PHI for specified physreg.
1209   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1210                          TII.get(TargetOpcode::DBG_PHI));
1211   Builder.addReg(State.first);
1212   unsigned NewNum = getNewDebugInstrNum();
1213   Builder.addImm(NewNum);
1214   return ApplySubregisters({NewNum, 0u});
1215 }
1216 
1217 void MachineFunction::finalizeDebugInstrRefs() {
1218   auto *TII = getSubtarget().getInstrInfo();
1219 
1220   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1221     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1222     MI.setDesc(RefII);
1223     MI.setDebugValueUndef();
1224   };
1225 
1226   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1227   for (auto &MBB : *this) {
1228     for (auto &MI : MBB) {
1229       if (!MI.isDebugRef())
1230         continue;
1231 
1232       bool IsValidRef = true;
1233 
1234       for (MachineOperand &MO : MI.debug_operands()) {
1235         if (!MO.isReg())
1236           continue;
1237 
1238         Register Reg = MO.getReg();
1239 
1240         // Some vregs can be deleted as redundant in the meantime. Mark those
1241         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1242         // quickly deleted, leaving dangling references to vregs with no def.
1243         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1244           IsValidRef = false;
1245           break;
1246         }
1247 
1248         assert(Reg.isVirtual());
1249         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1250 
1251         // If we've found a copy-like instruction, follow it back to the
1252         // instruction that defines the source value, see salvageCopySSA docs
1253         // for why this is important.
1254         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1255           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1256           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1257         } else {
1258           // Otherwise, identify the operand number that the VReg refers to.
1259           unsigned OperandIdx = 0;
1260           for (const auto &DefMO : DefMI.operands()) {
1261             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1262               break;
1263             ++OperandIdx;
1264           }
1265           assert(OperandIdx < DefMI.getNumOperands());
1266 
1267           // Morph this instr ref to point at the given instruction and operand.
1268           unsigned ID = DefMI.getDebugInstrNum();
1269           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1270         }
1271       }
1272 
1273       if (!IsValidRef)
1274         MakeUndefDbgValue(MI);
1275     }
1276   }
1277 }
1278 
1279 bool MachineFunction::shouldUseDebugInstrRef() const {
1280   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1281   // have optimized code inlined into this unoptimized code, however with
1282   // fewer and less aggressive optimizations happening, coverage and accuracy
1283   // should not suffer.
1284   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1285     return false;
1286 
1287   // Don't use instr-ref if this function is marked optnone.
1288   if (F.hasFnAttribute(Attribute::OptimizeNone))
1289     return false;
1290 
1291   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1292     return true;
1293 
1294   return false;
1295 }
1296 
1297 bool MachineFunction::useDebugInstrRef() const {
1298   return UseDebugInstrRef;
1299 }
1300 
1301 void MachineFunction::setUseDebugInstrRef(bool Use) {
1302   UseDebugInstrRef = Use;
1303 }
1304 
1305 // Use one million as a high / reserved number.
1306 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1307 
1308 /// \}
1309 
1310 //===----------------------------------------------------------------------===//
1311 //  MachineJumpTableInfo implementation
1312 //===----------------------------------------------------------------------===//
1313 
1314 MachineJumpTableEntry::MachineJumpTableEntry(
1315     const std::vector<MachineBasicBlock *> &MBBs)
1316     : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {}
1317 
1318 /// Return the size of each entry in the jump table.
1319 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1320   // The size of a jump table entry is 4 bytes unless the entry is just the
1321   // address of a block, in which case it is the pointer size.
1322   switch (getEntryKind()) {
1323   case MachineJumpTableInfo::EK_BlockAddress:
1324     return TD.getPointerSize();
1325   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1326   case MachineJumpTableInfo::EK_LabelDifference64:
1327     return 8;
1328   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1329   case MachineJumpTableInfo::EK_LabelDifference32:
1330   case MachineJumpTableInfo::EK_Custom32:
1331     return 4;
1332   case MachineJumpTableInfo::EK_Inline:
1333     return 0;
1334   }
1335   llvm_unreachable("Unknown jump table encoding!");
1336 }
1337 
1338 /// Return the alignment of each entry in the jump table.
1339 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1340   // The alignment of a jump table entry is the alignment of int32 unless the
1341   // entry is just the address of a block, in which case it is the pointer
1342   // alignment.
1343   switch (getEntryKind()) {
1344   case MachineJumpTableInfo::EK_BlockAddress:
1345     return TD.getPointerABIAlignment(0).value();
1346   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1347   case MachineJumpTableInfo::EK_LabelDifference64:
1348     return TD.getABIIntegerTypeAlignment(64).value();
1349   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1350   case MachineJumpTableInfo::EK_LabelDifference32:
1351   case MachineJumpTableInfo::EK_Custom32:
1352     return TD.getABIIntegerTypeAlignment(32).value();
1353   case MachineJumpTableInfo::EK_Inline:
1354     return 1;
1355   }
1356   llvm_unreachable("Unknown jump table encoding!");
1357 }
1358 
1359 /// Create a new jump table entry in the jump table info.
1360 unsigned MachineJumpTableInfo::createJumpTableIndex(
1361                                const std::vector<MachineBasicBlock*> &DestBBs) {
1362   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1363   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1364   return JumpTables.size()-1;
1365 }
1366 
1367 bool MachineJumpTableInfo::updateJumpTableEntryHotness(
1368     size_t JTI, MachineFunctionDataHotness Hotness) {
1369   assert(JTI < JumpTables.size() && "Invalid JTI!");
1370   // Record the largest hotness value.
1371   if (Hotness <= JumpTables[JTI].Hotness)
1372     return false;
1373 
1374   JumpTables[JTI].Hotness = Hotness;
1375   return true;
1376 }
1377 
1378 /// If Old is the target of any jump tables, update the jump tables to branch
1379 /// to New instead.
1380 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1381                                                   MachineBasicBlock *New) {
1382   assert(Old != New && "Not making a change?");
1383   bool MadeChange = false;
1384   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1385     ReplaceMBBInJumpTable(i, Old, New);
1386   return MadeChange;
1387 }
1388 
1389 /// If MBB is present in any jump tables, remove it.
1390 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1391   bool MadeChange = false;
1392   for (MachineJumpTableEntry &JTE : JumpTables) {
1393     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1394     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1395     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1396   }
1397   return MadeChange;
1398 }
1399 
1400 /// If Old is a target of the jump tables, update the jump table to branch to
1401 /// New instead.
1402 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1403                                                  MachineBasicBlock *Old,
1404                                                  MachineBasicBlock *New) {
1405   assert(Old != New && "Not making a change?");
1406   bool MadeChange = false;
1407   MachineJumpTableEntry &JTE = JumpTables[Idx];
1408   for (MachineBasicBlock *&MBB : JTE.MBBs)
1409     if (MBB == Old) {
1410       MBB = New;
1411       MadeChange = true;
1412     }
1413   return MadeChange;
1414 }
1415 
1416 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1417   if (JumpTables.empty()) return;
1418 
1419   OS << "Jump Tables:\n";
1420 
1421   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1422     OS << printJumpTableEntryReference(i) << ':';
1423     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1424       OS << ' ' << printMBBReference(*MBB);
1425     if (i != e)
1426       OS << '\n';
1427   }
1428 
1429   OS << '\n';
1430 }
1431 
1432 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1433 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1434 #endif
1435 
1436 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1437   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1438 }
1439 
1440 //===----------------------------------------------------------------------===//
1441 //  MachineConstantPool implementation
1442 //===----------------------------------------------------------------------===//
1443 
1444 void MachineConstantPoolValue::anchor() {}
1445 
1446 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1447   return DL.getTypeAllocSize(Ty);
1448 }
1449 
1450 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1451   if (isMachineConstantPoolEntry())
1452     return Val.MachineCPVal->getSizeInBytes(DL);
1453   return DL.getTypeAllocSize(Val.ConstVal->getType());
1454 }
1455 
1456 bool MachineConstantPoolEntry::needsRelocation() const {
1457   if (isMachineConstantPoolEntry())
1458     return true;
1459   return Val.ConstVal->needsDynamicRelocation();
1460 }
1461 
1462 SectionKind
1463 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1464   if (needsRelocation())
1465     return SectionKind::getReadOnlyWithRel();
1466   switch (getSizeInBytes(*DL)) {
1467   case 4:
1468     return SectionKind::getMergeableConst4();
1469   case 8:
1470     return SectionKind::getMergeableConst8();
1471   case 16:
1472     return SectionKind::getMergeableConst16();
1473   case 32:
1474     return SectionKind::getMergeableConst32();
1475   default:
1476     return SectionKind::getReadOnly();
1477   }
1478 }
1479 
1480 MachineConstantPool::~MachineConstantPool() {
1481   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1482   // so keep track of which we've deleted to avoid double deletions.
1483   DenseSet<MachineConstantPoolValue*> Deleted;
1484   for (const MachineConstantPoolEntry &C : Constants)
1485     if (C.isMachineConstantPoolEntry()) {
1486       Deleted.insert(C.Val.MachineCPVal);
1487       delete C.Val.MachineCPVal;
1488     }
1489   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1490     if (Deleted.count(CPV) == 0)
1491       delete CPV;
1492   }
1493 }
1494 
1495 /// Test whether the given two constants can be allocated the same constant pool
1496 /// entry referenced by \param A.
1497 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1498                                       const DataLayout &DL) {
1499   // Handle the trivial case quickly.
1500   if (A == B) return true;
1501 
1502   // If they have the same type but weren't the same constant, quickly
1503   // reject them.
1504   if (A->getType() == B->getType()) return false;
1505 
1506   // We can't handle structs or arrays.
1507   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1508       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1509     return false;
1510 
1511   // For now, only support constants with the same size.
1512   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1513   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1514     return false;
1515 
1516   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1517 
1518   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1519 
1520   // Try constant folding a bitcast of both instructions to an integer.  If we
1521   // get two identical ConstantInt's, then we are good to share them.  We use
1522   // the constant folding APIs to do this so that we get the benefit of
1523   // DataLayout.
1524   if (isa<PointerType>(A->getType()))
1525     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1526                                 const_cast<Constant *>(A), IntTy, DL);
1527   else if (A->getType() != IntTy)
1528     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1529                                 IntTy, DL);
1530   if (isa<PointerType>(B->getType()))
1531     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1532                                 const_cast<Constant *>(B), IntTy, DL);
1533   else if (B->getType() != IntTy)
1534     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1535                                 IntTy, DL);
1536 
1537   if (A != B)
1538     return false;
1539 
1540   // Constants only safely match if A doesn't contain undef/poison.
1541   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1542   // TODO: Handle cases where A and B have the same undef/poison elements.
1543   // TODO: Merge A and B with mismatching undef/poison elements.
1544   return !ContainsUndefOrPoisonA;
1545 }
1546 
1547 /// Create a new entry in the constant pool or return an existing one.
1548 /// User must specify the log2 of the minimum required alignment for the object.
1549 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1550                                                    Align Alignment) {
1551   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1552 
1553   // Check to see if we already have this constant.
1554   //
1555   // FIXME, this could be made much more efficient for large constant pools.
1556   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1557     if (!Constants[i].isMachineConstantPoolEntry() &&
1558         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1559       if (Constants[i].getAlign() < Alignment)
1560         Constants[i].Alignment = Alignment;
1561       return i;
1562     }
1563 
1564   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1565   return Constants.size()-1;
1566 }
1567 
1568 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1569                                                    Align Alignment) {
1570   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1571 
1572   // Check to see if we already have this constant.
1573   //
1574   // FIXME, this could be made much more efficient for large constant pools.
1575   int Idx = V->getExistingMachineCPValue(this, Alignment);
1576   if (Idx != -1) {
1577     MachineCPVsSharingEntries.insert(V);
1578     return (unsigned)Idx;
1579   }
1580 
1581   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1582   return Constants.size()-1;
1583 }
1584 
1585 void MachineConstantPool::print(raw_ostream &OS) const {
1586   if (Constants.empty()) return;
1587 
1588   OS << "Constant Pool:\n";
1589   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1590     OS << "  cp#" << i << ": ";
1591     if (Constants[i].isMachineConstantPoolEntry())
1592       Constants[i].Val.MachineCPVal->print(OS);
1593     else
1594       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1595     OS << ", align=" << Constants[i].getAlign().value();
1596     OS << "\n";
1597   }
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 // Template specialization for MachineFunction implementation of
1602 // ProfileSummaryInfo::getEntryCount().
1603 //===----------------------------------------------------------------------===//
1604 template <>
1605 std::optional<Function::ProfileCount>
1606 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1607     const llvm::MachineFunction *F) const {
1608   return F->getFunction().getEntryCount();
1609 }
1610 
1611 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1612 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1613 #endif
1614