1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionInitializer.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetFrameLowering.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "codegen" 46 47 void MachineFunctionInitializer::anchor() {} 48 49 //===----------------------------------------------------------------------===// 50 // MachineFunction implementation 51 //===----------------------------------------------------------------------===// 52 53 // Out-of-line virtual method. 54 MachineFunctionInfo::~MachineFunctionInfo() {} 55 56 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 57 MBB->getParent()->DeleteMachineBasicBlock(MBB); 58 } 59 60 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 61 unsigned FunctionNum, MachineModuleInfo &mmi) 62 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 63 MMI(mmi) { 64 if (STI->getRegisterInfo()) 65 RegInfo = new (Allocator) MachineRegisterInfo(this); 66 else 67 RegInfo = nullptr; 68 69 MFInfo = nullptr; 70 FrameInfo = new (Allocator) 71 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(), 72 STI->getFrameLowering()->isStackRealignable(), 73 !F->hasFnAttribute("no-realign-stack")); 74 75 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 76 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 77 78 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 79 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 80 81 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 82 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 83 Alignment = std::max(Alignment, 84 STI->getTargetLowering()->getPrefFunctionAlignment()); 85 86 FunctionNumber = FunctionNum; 87 JumpTableInfo = nullptr; 88 89 assert(TM.isCompatibleDataLayout(getDataLayout()) && 90 "Can't create a MachineFunction using a Module with a " 91 "Target-incompatible DataLayout attached\n"); 92 } 93 94 MachineFunction::~MachineFunction() { 95 // Don't call destructors on MachineInstr and MachineOperand. All of their 96 // memory comes from the BumpPtrAllocator which is about to be purged. 97 // 98 // Do call MachineBasicBlock destructors, it contains std::vectors. 99 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 100 I->Insts.clearAndLeakNodesUnsafely(); 101 102 InstructionRecycler.clear(Allocator); 103 OperandRecycler.clear(Allocator); 104 BasicBlockRecycler.clear(Allocator); 105 if (RegInfo) { 106 RegInfo->~MachineRegisterInfo(); 107 Allocator.Deallocate(RegInfo); 108 } 109 if (MFInfo) { 110 MFInfo->~MachineFunctionInfo(); 111 Allocator.Deallocate(MFInfo); 112 } 113 114 FrameInfo->~MachineFrameInfo(); 115 Allocator.Deallocate(FrameInfo); 116 117 ConstantPool->~MachineConstantPool(); 118 Allocator.Deallocate(ConstantPool); 119 120 if (JumpTableInfo) { 121 JumpTableInfo->~MachineJumpTableInfo(); 122 Allocator.Deallocate(JumpTableInfo); 123 } 124 } 125 126 const DataLayout &MachineFunction::getDataLayout() const { 127 return Fn->getParent()->getDataLayout(); 128 } 129 130 /// Get the JumpTableInfo for this function. 131 /// If it does not already exist, allocate one. 132 MachineJumpTableInfo *MachineFunction:: 133 getOrCreateJumpTableInfo(unsigned EntryKind) { 134 if (JumpTableInfo) return JumpTableInfo; 135 136 JumpTableInfo = new (Allocator) 137 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 138 return JumpTableInfo; 139 } 140 141 /// Should we be emitting segmented stack stuff for the function 142 bool MachineFunction::shouldSplitStack() { 143 return getFunction()->hasFnAttribute("split-stack"); 144 } 145 146 /// This discards all of the MachineBasicBlock numbers and recomputes them. 147 /// This guarantees that the MBB numbers are sequential, dense, and match the 148 /// ordering of the blocks within the function. If a specific MachineBasicBlock 149 /// is specified, only that block and those after it are renumbered. 150 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 151 if (empty()) { MBBNumbering.clear(); return; } 152 MachineFunction::iterator MBBI, E = end(); 153 if (MBB == nullptr) 154 MBBI = begin(); 155 else 156 MBBI = MBB; 157 158 // Figure out the block number this should have. 159 unsigned BlockNo = 0; 160 if (MBBI != begin()) 161 BlockNo = std::prev(MBBI)->getNumber() + 1; 162 163 for (; MBBI != E; ++MBBI, ++BlockNo) { 164 if (MBBI->getNumber() != (int)BlockNo) { 165 // Remove use of the old number. 166 if (MBBI->getNumber() != -1) { 167 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 168 "MBB number mismatch!"); 169 MBBNumbering[MBBI->getNumber()] = nullptr; 170 } 171 172 // If BlockNo is already taken, set that block's number to -1. 173 if (MBBNumbering[BlockNo]) 174 MBBNumbering[BlockNo]->setNumber(-1); 175 176 MBBNumbering[BlockNo] = MBBI; 177 MBBI->setNumber(BlockNo); 178 } 179 } 180 181 // Okay, all the blocks are renumbered. If we have compactified the block 182 // numbering, shrink MBBNumbering now. 183 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 184 MBBNumbering.resize(BlockNo); 185 } 186 187 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 188 MachineInstr * 189 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 190 DebugLoc DL, bool NoImp) { 191 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 192 MachineInstr(*this, MCID, DL, NoImp); 193 } 194 195 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 196 /// identical in all ways except the instruction has no parent, prev, or next. 197 MachineInstr * 198 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 199 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 200 MachineInstr(*this, *Orig); 201 } 202 203 /// Delete the given MachineInstr. 204 /// 205 /// This function also serves as the MachineInstr destructor - the real 206 /// ~MachineInstr() destructor must be empty. 207 void 208 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 209 // Strip it for parts. The operand array and the MI object itself are 210 // independently recyclable. 211 if (MI->Operands) 212 deallocateOperandArray(MI->CapOperands, MI->Operands); 213 // Don't call ~MachineInstr() which must be trivial anyway because 214 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 215 // destructors. 216 InstructionRecycler.Deallocate(Allocator, MI); 217 } 218 219 /// Allocate a new MachineBasicBlock. Use this instead of 220 /// `new MachineBasicBlock'. 221 MachineBasicBlock * 222 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 223 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 224 MachineBasicBlock(*this, bb); 225 } 226 227 /// Delete the given MachineBasicBlock. 228 void 229 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 230 assert(MBB->getParent() == this && "MBB parent mismatch!"); 231 MBB->~MachineBasicBlock(); 232 BasicBlockRecycler.Deallocate(Allocator, MBB); 233 } 234 235 MachineMemOperand * 236 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 237 uint64_t s, unsigned base_alignment, 238 const AAMDNodes &AAInfo, 239 const MDNode *Ranges) { 240 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 241 AAInfo, Ranges); 242 } 243 244 MachineMemOperand * 245 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 246 int64_t Offset, uint64_t Size) { 247 if (MMO->getValue()) 248 return new (Allocator) 249 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 250 MMO->getOffset()+Offset), 251 MMO->getFlags(), Size, 252 MMO->getBaseAlignment()); 253 return new (Allocator) 254 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 255 MMO->getOffset()+Offset), 256 MMO->getFlags(), Size, 257 MMO->getBaseAlignment()); 258 } 259 260 MachineInstr::mmo_iterator 261 MachineFunction::allocateMemRefsArray(unsigned long Num) { 262 return Allocator.Allocate<MachineMemOperand *>(Num); 263 } 264 265 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 266 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 267 MachineInstr::mmo_iterator End) { 268 // Count the number of load mem refs. 269 unsigned Num = 0; 270 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 271 if ((*I)->isLoad()) 272 ++Num; 273 274 // Allocate a new array and populate it with the load information. 275 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 276 unsigned Index = 0; 277 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 278 if ((*I)->isLoad()) { 279 if (!(*I)->isStore()) 280 // Reuse the MMO. 281 Result[Index] = *I; 282 else { 283 // Clone the MMO and unset the store flag. 284 MachineMemOperand *JustLoad = 285 getMachineMemOperand((*I)->getPointerInfo(), 286 (*I)->getFlags() & ~MachineMemOperand::MOStore, 287 (*I)->getSize(), (*I)->getBaseAlignment(), 288 (*I)->getAAInfo()); 289 Result[Index] = JustLoad; 290 } 291 ++Index; 292 } 293 } 294 return std::make_pair(Result, Result + Num); 295 } 296 297 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 298 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 299 MachineInstr::mmo_iterator End) { 300 // Count the number of load mem refs. 301 unsigned Num = 0; 302 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 303 if ((*I)->isStore()) 304 ++Num; 305 306 // Allocate a new array and populate it with the store information. 307 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 308 unsigned Index = 0; 309 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 310 if ((*I)->isStore()) { 311 if (!(*I)->isLoad()) 312 // Reuse the MMO. 313 Result[Index] = *I; 314 else { 315 // Clone the MMO and unset the load flag. 316 MachineMemOperand *JustStore = 317 getMachineMemOperand((*I)->getPointerInfo(), 318 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 319 (*I)->getSize(), (*I)->getBaseAlignment(), 320 (*I)->getAAInfo()); 321 Result[Index] = JustStore; 322 } 323 ++Index; 324 } 325 } 326 return std::make_pair(Result, Result + Num); 327 } 328 329 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 330 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 331 std::copy(Name.begin(), Name.end(), Dest); 332 Dest[Name.size()] = 0; 333 return Dest; 334 } 335 336 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 337 void MachineFunction::dump() const { 338 print(dbgs()); 339 } 340 #endif 341 342 StringRef MachineFunction::getName() const { 343 assert(getFunction() && "No function!"); 344 return getFunction()->getName(); 345 } 346 347 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 348 OS << "# Machine code for function " << getName() << ": "; 349 if (RegInfo) { 350 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 351 if (!RegInfo->tracksLiveness()) 352 OS << ", not tracking liveness"; 353 } 354 OS << '\n'; 355 356 // Print Frame Information 357 FrameInfo->print(*this, OS); 358 359 // Print JumpTable Information 360 if (JumpTableInfo) 361 JumpTableInfo->print(OS); 362 363 // Print Constant Pool 364 ConstantPool->print(OS); 365 366 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 367 368 if (RegInfo && !RegInfo->livein_empty()) { 369 OS << "Function Live Ins: "; 370 for (MachineRegisterInfo::livein_iterator 371 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 372 OS << PrintReg(I->first, TRI); 373 if (I->second) 374 OS << " in " << PrintReg(I->second, TRI); 375 if (std::next(I) != E) 376 OS << ", "; 377 } 378 OS << '\n'; 379 } 380 381 ModuleSlotTracker MST(getFunction()->getParent()); 382 MST.incorporateFunction(*getFunction()); 383 for (const auto &BB : *this) { 384 OS << '\n'; 385 BB.print(OS, MST, Indexes); 386 } 387 388 OS << "\n# End machine code for function " << getName() << ".\n\n"; 389 } 390 391 namespace llvm { 392 template<> 393 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 394 395 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 396 397 static std::string getGraphName(const MachineFunction *F) { 398 return ("CFG for '" + F->getName() + "' function").str(); 399 } 400 401 std::string getNodeLabel(const MachineBasicBlock *Node, 402 const MachineFunction *Graph) { 403 std::string OutStr; 404 { 405 raw_string_ostream OSS(OutStr); 406 407 if (isSimple()) { 408 OSS << "BB#" << Node->getNumber(); 409 if (const BasicBlock *BB = Node->getBasicBlock()) 410 OSS << ": " << BB->getName(); 411 } else 412 Node->print(OSS); 413 } 414 415 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 416 417 // Process string output to make it nicer... 418 for (unsigned i = 0; i != OutStr.length(); ++i) 419 if (OutStr[i] == '\n') { // Left justify 420 OutStr[i] = '\\'; 421 OutStr.insert(OutStr.begin()+i+1, 'l'); 422 } 423 return OutStr; 424 } 425 }; 426 } 427 428 void MachineFunction::viewCFG() const 429 { 430 #ifndef NDEBUG 431 ViewGraph(this, "mf" + getName()); 432 #else 433 errs() << "MachineFunction::viewCFG is only available in debug builds on " 434 << "systems with Graphviz or gv!\n"; 435 #endif // NDEBUG 436 } 437 438 void MachineFunction::viewCFGOnly() const 439 { 440 #ifndef NDEBUG 441 ViewGraph(this, "mf" + getName(), true); 442 #else 443 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 444 << "systems with Graphviz or gv!\n"; 445 #endif // NDEBUG 446 } 447 448 /// Add the specified physical register as a live-in value and 449 /// create a corresponding virtual register for it. 450 unsigned MachineFunction::addLiveIn(unsigned PReg, 451 const TargetRegisterClass *RC) { 452 MachineRegisterInfo &MRI = getRegInfo(); 453 unsigned VReg = MRI.getLiveInVirtReg(PReg); 454 if (VReg) { 455 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 456 (void)VRegRC; 457 // A physical register can be added several times. 458 // Between two calls, the register class of the related virtual register 459 // may have been constrained to match some operation constraints. 460 // In that case, check that the current register class includes the 461 // physical register and is a sub class of the specified RC. 462 assert((VRegRC == RC || (VRegRC->contains(PReg) && 463 RC->hasSubClassEq(VRegRC))) && 464 "Register class mismatch!"); 465 return VReg; 466 } 467 VReg = MRI.createVirtualRegister(RC); 468 MRI.addLiveIn(PReg, VReg); 469 return VReg; 470 } 471 472 /// Return the MCSymbol for the specified non-empty jump table. 473 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 474 /// normal 'L' label is returned. 475 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 476 bool isLinkerPrivate) const { 477 const DataLayout &DL = getDataLayout(); 478 assert(JumpTableInfo && "No jump tables"); 479 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 480 481 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 482 : DL.getPrivateGlobalPrefix(); 483 SmallString<60> Name; 484 raw_svector_ostream(Name) 485 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 486 return Ctx.getOrCreateSymbol(Name); 487 } 488 489 /// Return a function-local symbol to represent the PIC base. 490 MCSymbol *MachineFunction::getPICBaseSymbol() const { 491 const DataLayout &DL = getDataLayout(); 492 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 493 Twine(getFunctionNumber()) + "$pb"); 494 } 495 496 //===----------------------------------------------------------------------===// 497 // MachineFrameInfo implementation 498 //===----------------------------------------------------------------------===// 499 500 /// Make sure the function is at least Align bytes aligned. 501 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 502 if (!StackRealignable || !RealignOption) 503 assert(Align <= StackAlignment && 504 "For targets without stack realignment, Align is out of limit!"); 505 if (MaxAlignment < Align) MaxAlignment = Align; 506 } 507 508 /// Clamp the alignment if requested and emit a warning. 509 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 510 unsigned StackAlign) { 511 if (!ShouldClamp || Align <= StackAlign) 512 return Align; 513 DEBUG(dbgs() << "Warning: requested alignment " << Align 514 << " exceeds the stack alignment " << StackAlign 515 << " when stack realignment is off" << '\n'); 516 return StackAlign; 517 } 518 519 /// Create a new statically sized stack object, returning a nonnegative 520 /// identifier to represent it. 521 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 522 bool isSS, const AllocaInst *Alloca) { 523 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 524 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 525 Alignment, StackAlignment); 526 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 527 !isSS)); 528 int Index = (int)Objects.size() - NumFixedObjects - 1; 529 assert(Index >= 0 && "Bad frame index!"); 530 ensureMaxAlignment(Alignment); 531 return Index; 532 } 533 534 /// Create a new statically sized stack object that represents a spill slot, 535 /// returning a nonnegative identifier to represent it. 536 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 537 unsigned Alignment) { 538 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 539 Alignment, StackAlignment); 540 CreateStackObject(Size, Alignment, true); 541 int Index = (int)Objects.size() - NumFixedObjects - 1; 542 ensureMaxAlignment(Alignment); 543 return Index; 544 } 545 546 /// Notify the MachineFrameInfo object that a variable sized object has been 547 /// created. This must be created whenever a variable sized object is created, 548 /// whether or not the index returned is actually used. 549 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 550 const AllocaInst *Alloca) { 551 HasVarSizedObjects = true; 552 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 553 Alignment, StackAlignment); 554 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 555 ensureMaxAlignment(Alignment); 556 return (int)Objects.size()-NumFixedObjects-1; 557 } 558 559 /// Create a new object at a fixed location on the stack. 560 /// All fixed objects should be created before other objects are created for 561 /// efficiency. By default, fixed objects are immutable. This returns an 562 /// index with a negative value. 563 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 564 bool Immutable, bool isAliased) { 565 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 566 // The alignment of the frame index can be determined from its offset from 567 // the incoming frame position. If the frame object is at offset 32 and 568 // the stack is guaranteed to be 16-byte aligned, then we know that the 569 // object is 16-byte aligned. 570 unsigned Align = MinAlign(SPOffset, StackAlignment); 571 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 572 StackAlignment); 573 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 574 /*isSS*/ false, 575 /*Alloca*/ nullptr, isAliased)); 576 return -++NumFixedObjects; 577 } 578 579 /// Create a spill slot at a fixed location on the stack. 580 /// Returns an index with a negative value. 581 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 582 int64_t SPOffset) { 583 unsigned Align = MinAlign(SPOffset, StackAlignment); 584 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 585 StackAlignment); 586 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 587 /*Immutable*/ true, 588 /*isSS*/ true, 589 /*Alloca*/ nullptr, 590 /*isAliased*/ false)); 591 return -++NumFixedObjects; 592 } 593 594 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 595 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 596 BitVector BV(TRI->getNumRegs()); 597 598 // Before CSI is calculated, no registers are considered pristine. They can be 599 // freely used and PEI will make sure they are saved. 600 if (!isCalleeSavedInfoValid()) 601 return BV; 602 603 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 604 BV.set(*CSR); 605 606 // Saved CSRs are not pristine. 607 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 608 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 609 E = CSI.end(); I != E; ++I) 610 BV.reset(I->getReg()); 611 612 return BV; 613 } 614 615 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 616 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 617 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 618 unsigned MaxAlign = getMaxAlignment(); 619 int Offset = 0; 620 621 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 622 // It really should be refactored to share code. Until then, changes 623 // should keep in mind that there's tight coupling between the two. 624 625 for (int i = getObjectIndexBegin(); i != 0; ++i) { 626 int FixedOff = -getObjectOffset(i); 627 if (FixedOff > Offset) Offset = FixedOff; 628 } 629 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 630 if (isDeadObjectIndex(i)) 631 continue; 632 Offset += getObjectSize(i); 633 unsigned Align = getObjectAlignment(i); 634 // Adjust to alignment boundary 635 Offset = (Offset+Align-1)/Align*Align; 636 637 MaxAlign = std::max(Align, MaxAlign); 638 } 639 640 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 641 Offset += getMaxCallFrameSize(); 642 643 // Round up the size to a multiple of the alignment. If the function has 644 // any calls or alloca's, align to the target's StackAlignment value to 645 // ensure that the callee's frame or the alloca data is suitably aligned; 646 // otherwise, for leaf functions, align to the TransientStackAlignment 647 // value. 648 unsigned StackAlign; 649 if (adjustsStack() || hasVarSizedObjects() || 650 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 651 StackAlign = TFI->getStackAlignment(); 652 else 653 StackAlign = TFI->getTransientStackAlignment(); 654 655 // If the frame pointer is eliminated, all frame offsets will be relative to 656 // SP not FP. Align to MaxAlign so this works. 657 StackAlign = std::max(StackAlign, MaxAlign); 658 unsigned AlignMask = StackAlign - 1; 659 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 660 661 return (unsigned)Offset; 662 } 663 664 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 665 if (Objects.empty()) return; 666 667 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 668 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 669 670 OS << "Frame Objects:\n"; 671 672 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 673 const StackObject &SO = Objects[i]; 674 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 675 if (SO.Size == ~0ULL) { 676 OS << "dead\n"; 677 continue; 678 } 679 if (SO.Size == 0) 680 OS << "variable sized"; 681 else 682 OS << "size=" << SO.Size; 683 OS << ", align=" << SO.Alignment; 684 685 if (i < NumFixedObjects) 686 OS << ", fixed"; 687 if (i < NumFixedObjects || SO.SPOffset != -1) { 688 int64_t Off = SO.SPOffset - ValOffset; 689 OS << ", at location [SP"; 690 if (Off > 0) 691 OS << "+" << Off; 692 else if (Off < 0) 693 OS << Off; 694 OS << "]"; 695 } 696 OS << "\n"; 697 } 698 } 699 700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 701 void MachineFrameInfo::dump(const MachineFunction &MF) const { 702 print(MF, dbgs()); 703 } 704 #endif 705 706 //===----------------------------------------------------------------------===// 707 // MachineJumpTableInfo implementation 708 //===----------------------------------------------------------------------===// 709 710 /// Return the size of each entry in the jump table. 711 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 712 // The size of a jump table entry is 4 bytes unless the entry is just the 713 // address of a block, in which case it is the pointer size. 714 switch (getEntryKind()) { 715 case MachineJumpTableInfo::EK_BlockAddress: 716 return TD.getPointerSize(); 717 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 718 return 8; 719 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 720 case MachineJumpTableInfo::EK_LabelDifference32: 721 case MachineJumpTableInfo::EK_Custom32: 722 return 4; 723 case MachineJumpTableInfo::EK_Inline: 724 return 0; 725 } 726 llvm_unreachable("Unknown jump table encoding!"); 727 } 728 729 /// Return the alignment of each entry in the jump table. 730 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 731 // The alignment of a jump table entry is the alignment of int32 unless the 732 // entry is just the address of a block, in which case it is the pointer 733 // alignment. 734 switch (getEntryKind()) { 735 case MachineJumpTableInfo::EK_BlockAddress: 736 return TD.getPointerABIAlignment(); 737 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 738 return TD.getABIIntegerTypeAlignment(64); 739 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 740 case MachineJumpTableInfo::EK_LabelDifference32: 741 case MachineJumpTableInfo::EK_Custom32: 742 return TD.getABIIntegerTypeAlignment(32); 743 case MachineJumpTableInfo::EK_Inline: 744 return 1; 745 } 746 llvm_unreachable("Unknown jump table encoding!"); 747 } 748 749 /// Create a new jump table entry in the jump table info. 750 unsigned MachineJumpTableInfo::createJumpTableIndex( 751 const std::vector<MachineBasicBlock*> &DestBBs) { 752 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 753 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 754 return JumpTables.size()-1; 755 } 756 757 /// If Old is the target of any jump tables, update the jump tables to branch 758 /// to New instead. 759 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 760 MachineBasicBlock *New) { 761 assert(Old != New && "Not making a change?"); 762 bool MadeChange = false; 763 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 764 ReplaceMBBInJumpTable(i, Old, New); 765 return MadeChange; 766 } 767 768 /// If Old is a target of the jump tables, update the jump table to branch to 769 /// New instead. 770 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 771 MachineBasicBlock *Old, 772 MachineBasicBlock *New) { 773 assert(Old != New && "Not making a change?"); 774 bool MadeChange = false; 775 MachineJumpTableEntry &JTE = JumpTables[Idx]; 776 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 777 if (JTE.MBBs[j] == Old) { 778 JTE.MBBs[j] = New; 779 MadeChange = true; 780 } 781 return MadeChange; 782 } 783 784 void MachineJumpTableInfo::print(raw_ostream &OS) const { 785 if (JumpTables.empty()) return; 786 787 OS << "Jump Tables:\n"; 788 789 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 790 OS << " jt#" << i << ": "; 791 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 792 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 793 } 794 795 OS << '\n'; 796 } 797 798 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 799 void MachineJumpTableInfo::dump() const { print(dbgs()); } 800 #endif 801 802 803 //===----------------------------------------------------------------------===// 804 // MachineConstantPool implementation 805 //===----------------------------------------------------------------------===// 806 807 void MachineConstantPoolValue::anchor() { } 808 809 Type *MachineConstantPoolEntry::getType() const { 810 if (isMachineConstantPoolEntry()) 811 return Val.MachineCPVal->getType(); 812 return Val.ConstVal->getType(); 813 } 814 815 816 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 817 if (isMachineConstantPoolEntry()) 818 return Val.MachineCPVal->getRelocationInfo(); 819 return Val.ConstVal->getRelocationInfo(); 820 } 821 822 SectionKind 823 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 824 SectionKind Kind; 825 switch (getRelocationInfo()) { 826 default: 827 llvm_unreachable("Unknown section kind"); 828 case Constant::GlobalRelocations: 829 Kind = SectionKind::getReadOnlyWithRel(); 830 break; 831 case Constant::LocalRelocation: 832 Kind = SectionKind::getReadOnlyWithRelLocal(); 833 break; 834 case Constant::NoRelocation: 835 switch (DL->getTypeAllocSize(getType())) { 836 case 4: 837 Kind = SectionKind::getMergeableConst4(); 838 break; 839 case 8: 840 Kind = SectionKind::getMergeableConst8(); 841 break; 842 case 16: 843 Kind = SectionKind::getMergeableConst16(); 844 break; 845 default: 846 Kind = SectionKind::getReadOnly(); 847 break; 848 } 849 } 850 return Kind; 851 } 852 853 MachineConstantPool::~MachineConstantPool() { 854 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 855 if (Constants[i].isMachineConstantPoolEntry()) 856 delete Constants[i].Val.MachineCPVal; 857 for (DenseSet<MachineConstantPoolValue*>::iterator I = 858 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 859 I != E; ++I) 860 delete *I; 861 } 862 863 /// Test whether the given two constants can be allocated the same constant pool 864 /// entry. 865 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 866 const DataLayout &DL) { 867 // Handle the trivial case quickly. 868 if (A == B) return true; 869 870 // If they have the same type but weren't the same constant, quickly 871 // reject them. 872 if (A->getType() == B->getType()) return false; 873 874 // We can't handle structs or arrays. 875 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 876 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 877 return false; 878 879 // For now, only support constants with the same size. 880 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 881 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 882 return false; 883 884 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 885 886 // Try constant folding a bitcast of both instructions to an integer. If we 887 // get two identical ConstantInt's, then we are good to share them. We use 888 // the constant folding APIs to do this so that we get the benefit of 889 // DataLayout. 890 if (isa<PointerType>(A->getType())) 891 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 892 const_cast<Constant *>(A), DL); 893 else if (A->getType() != IntTy) 894 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 895 const_cast<Constant *>(A), DL); 896 if (isa<PointerType>(B->getType())) 897 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 898 const_cast<Constant *>(B), DL); 899 else if (B->getType() != IntTy) 900 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 901 const_cast<Constant *>(B), DL); 902 903 return A == B; 904 } 905 906 /// Create a new entry in the constant pool or return an existing one. 907 /// User must specify the log2 of the minimum required alignment for the object. 908 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 909 unsigned Alignment) { 910 assert(Alignment && "Alignment must be specified!"); 911 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 912 913 // Check to see if we already have this constant. 914 // 915 // FIXME, this could be made much more efficient for large constant pools. 916 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 917 if (!Constants[i].isMachineConstantPoolEntry() && 918 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 919 if ((unsigned)Constants[i].getAlignment() < Alignment) 920 Constants[i].Alignment = Alignment; 921 return i; 922 } 923 924 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 925 return Constants.size()-1; 926 } 927 928 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 929 unsigned Alignment) { 930 assert(Alignment && "Alignment must be specified!"); 931 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 932 933 // Check to see if we already have this constant. 934 // 935 // FIXME, this could be made much more efficient for large constant pools. 936 int Idx = V->getExistingMachineCPValue(this, Alignment); 937 if (Idx != -1) { 938 MachineCPVsSharingEntries.insert(V); 939 return (unsigned)Idx; 940 } 941 942 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 943 return Constants.size()-1; 944 } 945 946 void MachineConstantPool::print(raw_ostream &OS) const { 947 if (Constants.empty()) return; 948 949 OS << "Constant Pool:\n"; 950 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 951 OS << " cp#" << i << ": "; 952 if (Constants[i].isMachineConstantPoolEntry()) 953 Constants[i].Val.MachineCPVal->print(OS); 954 else 955 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 956 OS << ", align=" << Constants[i].getAlignment(); 957 OS << "\n"; 958 } 959 } 960 961 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 962 void MachineConstantPool::dump() const { print(dbgs()); } 963 #endif 964