1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 #include "LiveDebugValues/LiveDebugValues.h" 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "codegen" 84 85 static cl::opt<unsigned> AlignAllFunctions( 86 "align-all-functions", 87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 88 "means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 92 using P = MachineFunctionProperties::Property; 93 94 // clang-format off 95 switch(Prop) { 96 case P::FailedISel: return "FailedISel"; 97 case P::IsSSA: return "IsSSA"; 98 case P::Legalized: return "Legalized"; 99 case P::NoPHIs: return "NoPHIs"; 100 case P::NoVRegs: return "NoVRegs"; 101 case P::RegBankSelected: return "RegBankSelected"; 102 case P::Selected: return "Selected"; 103 case P::TracksLiveness: return "TracksLiveness"; 104 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 105 case P::FailsVerification: return "FailsVerification"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 165 const TargetSubtargetInfo &STI, MCContext &Ctx, 166 unsigned FunctionNum) 167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 MBBNumberingEpoch++; 379 } 380 381 /// This method iterates over the basic blocks and assigns their IsBeginSection 382 /// and IsEndSection fields. This must be called after MBB layout is finalized 383 /// and the SectionID's are assigned to MBBs. 384 void MachineFunction::assignBeginEndSections() { 385 front().setIsBeginSection(); 386 auto CurrentSectionID = front().getSectionID(); 387 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 388 if (MBBI->getSectionID() == CurrentSectionID) 389 continue; 390 MBBI->setIsBeginSection(); 391 std::prev(MBBI)->setIsEndSection(); 392 CurrentSectionID = MBBI->getSectionID(); 393 } 394 back().setIsEndSection(); 395 } 396 397 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 398 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 399 DebugLoc DL, 400 bool NoImplicit) { 401 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 402 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 403 } 404 405 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 406 /// identical in all ways except the instruction has no parent, prev, or next. 407 MachineInstr * 408 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 409 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 410 MachineInstr(*this, *Orig); 411 } 412 413 MachineInstr &MachineFunction::cloneMachineInstrBundle( 414 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 415 const MachineInstr &Orig) { 416 MachineInstr *FirstClone = nullptr; 417 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 418 while (true) { 419 MachineInstr *Cloned = CloneMachineInstr(&*I); 420 MBB.insert(InsertBefore, Cloned); 421 if (FirstClone == nullptr) { 422 FirstClone = Cloned; 423 } else { 424 Cloned->bundleWithPred(); 425 } 426 427 if (!I->isBundledWithSucc()) 428 break; 429 ++I; 430 } 431 // Copy over call site info to the cloned instruction if needed. If Orig is in 432 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 433 // the bundle. 434 if (Orig.shouldUpdateCallSiteInfo()) 435 copyCallSiteInfo(&Orig, FirstClone); 436 return *FirstClone; 437 } 438 439 /// Delete the given MachineInstr. 440 /// 441 /// This function also serves as the MachineInstr destructor - the real 442 /// ~MachineInstr() destructor must be empty. 443 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 444 // Verify that a call site info is at valid state. This assertion should 445 // be triggered during the implementation of support for the 446 // call site info of a new architecture. If the assertion is triggered, 447 // back trace will tell where to insert a call to updateCallSiteInfo(). 448 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 449 "Call site info was not updated!"); 450 // Strip it for parts. The operand array and the MI object itself are 451 // independently recyclable. 452 if (MI->Operands) 453 deallocateOperandArray(MI->CapOperands, MI->Operands); 454 // Don't call ~MachineInstr() which must be trivial anyway because 455 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 456 // destructors. 457 InstructionRecycler.Deallocate(Allocator, MI); 458 } 459 460 /// Allocate a new MachineBasicBlock. Use this instead of 461 /// `new MachineBasicBlock'. 462 MachineBasicBlock * 463 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 464 std::optional<UniqueBBID> BBID) { 465 MachineBasicBlock *MBB = 466 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 467 MachineBasicBlock(*this, BB); 468 // Set BBID for `-basic-block=sections=labels` and 469 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 470 // blocks. 471 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 472 Target.Options.BBAddrMap || 473 Target.getBBSectionsType() == BasicBlockSection::List) 474 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 475 return MBB; 476 } 477 478 /// Delete the given MachineBasicBlock. 479 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 480 assert(MBB->getParent() == this && "MBB parent mismatch!"); 481 // Clean up any references to MBB in jump tables before deleting it. 482 if (JumpTableInfo) 483 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 484 MBB->~MachineBasicBlock(); 485 BasicBlockRecycler.Deallocate(Allocator, MBB); 486 } 487 488 MachineMemOperand *MachineFunction::getMachineMemOperand( 489 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 490 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 491 SyncScope::ID SSID, AtomicOrdering Ordering, 492 AtomicOrdering FailureOrdering) { 493 assert((!Size.hasValue() || 494 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 495 "Unexpected an unknown size to be represented using " 496 "LocationSize::beforeOrAfter()"); 497 return new (Allocator) 498 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 499 Ordering, FailureOrdering); 500 } 501 502 MachineMemOperand *MachineFunction::getMachineMemOperand( 503 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 504 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 505 SyncScope::ID SSID, AtomicOrdering Ordering, 506 AtomicOrdering FailureOrdering) { 507 return new (Allocator) 508 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 509 Ordering, FailureOrdering); 510 } 511 512 MachineMemOperand * 513 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 514 const MachinePointerInfo &PtrInfo, 515 LocationSize Size) { 516 assert((!Size.hasValue() || 517 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 518 "Unexpected an unknown size to be represented using " 519 "LocationSize::beforeOrAfter()"); 520 return new (Allocator) 521 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 522 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 523 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 524 } 525 526 MachineMemOperand *MachineFunction::getMachineMemOperand( 527 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 528 return new (Allocator) 529 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 530 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 531 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 532 } 533 534 MachineMemOperand * 535 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 536 int64_t Offset, LLT Ty) { 537 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 538 539 // If there is no pointer value, the offset isn't tracked so we need to adjust 540 // the base alignment. 541 Align Alignment = PtrInfo.V.isNull() 542 ? commonAlignment(MMO->getBaseAlign(), Offset) 543 : MMO->getBaseAlign(); 544 545 // Do not preserve ranges, since we don't necessarily know what the high bits 546 // are anymore. 547 return new (Allocator) MachineMemOperand( 548 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 549 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 550 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 551 } 552 553 MachineMemOperand * 554 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 555 const AAMDNodes &AAInfo) { 556 MachinePointerInfo MPI = MMO->getValue() ? 557 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 558 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 559 560 return new (Allocator) MachineMemOperand( 561 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 562 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 563 MMO->getFailureOrdering()); 564 } 565 566 MachineMemOperand * 567 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 568 MachineMemOperand::Flags Flags) { 569 return new (Allocator) MachineMemOperand( 570 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 571 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 572 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 573 } 574 575 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 576 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 577 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 578 uint32_t CFIType, MDNode *MMRAs) { 579 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 580 PostInstrSymbol, HeapAllocMarker, 581 PCSections, CFIType, MMRAs); 582 } 583 584 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 585 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 586 llvm::copy(Name, Dest); 587 Dest[Name.size()] = 0; 588 return Dest; 589 } 590 591 uint32_t *MachineFunction::allocateRegMask() { 592 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 593 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 594 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 595 memset(Mask, 0, Size * sizeof(Mask[0])); 596 return Mask; 597 } 598 599 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 600 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 601 copy(Mask, AllocMask); 602 return {AllocMask, Mask.size()}; 603 } 604 605 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 606 LLVM_DUMP_METHOD void MachineFunction::dump() const { 607 print(dbgs()); 608 } 609 #endif 610 611 StringRef MachineFunction::getName() const { 612 return getFunction().getName(); 613 } 614 615 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 616 OS << "# Machine code for function " << getName() << ": "; 617 getProperties().print(OS); 618 OS << '\n'; 619 620 // Print Frame Information 621 FrameInfo->print(*this, OS); 622 623 // Print JumpTable Information 624 if (JumpTableInfo) 625 JumpTableInfo->print(OS); 626 627 // Print Constant Pool 628 ConstantPool->print(OS); 629 630 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 631 632 if (RegInfo && !RegInfo->livein_empty()) { 633 OS << "Function Live Ins: "; 634 for (MachineRegisterInfo::livein_iterator 635 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 636 OS << printReg(I->first, TRI); 637 if (I->second) 638 OS << " in " << printReg(I->second, TRI); 639 if (std::next(I) != E) 640 OS << ", "; 641 } 642 OS << '\n'; 643 } 644 645 ModuleSlotTracker MST(getFunction().getParent()); 646 MST.incorporateFunction(getFunction()); 647 for (const auto &BB : *this) { 648 OS << '\n'; 649 // If we print the whole function, print it at its most verbose level. 650 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 651 } 652 653 OS << "\n# End machine code for function " << getName() << ".\n\n"; 654 } 655 656 /// True if this function needs frame moves for debug or exceptions. 657 bool MachineFunction::needsFrameMoves() const { 658 // TODO: Ideally, what we'd like is to have a switch that allows emitting 659 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even 660 // under this switch, we'd like .debug_frame to be precise when using -g. At 661 // this moment, there's no way to specify that some CFI directives go into 662 // .eh_frame only, while others go into .debug_frame only. 663 return getTarget().Options.ForceDwarfFrameSection || 664 F.needsUnwindTableEntry() || 665 !F.getParent()->debug_compile_units().empty(); 666 } 667 668 namespace llvm { 669 670 template<> 671 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 672 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 673 674 static std::string getGraphName(const MachineFunction *F) { 675 return ("CFG for '" + F->getName() + "' function").str(); 676 } 677 678 std::string getNodeLabel(const MachineBasicBlock *Node, 679 const MachineFunction *Graph) { 680 std::string OutStr; 681 { 682 raw_string_ostream OSS(OutStr); 683 684 if (isSimple()) { 685 OSS << printMBBReference(*Node); 686 if (const BasicBlock *BB = Node->getBasicBlock()) 687 OSS << ": " << BB->getName(); 688 } else 689 Node->print(OSS); 690 } 691 692 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 693 694 // Process string output to make it nicer... 695 for (unsigned i = 0; i != OutStr.length(); ++i) 696 if (OutStr[i] == '\n') { // Left justify 697 OutStr[i] = '\\'; 698 OutStr.insert(OutStr.begin()+i+1, 'l'); 699 } 700 return OutStr; 701 } 702 }; 703 704 } // end namespace llvm 705 706 void MachineFunction::viewCFG() const 707 { 708 #ifndef NDEBUG 709 ViewGraph(this, "mf" + getName()); 710 #else 711 errs() << "MachineFunction::viewCFG is only available in debug builds on " 712 << "systems with Graphviz or gv!\n"; 713 #endif // NDEBUG 714 } 715 716 void MachineFunction::viewCFGOnly() const 717 { 718 #ifndef NDEBUG 719 ViewGraph(this, "mf" + getName(), true); 720 #else 721 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 722 << "systems with Graphviz or gv!\n"; 723 #endif // NDEBUG 724 } 725 726 /// Add the specified physical register as a live-in value and 727 /// create a corresponding virtual register for it. 728 Register MachineFunction::addLiveIn(MCRegister PReg, 729 const TargetRegisterClass *RC) { 730 MachineRegisterInfo &MRI = getRegInfo(); 731 Register VReg = MRI.getLiveInVirtReg(PReg); 732 if (VReg) { 733 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 734 (void)VRegRC; 735 // A physical register can be added several times. 736 // Between two calls, the register class of the related virtual register 737 // may have been constrained to match some operation constraints. 738 // In that case, check that the current register class includes the 739 // physical register and is a sub class of the specified RC. 740 assert((VRegRC == RC || (VRegRC->contains(PReg) && 741 RC->hasSubClassEq(VRegRC))) && 742 "Register class mismatch!"); 743 return VReg; 744 } 745 VReg = MRI.createVirtualRegister(RC); 746 MRI.addLiveIn(PReg, VReg); 747 return VReg; 748 } 749 750 /// Return the MCSymbol for the specified non-empty jump table. 751 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 752 /// normal 'L' label is returned. 753 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 754 bool isLinkerPrivate) const { 755 const DataLayout &DL = getDataLayout(); 756 assert(JumpTableInfo && "No jump tables"); 757 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 758 759 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 760 : DL.getPrivateGlobalPrefix(); 761 SmallString<60> Name; 762 raw_svector_ostream(Name) 763 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 764 return Ctx.getOrCreateSymbol(Name); 765 } 766 767 /// Return a function-local symbol to represent the PIC base. 768 MCSymbol *MachineFunction::getPICBaseSymbol() const { 769 const DataLayout &DL = getDataLayout(); 770 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 771 Twine(getFunctionNumber()) + "$pb"); 772 } 773 774 /// \name Exception Handling 775 /// \{ 776 777 LandingPadInfo & 778 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 779 unsigned N = LandingPads.size(); 780 for (unsigned i = 0; i < N; ++i) { 781 LandingPadInfo &LP = LandingPads[i]; 782 if (LP.LandingPadBlock == LandingPad) 783 return LP; 784 } 785 786 LandingPads.push_back(LandingPadInfo(LandingPad)); 787 return LandingPads[N]; 788 } 789 790 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 791 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 792 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 793 LP.BeginLabels.push_back(BeginLabel); 794 LP.EndLabels.push_back(EndLabel); 795 } 796 797 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 798 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 799 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 800 LP.LandingPadLabel = LandingPadLabel; 801 802 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 803 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 804 // If there's no typeid list specified, then "cleanup" is implicit. 805 // Otherwise, id 0 is reserved for the cleanup action. 806 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 807 LP.TypeIds.push_back(0); 808 809 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 810 // correct, but we need to do it this way because of how the DWARF EH 811 // emitter processes the clauses. 812 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 813 Value *Val = LPI->getClause(I - 1); 814 if (LPI->isCatch(I - 1)) { 815 LP.TypeIds.push_back( 816 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 817 } else { 818 // Add filters in a list. 819 auto *CVal = cast<Constant>(Val); 820 SmallVector<unsigned, 4> FilterList; 821 for (const Use &U : CVal->operands()) 822 FilterList.push_back( 823 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 824 825 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 826 } 827 } 828 829 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 830 for (unsigned I = CPI->arg_size(); I != 0; --I) { 831 auto *TypeInfo = 832 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 833 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 834 } 835 836 } else { 837 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 838 } 839 840 return LandingPadLabel; 841 } 842 843 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 844 ArrayRef<unsigned> Sites) { 845 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 846 } 847 848 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 849 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 850 if (TypeInfos[i] == TI) return i + 1; 851 852 TypeInfos.push_back(TI); 853 return TypeInfos.size(); 854 } 855 856 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 857 // If the new filter coincides with the tail of an existing filter, then 858 // re-use the existing filter. Folding filters more than this requires 859 // re-ordering filters and/or their elements - probably not worth it. 860 for (unsigned i : FilterEnds) { 861 unsigned j = TyIds.size(); 862 863 while (i && j) 864 if (FilterIds[--i] != TyIds[--j]) 865 goto try_next; 866 867 if (!j) 868 // The new filter coincides with range [i, end) of the existing filter. 869 return -(1 + i); 870 871 try_next:; 872 } 873 874 // Add the new filter. 875 int FilterID = -(1 + FilterIds.size()); 876 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 877 llvm::append_range(FilterIds, TyIds); 878 FilterEnds.push_back(FilterIds.size()); 879 FilterIds.push_back(0); // terminator 880 return FilterID; 881 } 882 883 MachineFunction::CallSiteInfoMap::iterator 884 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 885 assert(MI->isCandidateForCallSiteEntry() && 886 "Call site info refers only to call (MI) candidates"); 887 888 if (!Target.Options.EmitCallSiteInfo) 889 return CallSitesInfo.end(); 890 return CallSitesInfo.find(MI); 891 } 892 893 /// Return the call machine instruction or find a call within bundle. 894 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 895 if (!MI->isBundle()) 896 return MI; 897 898 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 899 getBundleEnd(MI->getIterator()))) 900 if (BMI.isCandidateForCallSiteEntry()) 901 return &BMI; 902 903 llvm_unreachable("Unexpected bundle without a call site candidate"); 904 } 905 906 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 907 assert(MI->shouldUpdateCallSiteInfo() && 908 "Call site info refers only to call (MI) candidates or " 909 "candidates inside bundles"); 910 911 const MachineInstr *CallMI = getCallInstr(MI); 912 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 913 if (CSIt == CallSitesInfo.end()) 914 return; 915 CallSitesInfo.erase(CSIt); 916 } 917 918 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 919 const MachineInstr *New) { 920 assert(Old->shouldUpdateCallSiteInfo() && 921 "Call site info refers only to call (MI) candidates or " 922 "candidates inside bundles"); 923 924 if (!New->isCandidateForCallSiteEntry()) 925 return eraseCallSiteInfo(Old); 926 927 const MachineInstr *OldCallMI = getCallInstr(Old); 928 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 929 if (CSIt == CallSitesInfo.end()) 930 return; 931 932 CallSiteInfo CSInfo = CSIt->second; 933 CallSitesInfo[New] = CSInfo; 934 } 935 936 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 937 const MachineInstr *New) { 938 assert(Old->shouldUpdateCallSiteInfo() && 939 "Call site info refers only to call (MI) candidates or " 940 "candidates inside bundles"); 941 942 if (!New->isCandidateForCallSiteEntry()) 943 return eraseCallSiteInfo(Old); 944 945 const MachineInstr *OldCallMI = getCallInstr(Old); 946 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 947 if (CSIt == CallSitesInfo.end()) 948 return; 949 950 CallSiteInfo CSInfo = std::move(CSIt->second); 951 CallSitesInfo.erase(CSIt); 952 CallSitesInfo[New] = CSInfo; 953 } 954 955 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 956 DebugInstrNumberingCount = Num; 957 } 958 959 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 960 DebugInstrOperandPair B, 961 unsigned Subreg) { 962 // Catch any accidental self-loops. 963 assert(A.first != B.first); 964 // Don't allow any substitutions _from_ the memory operand number. 965 assert(A.second != DebugOperandMemNumber); 966 967 DebugValueSubstitutions.push_back({A, B, Subreg}); 968 } 969 970 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 971 MachineInstr &New, 972 unsigned MaxOperand) { 973 // If the Old instruction wasn't tracked at all, there is no work to do. 974 unsigned OldInstrNum = Old.peekDebugInstrNum(); 975 if (!OldInstrNum) 976 return; 977 978 // Iterate over all operands looking for defs to create substitutions for. 979 // Avoid creating new instr numbers unless we create a new substitution. 980 // While this has no functional effect, it risks confusing someone reading 981 // MIR output. 982 // Examine all the operands, or the first N specified by the caller. 983 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 984 for (unsigned int I = 0; I < MaxOperand; ++I) { 985 const auto &OldMO = Old.getOperand(I); 986 auto &NewMO = New.getOperand(I); 987 (void)NewMO; 988 989 if (!OldMO.isReg() || !OldMO.isDef()) 990 continue; 991 assert(NewMO.isDef()); 992 993 unsigned NewInstrNum = New.getDebugInstrNum(); 994 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 995 std::make_pair(NewInstrNum, I)); 996 } 997 } 998 999 auto MachineFunction::salvageCopySSA( 1000 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1001 -> DebugInstrOperandPair { 1002 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1003 1004 // Check whether this copy-like instruction has already been salvaged into 1005 // an operand pair. 1006 Register Dest; 1007 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1008 Dest = CopyDstSrc->Destination->getReg(); 1009 } else { 1010 assert(MI.isSubregToReg()); 1011 Dest = MI.getOperand(0).getReg(); 1012 } 1013 1014 auto CacheIt = DbgPHICache.find(Dest); 1015 if (CacheIt != DbgPHICache.end()) 1016 return CacheIt->second; 1017 1018 // Calculate the instruction number to use, or install a DBG_PHI. 1019 auto OperandPair = salvageCopySSAImpl(MI); 1020 DbgPHICache.insert({Dest, OperandPair}); 1021 return OperandPair; 1022 } 1023 1024 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1025 -> DebugInstrOperandPair { 1026 MachineRegisterInfo &MRI = getRegInfo(); 1027 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1028 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1029 1030 // Chase the value read by a copy-like instruction back to the instruction 1031 // that ultimately _defines_ that value. This may pass: 1032 // * Through multiple intermediate copies, including subregister moves / 1033 // copies, 1034 // * Copies from physical registers that must then be traced back to the 1035 // defining instruction, 1036 // * Or, physical registers may be live-in to (only) the entry block, which 1037 // requires a DBG_PHI to be created. 1038 // We can pursue this problem in that order: trace back through copies, 1039 // optionally through a physical register, to a defining instruction. We 1040 // should never move from physreg to vreg. As we're still in SSA form, no need 1041 // to worry about partial definitions of registers. 1042 1043 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1044 // returns the register read and any subregister identifying which part is 1045 // read. 1046 auto GetRegAndSubreg = 1047 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1048 Register NewReg, OldReg; 1049 unsigned SubReg; 1050 if (Cpy.isCopy()) { 1051 OldReg = Cpy.getOperand(0).getReg(); 1052 NewReg = Cpy.getOperand(1).getReg(); 1053 SubReg = Cpy.getOperand(1).getSubReg(); 1054 } else if (Cpy.isSubregToReg()) { 1055 OldReg = Cpy.getOperand(0).getReg(); 1056 NewReg = Cpy.getOperand(2).getReg(); 1057 SubReg = Cpy.getOperand(3).getImm(); 1058 } else { 1059 auto CopyDetails = *TII.isCopyInstr(Cpy); 1060 const MachineOperand &Src = *CopyDetails.Source; 1061 const MachineOperand &Dest = *CopyDetails.Destination; 1062 OldReg = Dest.getReg(); 1063 NewReg = Src.getReg(); 1064 SubReg = Src.getSubReg(); 1065 } 1066 1067 return {NewReg, SubReg}; 1068 }; 1069 1070 // First seek either the defining instruction, or a copy from a physreg. 1071 // During search, the current state is the current copy instruction, and which 1072 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1073 // deal with those later. 1074 auto State = GetRegAndSubreg(MI); 1075 auto CurInst = MI.getIterator(); 1076 SmallVector<unsigned, 4> SubregsSeen; 1077 while (true) { 1078 // If we've found a copy from a physreg, first portion of search is over. 1079 if (!State.first.isVirtual()) 1080 break; 1081 1082 // Record any subregister qualifier. 1083 if (State.second) 1084 SubregsSeen.push_back(State.second); 1085 1086 assert(MRI.hasOneDef(State.first)); 1087 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1088 CurInst = Inst.getIterator(); 1089 1090 // Any non-copy instruction is the defining instruction we're seeking. 1091 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1092 break; 1093 State = GetRegAndSubreg(Inst); 1094 }; 1095 1096 // Helper lambda to apply additional subregister substitutions to a known 1097 // instruction/operand pair. Adds new (fake) substitutions so that we can 1098 // record the subregister. FIXME: this isn't very space efficient if multiple 1099 // values are tracked back through the same copies; cache something later. 1100 auto ApplySubregisters = 1101 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1102 for (unsigned Subreg : reverse(SubregsSeen)) { 1103 // Fetch a new instruction number, not attached to an actual instruction. 1104 unsigned NewInstrNumber = getNewDebugInstrNum(); 1105 // Add a substitution from the "new" number to the known one, with a 1106 // qualifying subreg. 1107 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1108 // Return the new number; to find the underlying value, consumers need to 1109 // deal with the qualifying subreg. 1110 P = {NewInstrNumber, 0}; 1111 } 1112 return P; 1113 }; 1114 1115 // If we managed to find the defining instruction after COPYs, return an 1116 // instruction / operand pair after adding subregister qualifiers. 1117 if (State.first.isVirtual()) { 1118 // Virtual register def -- we can just look up where this happens. 1119 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1120 for (auto &MO : Inst->all_defs()) { 1121 if (MO.getReg() != State.first) 1122 continue; 1123 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1124 } 1125 1126 llvm_unreachable("Vreg def with no corresponding operand?"); 1127 } 1128 1129 // Our search ended in a copy from a physreg: walk back up the function 1130 // looking for whatever defines the physreg. 1131 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1132 State = GetRegAndSubreg(*CurInst); 1133 Register RegToSeek = State.first; 1134 1135 auto RMII = CurInst->getReverseIterator(); 1136 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1137 for (auto &ToExamine : PrevInstrs) { 1138 for (auto &MO : ToExamine.all_defs()) { 1139 // Test for operand that defines something aliasing RegToSeek. 1140 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1141 continue; 1142 1143 return ApplySubregisters( 1144 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1145 } 1146 } 1147 1148 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1149 1150 // We reached the start of the block before finding a defining instruction. 1151 // There are numerous scenarios where this can happen: 1152 // * Constant physical registers, 1153 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1154 // * Arguments in the entry block, 1155 // * Exception handling landing pads. 1156 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1157 // the variable value at this position, rather than checking it makes sense. 1158 1159 // Create DBG_PHI for specified physreg. 1160 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1161 TII.get(TargetOpcode::DBG_PHI)); 1162 Builder.addReg(State.first); 1163 unsigned NewNum = getNewDebugInstrNum(); 1164 Builder.addImm(NewNum); 1165 return ApplySubregisters({NewNum, 0u}); 1166 } 1167 1168 void MachineFunction::finalizeDebugInstrRefs() { 1169 auto *TII = getSubtarget().getInstrInfo(); 1170 1171 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1172 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1173 MI.setDesc(RefII); 1174 MI.setDebugValueUndef(); 1175 }; 1176 1177 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1178 for (auto &MBB : *this) { 1179 for (auto &MI : MBB) { 1180 if (!MI.isDebugRef()) 1181 continue; 1182 1183 bool IsValidRef = true; 1184 1185 for (MachineOperand &MO : MI.debug_operands()) { 1186 if (!MO.isReg()) 1187 continue; 1188 1189 Register Reg = MO.getReg(); 1190 1191 // Some vregs can be deleted as redundant in the meantime. Mark those 1192 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1193 // quickly deleted, leaving dangling references to vregs with no def. 1194 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1195 IsValidRef = false; 1196 break; 1197 } 1198 1199 assert(Reg.isVirtual()); 1200 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1201 1202 // If we've found a copy-like instruction, follow it back to the 1203 // instruction that defines the source value, see salvageCopySSA docs 1204 // for why this is important. 1205 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1206 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1207 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1208 } else { 1209 // Otherwise, identify the operand number that the VReg refers to. 1210 unsigned OperandIdx = 0; 1211 for (const auto &DefMO : DefMI.operands()) { 1212 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1213 break; 1214 ++OperandIdx; 1215 } 1216 assert(OperandIdx < DefMI.getNumOperands()); 1217 1218 // Morph this instr ref to point at the given instruction and operand. 1219 unsigned ID = DefMI.getDebugInstrNum(); 1220 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1221 } 1222 } 1223 1224 if (!IsValidRef) 1225 MakeUndefDbgValue(MI); 1226 } 1227 } 1228 } 1229 1230 bool MachineFunction::shouldUseDebugInstrRef() const { 1231 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1232 // have optimized code inlined into this unoptimized code, however with 1233 // fewer and less aggressive optimizations happening, coverage and accuracy 1234 // should not suffer. 1235 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1236 return false; 1237 1238 // Don't use instr-ref if this function is marked optnone. 1239 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1240 return false; 1241 1242 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1243 return true; 1244 1245 return false; 1246 } 1247 1248 bool MachineFunction::useDebugInstrRef() const { 1249 return UseDebugInstrRef; 1250 } 1251 1252 void MachineFunction::setUseDebugInstrRef(bool Use) { 1253 UseDebugInstrRef = Use; 1254 } 1255 1256 // Use one million as a high / reserved number. 1257 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1258 1259 /// \} 1260 1261 //===----------------------------------------------------------------------===// 1262 // MachineJumpTableInfo implementation 1263 //===----------------------------------------------------------------------===// 1264 1265 /// Return the size of each entry in the jump table. 1266 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1267 // The size of a jump table entry is 4 bytes unless the entry is just the 1268 // address of a block, in which case it is the pointer size. 1269 switch (getEntryKind()) { 1270 case MachineJumpTableInfo::EK_BlockAddress: 1271 return TD.getPointerSize(); 1272 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1273 case MachineJumpTableInfo::EK_LabelDifference64: 1274 return 8; 1275 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1276 case MachineJumpTableInfo::EK_LabelDifference32: 1277 case MachineJumpTableInfo::EK_Custom32: 1278 return 4; 1279 case MachineJumpTableInfo::EK_Inline: 1280 return 0; 1281 } 1282 llvm_unreachable("Unknown jump table encoding!"); 1283 } 1284 1285 /// Return the alignment of each entry in the jump table. 1286 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1287 // The alignment of a jump table entry is the alignment of int32 unless the 1288 // entry is just the address of a block, in which case it is the pointer 1289 // alignment. 1290 switch (getEntryKind()) { 1291 case MachineJumpTableInfo::EK_BlockAddress: 1292 return TD.getPointerABIAlignment(0).value(); 1293 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1294 case MachineJumpTableInfo::EK_LabelDifference64: 1295 return TD.getABIIntegerTypeAlignment(64).value(); 1296 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1297 case MachineJumpTableInfo::EK_LabelDifference32: 1298 case MachineJumpTableInfo::EK_Custom32: 1299 return TD.getABIIntegerTypeAlignment(32).value(); 1300 case MachineJumpTableInfo::EK_Inline: 1301 return 1; 1302 } 1303 llvm_unreachable("Unknown jump table encoding!"); 1304 } 1305 1306 /// Create a new jump table entry in the jump table info. 1307 unsigned MachineJumpTableInfo::createJumpTableIndex( 1308 const std::vector<MachineBasicBlock*> &DestBBs) { 1309 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1310 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1311 return JumpTables.size()-1; 1312 } 1313 1314 /// If Old is the target of any jump tables, update the jump tables to branch 1315 /// to New instead. 1316 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1317 MachineBasicBlock *New) { 1318 assert(Old != New && "Not making a change?"); 1319 bool MadeChange = false; 1320 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1321 ReplaceMBBInJumpTable(i, Old, New); 1322 return MadeChange; 1323 } 1324 1325 /// If MBB is present in any jump tables, remove it. 1326 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1327 bool MadeChange = false; 1328 for (MachineJumpTableEntry &JTE : JumpTables) { 1329 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1330 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1331 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1332 } 1333 return MadeChange; 1334 } 1335 1336 /// If Old is a target of the jump tables, update the jump table to branch to 1337 /// New instead. 1338 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1339 MachineBasicBlock *Old, 1340 MachineBasicBlock *New) { 1341 assert(Old != New && "Not making a change?"); 1342 bool MadeChange = false; 1343 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1344 for (MachineBasicBlock *&MBB : JTE.MBBs) 1345 if (MBB == Old) { 1346 MBB = New; 1347 MadeChange = true; 1348 } 1349 return MadeChange; 1350 } 1351 1352 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1353 if (JumpTables.empty()) return; 1354 1355 OS << "Jump Tables:\n"; 1356 1357 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1358 OS << printJumpTableEntryReference(i) << ':'; 1359 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1360 OS << ' ' << printMBBReference(*MBB); 1361 if (i != e) 1362 OS << '\n'; 1363 } 1364 1365 OS << '\n'; 1366 } 1367 1368 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1369 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1370 #endif 1371 1372 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1373 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1374 } 1375 1376 //===----------------------------------------------------------------------===// 1377 // MachineConstantPool implementation 1378 //===----------------------------------------------------------------------===// 1379 1380 void MachineConstantPoolValue::anchor() {} 1381 1382 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1383 return DL.getTypeAllocSize(Ty); 1384 } 1385 1386 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1387 if (isMachineConstantPoolEntry()) 1388 return Val.MachineCPVal->getSizeInBytes(DL); 1389 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1390 } 1391 1392 bool MachineConstantPoolEntry::needsRelocation() const { 1393 if (isMachineConstantPoolEntry()) 1394 return true; 1395 return Val.ConstVal->needsDynamicRelocation(); 1396 } 1397 1398 SectionKind 1399 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1400 if (needsRelocation()) 1401 return SectionKind::getReadOnlyWithRel(); 1402 switch (getSizeInBytes(*DL)) { 1403 case 4: 1404 return SectionKind::getMergeableConst4(); 1405 case 8: 1406 return SectionKind::getMergeableConst8(); 1407 case 16: 1408 return SectionKind::getMergeableConst16(); 1409 case 32: 1410 return SectionKind::getMergeableConst32(); 1411 default: 1412 return SectionKind::getReadOnly(); 1413 } 1414 } 1415 1416 MachineConstantPool::~MachineConstantPool() { 1417 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1418 // so keep track of which we've deleted to avoid double deletions. 1419 DenseSet<MachineConstantPoolValue*> Deleted; 1420 for (const MachineConstantPoolEntry &C : Constants) 1421 if (C.isMachineConstantPoolEntry()) { 1422 Deleted.insert(C.Val.MachineCPVal); 1423 delete C.Val.MachineCPVal; 1424 } 1425 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1426 if (Deleted.count(CPV) == 0) 1427 delete CPV; 1428 } 1429 } 1430 1431 /// Test whether the given two constants can be allocated the same constant pool 1432 /// entry referenced by \param A. 1433 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1434 const DataLayout &DL) { 1435 // Handle the trivial case quickly. 1436 if (A == B) return true; 1437 1438 // If they have the same type but weren't the same constant, quickly 1439 // reject them. 1440 if (A->getType() == B->getType()) return false; 1441 1442 // We can't handle structs or arrays. 1443 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1444 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1445 return false; 1446 1447 // For now, only support constants with the same size. 1448 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1449 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1450 return false; 1451 1452 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1453 1454 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1455 1456 // Try constant folding a bitcast of both instructions to an integer. If we 1457 // get two identical ConstantInt's, then we are good to share them. We use 1458 // the constant folding APIs to do this so that we get the benefit of 1459 // DataLayout. 1460 if (isa<PointerType>(A->getType())) 1461 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1462 const_cast<Constant *>(A), IntTy, DL); 1463 else if (A->getType() != IntTy) 1464 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1465 IntTy, DL); 1466 if (isa<PointerType>(B->getType())) 1467 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1468 const_cast<Constant *>(B), IntTy, DL); 1469 else if (B->getType() != IntTy) 1470 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1471 IntTy, DL); 1472 1473 if (A != B) 1474 return false; 1475 1476 // Constants only safely match if A doesn't contain undef/poison. 1477 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1478 // TODO: Handle cases where A and B have the same undef/poison elements. 1479 // TODO: Merge A and B with mismatching undef/poison elements. 1480 return !ContainsUndefOrPoisonA; 1481 } 1482 1483 /// Create a new entry in the constant pool or return an existing one. 1484 /// User must specify the log2 of the minimum required alignment for the object. 1485 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1486 Align Alignment) { 1487 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1488 1489 // Check to see if we already have this constant. 1490 // 1491 // FIXME, this could be made much more efficient for large constant pools. 1492 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1493 if (!Constants[i].isMachineConstantPoolEntry() && 1494 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1495 if (Constants[i].getAlign() < Alignment) 1496 Constants[i].Alignment = Alignment; 1497 return i; 1498 } 1499 1500 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1501 return Constants.size()-1; 1502 } 1503 1504 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1505 Align Alignment) { 1506 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1507 1508 // Check to see if we already have this constant. 1509 // 1510 // FIXME, this could be made much more efficient for large constant pools. 1511 int Idx = V->getExistingMachineCPValue(this, Alignment); 1512 if (Idx != -1) { 1513 MachineCPVsSharingEntries.insert(V); 1514 return (unsigned)Idx; 1515 } 1516 1517 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1518 return Constants.size()-1; 1519 } 1520 1521 void MachineConstantPool::print(raw_ostream &OS) const { 1522 if (Constants.empty()) return; 1523 1524 OS << "Constant Pool:\n"; 1525 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1526 OS << " cp#" << i << ": "; 1527 if (Constants[i].isMachineConstantPoolEntry()) 1528 Constants[i].Val.MachineCPVal->print(OS); 1529 else 1530 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1531 OS << ", align=" << Constants[i].getAlign().value(); 1532 OS << "\n"; 1533 } 1534 } 1535 1536 //===----------------------------------------------------------------------===// 1537 // Template specialization for MachineFunction implementation of 1538 // ProfileSummaryInfo::getEntryCount(). 1539 //===----------------------------------------------------------------------===// 1540 template <> 1541 std::optional<Function::ProfileCount> 1542 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1543 const llvm::MachineFunction *F) const { 1544 return F->getFunction().getEntryCount(); 1545 } 1546 1547 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1548 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1549 #endif 1550