xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision d871b2e0d09b872c57139ee0e24f966d58b92d33)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 #include "LiveDebugValues/LiveDebugValues.h"
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "codegen"
84 
85 static cl::opt<unsigned> AlignAllFunctions(
86     "align-all-functions",
87     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88              "means align on 16B boundaries)."),
89     cl::init(0), cl::Hidden);
90 
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
92   using P = MachineFunctionProperties::Property;
93 
94   // clang-format off
95   switch(Prop) {
96   case P::FailedISel: return "FailedISel";
97   case P::IsSSA: return "IsSSA";
98   case P::Legalized: return "Legalized";
99   case P::NoPHIs: return "NoPHIs";
100   case P::NoVRegs: return "NoVRegs";
101   case P::RegBankSelected: return "RegBankSelected";
102   case P::Selected: return "Selected";
103   case P::TracksLiveness: return "TracksLiveness";
104   case P::TiedOpsRewritten: return "TiedOpsRewritten";
105   case P::FailsVerification: return "FailsVerification";
106   case P::TracksDebugUserValues: return "TracksDebugUserValues";
107   }
108   // clang-format on
109   llvm_unreachable("Invalid machine function property");
110 }
111 
112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113   if (!F.hasFnAttribute(Attribute::SafeStack))
114     return;
115 
116   auto *Existing =
117       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118 
119   if (!Existing || Existing->getNumOperands() != 2)
120     return;
121 
122   auto *MetadataName = "unsafe-stack-size";
123   if (auto &N = Existing->getOperand(0)) {
124     if (N.equalsStr(MetadataName)) {
125       if (auto &Op = Existing->getOperand(1)) {
126         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127         FrameInfo.setUnsafeStackSize(Val);
128       }
129     }
130   }
131 }
132 
133 // Pin the vtable to this file.
134 void MachineFunction::Delegate::anchor() {}
135 
136 void MachineFunctionProperties::print(raw_ostream &OS) const {
137   const char *Separator = "";
138   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139     if (!Properties[I])
140       continue;
141     OS << Separator << getPropertyName(static_cast<Property>(I));
142     Separator = ", ";
143   }
144 }
145 
146 //===----------------------------------------------------------------------===//
147 // MachineFunction implementation
148 //===----------------------------------------------------------------------===//
149 
150 // Out-of-line virtual method.
151 MachineFunctionInfo::~MachineFunctionInfo() = default;
152 
153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154   MBB->getParent()->deleteMachineBasicBlock(MBB);
155 }
156 
157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
158                                            const Function &F) {
159   if (auto MA = F.getFnStackAlign())
160     return *MA;
161   return STI->getFrameLowering()->getStackAlign();
162 }
163 
164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
165                                  const TargetSubtargetInfo &STI, MCContext &Ctx,
166                                  unsigned FunctionNum)
167     : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
168   FunctionNumber = FunctionNum;
169   init();
170 }
171 
172 void MachineFunction::handleInsertion(MachineInstr &MI) {
173   if (TheDelegate)
174     TheDelegate->MF_HandleInsertion(MI);
175 }
176 
177 void MachineFunction::handleRemoval(MachineInstr &MI) {
178   if (TheDelegate)
179     TheDelegate->MF_HandleRemoval(MI);
180 }
181 
182 void MachineFunction::handleChangeDesc(MachineInstr &MI,
183                                        const MCInstrDesc &TID) {
184   if (TheDelegate)
185     TheDelegate->MF_HandleChangeDesc(MI, TID);
186 }
187 
188 void MachineFunction::init() {
189   // Assume the function starts in SSA form with correct liveness.
190   Properties.set(MachineFunctionProperties::Property::IsSSA);
191   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
192   if (STI->getRegisterInfo())
193     RegInfo = new (Allocator) MachineRegisterInfo(this);
194   else
195     RegInfo = nullptr;
196 
197   MFInfo = nullptr;
198 
199   // We can realign the stack if the target supports it and the user hasn't
200   // explicitly asked us not to.
201   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202                       !F.hasFnAttribute("no-realign-stack");
203   bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) ||
204                         F.hasFnAttribute("stackrealign");
205   FrameInfo = new (Allocator) MachineFrameInfo(
206       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
207       /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
208 
209   setUnsafeStackSize(F, *FrameInfo);
210 
211   if (F.hasFnAttribute(Attribute::StackAlignment))
212     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
213 
214   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
215   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
216 
217   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
218   // FIXME: Use Function::hasOptSize().
219   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
220     Alignment = std::max(Alignment,
221                          STI->getTargetLowering()->getPrefFunctionAlignment());
222 
223   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
224   // to load a type hash before the function label. Ensure functions are aligned
225   // by a least 4 to avoid unaligned access, which is especially important for
226   // -mno-unaligned-access.
227   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
228       F.getMetadata(LLVMContext::MD_kcfi_type))
229     Alignment = std::max(Alignment, Align(4));
230 
231   if (AlignAllFunctions)
232     Alignment = Align(1ULL << AlignAllFunctions);
233 
234   JumpTableInfo = nullptr;
235 
236   if (isFuncletEHPersonality(classifyEHPersonality(
237           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
238     WinEHInfo = new (Allocator) WinEHFuncInfo();
239   }
240 
241   if (isScopedEHPersonality(classifyEHPersonality(
242           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
243     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
244   }
245 
246   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
247          "Can't create a MachineFunction using a Module with a "
248          "Target-incompatible DataLayout attached\n");
249 
250   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
251 }
252 
253 void MachineFunction::initTargetMachineFunctionInfo(
254     const TargetSubtargetInfo &STI) {
255   assert(!MFInfo && "MachineFunctionInfo already set");
256   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
257 }
258 
259 MachineFunction::~MachineFunction() {
260   clear();
261 }
262 
263 void MachineFunction::clear() {
264   Properties.reset();
265   // Don't call destructors on MachineInstr and MachineOperand. All of their
266   // memory comes from the BumpPtrAllocator which is about to be purged.
267   //
268   // Do call MachineBasicBlock destructors, it contains std::vectors.
269   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
270     I->Insts.clearAndLeakNodesUnsafely();
271   MBBNumbering.clear();
272 
273   InstructionRecycler.clear(Allocator);
274   OperandRecycler.clear(Allocator);
275   BasicBlockRecycler.clear(Allocator);
276   CodeViewAnnotations.clear();
277   VariableDbgInfos.clear();
278   if (RegInfo) {
279     RegInfo->~MachineRegisterInfo();
280     Allocator.Deallocate(RegInfo);
281   }
282   if (MFInfo) {
283     MFInfo->~MachineFunctionInfo();
284     Allocator.Deallocate(MFInfo);
285   }
286 
287   FrameInfo->~MachineFrameInfo();
288   Allocator.Deallocate(FrameInfo);
289 
290   ConstantPool->~MachineConstantPool();
291   Allocator.Deallocate(ConstantPool);
292 
293   if (JumpTableInfo) {
294     JumpTableInfo->~MachineJumpTableInfo();
295     Allocator.Deallocate(JumpTableInfo);
296   }
297 
298   if (WinEHInfo) {
299     WinEHInfo->~WinEHFuncInfo();
300     Allocator.Deallocate(WinEHInfo);
301   }
302 
303   if (WasmEHInfo) {
304     WasmEHInfo->~WasmEHFuncInfo();
305     Allocator.Deallocate(WasmEHInfo);
306   }
307 }
308 
309 const DataLayout &MachineFunction::getDataLayout() const {
310   return F.getDataLayout();
311 }
312 
313 /// Get the JumpTableInfo for this function.
314 /// If it does not already exist, allocate one.
315 MachineJumpTableInfo *MachineFunction::
316 getOrCreateJumpTableInfo(unsigned EntryKind) {
317   if (JumpTableInfo) return JumpTableInfo;
318 
319   JumpTableInfo = new (Allocator)
320     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
321   return JumpTableInfo;
322 }
323 
324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
325   return F.getDenormalMode(FPType);
326 }
327 
328 /// Should we be emitting segmented stack stuff for the function
329 bool MachineFunction::shouldSplitStack() const {
330   return getFunction().hasFnAttribute("split-stack");
331 }
332 
333 [[nodiscard]] unsigned
334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
335   FrameInstructions.push_back(Inst);
336   return FrameInstructions.size() - 1;
337 }
338 
339 /// This discards all of the MachineBasicBlock numbers and recomputes them.
340 /// This guarantees that the MBB numbers are sequential, dense, and match the
341 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
342 /// is specified, only that block and those after it are renumbered.
343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
344   if (empty()) { MBBNumbering.clear(); return; }
345   MachineFunction::iterator MBBI, E = end();
346   if (MBB == nullptr)
347     MBBI = begin();
348   else
349     MBBI = MBB->getIterator();
350 
351   // Figure out the block number this should have.
352   unsigned BlockNo = 0;
353   if (MBBI != begin())
354     BlockNo = std::prev(MBBI)->getNumber() + 1;
355 
356   for (; MBBI != E; ++MBBI, ++BlockNo) {
357     if (MBBI->getNumber() != (int)BlockNo) {
358       // Remove use of the old number.
359       if (MBBI->getNumber() != -1) {
360         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
361                "MBB number mismatch!");
362         MBBNumbering[MBBI->getNumber()] = nullptr;
363       }
364 
365       // If BlockNo is already taken, set that block's number to -1.
366       if (MBBNumbering[BlockNo])
367         MBBNumbering[BlockNo]->setNumber(-1);
368 
369       MBBNumbering[BlockNo] = &*MBBI;
370       MBBI->setNumber(BlockNo);
371     }
372   }
373 
374   // Okay, all the blocks are renumbered.  If we have compactified the block
375   // numbering, shrink MBBNumbering now.
376   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
377   MBBNumbering.resize(BlockNo);
378   MBBNumberingEpoch++;
379 }
380 
381 /// This method iterates over the basic blocks and assigns their IsBeginSection
382 /// and IsEndSection fields. This must be called after MBB layout is finalized
383 /// and the SectionID's are assigned to MBBs.
384 void MachineFunction::assignBeginEndSections() {
385   front().setIsBeginSection();
386   auto CurrentSectionID = front().getSectionID();
387   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
388     if (MBBI->getSectionID() == CurrentSectionID)
389       continue;
390     MBBI->setIsBeginSection();
391     std::prev(MBBI)->setIsEndSection();
392     CurrentSectionID = MBBI->getSectionID();
393   }
394   back().setIsEndSection();
395 }
396 
397 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
398 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
399                                                   DebugLoc DL,
400                                                   bool NoImplicit) {
401   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
402       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
403 }
404 
405 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
406 /// identical in all ways except the instruction has no parent, prev, or next.
407 MachineInstr *
408 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
409   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
410              MachineInstr(*this, *Orig);
411 }
412 
413 MachineInstr &MachineFunction::cloneMachineInstrBundle(
414     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
415     const MachineInstr &Orig) {
416   MachineInstr *FirstClone = nullptr;
417   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
418   while (true) {
419     MachineInstr *Cloned = CloneMachineInstr(&*I);
420     MBB.insert(InsertBefore, Cloned);
421     if (FirstClone == nullptr) {
422       FirstClone = Cloned;
423     } else {
424       Cloned->bundleWithPred();
425     }
426 
427     if (!I->isBundledWithSucc())
428       break;
429     ++I;
430   }
431   // Copy over call site info to the cloned instruction if needed. If Orig is in
432   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
433   // the bundle.
434   if (Orig.shouldUpdateCallSiteInfo())
435     copyCallSiteInfo(&Orig, FirstClone);
436   return *FirstClone;
437 }
438 
439 /// Delete the given MachineInstr.
440 ///
441 /// This function also serves as the MachineInstr destructor - the real
442 /// ~MachineInstr() destructor must be empty.
443 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
444   // Verify that a call site info is at valid state. This assertion should
445   // be triggered during the implementation of support for the
446   // call site info of a new architecture. If the assertion is triggered,
447   // back trace will tell where to insert a call to updateCallSiteInfo().
448   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
449          "Call site info was not updated!");
450   // Strip it for parts. The operand array and the MI object itself are
451   // independently recyclable.
452   if (MI->Operands)
453     deallocateOperandArray(MI->CapOperands, MI->Operands);
454   // Don't call ~MachineInstr() which must be trivial anyway because
455   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
456   // destructors.
457   InstructionRecycler.Deallocate(Allocator, MI);
458 }
459 
460 /// Allocate a new MachineBasicBlock. Use this instead of
461 /// `new MachineBasicBlock'.
462 MachineBasicBlock *
463 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
464                                          std::optional<UniqueBBID> BBID) {
465   MachineBasicBlock *MBB =
466       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
467           MachineBasicBlock(*this, BB);
468   // Set BBID for `-basic-block=sections=labels` and
469   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
470   // blocks.
471   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
472       Target.Options.BBAddrMap ||
473       Target.getBBSectionsType() == BasicBlockSection::List)
474     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
475   return MBB;
476 }
477 
478 /// Delete the given MachineBasicBlock.
479 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
480   assert(MBB->getParent() == this && "MBB parent mismatch!");
481   // Clean up any references to MBB in jump tables before deleting it.
482   if (JumpTableInfo)
483     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
484   MBB->~MachineBasicBlock();
485   BasicBlockRecycler.Deallocate(Allocator, MBB);
486 }
487 
488 MachineMemOperand *MachineFunction::getMachineMemOperand(
489     MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
490     Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
491     SyncScope::ID SSID, AtomicOrdering Ordering,
492     AtomicOrdering FailureOrdering) {
493   assert((!Size.hasValue() ||
494           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
495          "Unexpected an unknown size to be represented using "
496          "LocationSize::beforeOrAfter()");
497   return new (Allocator)
498       MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
499                         Ordering, FailureOrdering);
500 }
501 
502 MachineMemOperand *MachineFunction::getMachineMemOperand(
503     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
504     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
505     SyncScope::ID SSID, AtomicOrdering Ordering,
506     AtomicOrdering FailureOrdering) {
507   return new (Allocator)
508       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
509                         Ordering, FailureOrdering);
510 }
511 
512 MachineMemOperand *
513 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
514                                       const MachinePointerInfo &PtrInfo,
515                                       LocationSize Size) {
516   assert((!Size.hasValue() ||
517           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
518          "Unexpected an unknown size to be represented using "
519          "LocationSize::beforeOrAfter()");
520   return new (Allocator)
521       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
522                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
523                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
524 }
525 
526 MachineMemOperand *MachineFunction::getMachineMemOperand(
527     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
528   return new (Allocator)
529       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
530                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
531                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
532 }
533 
534 MachineMemOperand *
535 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
536                                       int64_t Offset, LLT Ty) {
537   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
538 
539   // If there is no pointer value, the offset isn't tracked so we need to adjust
540   // the base alignment.
541   Align Alignment = PtrInfo.V.isNull()
542                         ? commonAlignment(MMO->getBaseAlign(), Offset)
543                         : MMO->getBaseAlign();
544 
545   // Do not preserve ranges, since we don't necessarily know what the high bits
546   // are anymore.
547   return new (Allocator) MachineMemOperand(
548       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
549       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
550       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
551 }
552 
553 MachineMemOperand *
554 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
555                                       const AAMDNodes &AAInfo) {
556   MachinePointerInfo MPI = MMO->getValue() ?
557              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
558              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
559 
560   return new (Allocator) MachineMemOperand(
561       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
562       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
563       MMO->getFailureOrdering());
564 }
565 
566 MachineMemOperand *
567 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
568                                       MachineMemOperand::Flags Flags) {
569   return new (Allocator) MachineMemOperand(
570       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
571       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
572       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
573 }
574 
575 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
576     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
577     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
578     uint32_t CFIType, MDNode *MMRAs) {
579   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
580                                          PostInstrSymbol, HeapAllocMarker,
581                                          PCSections, CFIType, MMRAs);
582 }
583 
584 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
585   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
586   llvm::copy(Name, Dest);
587   Dest[Name.size()] = 0;
588   return Dest;
589 }
590 
591 uint32_t *MachineFunction::allocateRegMask() {
592   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
593   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
594   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
595   memset(Mask, 0, Size * sizeof(Mask[0]));
596   return Mask;
597 }
598 
599 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
600   int* AllocMask = Allocator.Allocate<int>(Mask.size());
601   copy(Mask, AllocMask);
602   return {AllocMask, Mask.size()};
603 }
604 
605 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
606 LLVM_DUMP_METHOD void MachineFunction::dump() const {
607   print(dbgs());
608 }
609 #endif
610 
611 StringRef MachineFunction::getName() const {
612   return getFunction().getName();
613 }
614 
615 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
616   OS << "# Machine code for function " << getName() << ": ";
617   getProperties().print(OS);
618   OS << '\n';
619 
620   // Print Frame Information
621   FrameInfo->print(*this, OS);
622 
623   // Print JumpTable Information
624   if (JumpTableInfo)
625     JumpTableInfo->print(OS);
626 
627   // Print Constant Pool
628   ConstantPool->print(OS);
629 
630   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
631 
632   if (RegInfo && !RegInfo->livein_empty()) {
633     OS << "Function Live Ins: ";
634     for (MachineRegisterInfo::livein_iterator
635          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
636       OS << printReg(I->first, TRI);
637       if (I->second)
638         OS << " in " << printReg(I->second, TRI);
639       if (std::next(I) != E)
640         OS << ", ";
641     }
642     OS << '\n';
643   }
644 
645   ModuleSlotTracker MST(getFunction().getParent());
646   MST.incorporateFunction(getFunction());
647   for (const auto &BB : *this) {
648     OS << '\n';
649     // If we print the whole function, print it at its most verbose level.
650     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
651   }
652 
653   OS << "\n# End machine code for function " << getName() << ".\n\n";
654 }
655 
656 /// True if this function needs frame moves for debug or exceptions.
657 bool MachineFunction::needsFrameMoves() const {
658   // TODO: Ideally, what we'd like is to have a switch that allows emitting
659   // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
660   // under this switch, we'd like .debug_frame to be precise when using -g. At
661   // this moment, there's no way to specify that some CFI directives go into
662   // .eh_frame only, while others go into .debug_frame only.
663   return getTarget().Options.ForceDwarfFrameSection ||
664          F.needsUnwindTableEntry() ||
665          !F.getParent()->debug_compile_units().empty();
666 }
667 
668 namespace llvm {
669 
670   template<>
671   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
672     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
673 
674     static std::string getGraphName(const MachineFunction *F) {
675       return ("CFG for '" + F->getName() + "' function").str();
676     }
677 
678     std::string getNodeLabel(const MachineBasicBlock *Node,
679                              const MachineFunction *Graph) {
680       std::string OutStr;
681       {
682         raw_string_ostream OSS(OutStr);
683 
684         if (isSimple()) {
685           OSS << printMBBReference(*Node);
686           if (const BasicBlock *BB = Node->getBasicBlock())
687             OSS << ": " << BB->getName();
688         } else
689           Node->print(OSS);
690       }
691 
692       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
693 
694       // Process string output to make it nicer...
695       for (unsigned i = 0; i != OutStr.length(); ++i)
696         if (OutStr[i] == '\n') {                            // Left justify
697           OutStr[i] = '\\';
698           OutStr.insert(OutStr.begin()+i+1, 'l');
699         }
700       return OutStr;
701     }
702   };
703 
704 } // end namespace llvm
705 
706 void MachineFunction::viewCFG() const
707 {
708 #ifndef NDEBUG
709   ViewGraph(this, "mf" + getName());
710 #else
711   errs() << "MachineFunction::viewCFG is only available in debug builds on "
712          << "systems with Graphviz or gv!\n";
713 #endif // NDEBUG
714 }
715 
716 void MachineFunction::viewCFGOnly() const
717 {
718 #ifndef NDEBUG
719   ViewGraph(this, "mf" + getName(), true);
720 #else
721   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
722          << "systems with Graphviz or gv!\n";
723 #endif // NDEBUG
724 }
725 
726 /// Add the specified physical register as a live-in value and
727 /// create a corresponding virtual register for it.
728 Register MachineFunction::addLiveIn(MCRegister PReg,
729                                     const TargetRegisterClass *RC) {
730   MachineRegisterInfo &MRI = getRegInfo();
731   Register VReg = MRI.getLiveInVirtReg(PReg);
732   if (VReg) {
733     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
734     (void)VRegRC;
735     // A physical register can be added several times.
736     // Between two calls, the register class of the related virtual register
737     // may have been constrained to match some operation constraints.
738     // In that case, check that the current register class includes the
739     // physical register and is a sub class of the specified RC.
740     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
741                              RC->hasSubClassEq(VRegRC))) &&
742             "Register class mismatch!");
743     return VReg;
744   }
745   VReg = MRI.createVirtualRegister(RC);
746   MRI.addLiveIn(PReg, VReg);
747   return VReg;
748 }
749 
750 /// Return the MCSymbol for the specified non-empty jump table.
751 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
752 /// normal 'L' label is returned.
753 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
754                                         bool isLinkerPrivate) const {
755   const DataLayout &DL = getDataLayout();
756   assert(JumpTableInfo && "No jump tables");
757   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
758 
759   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
760                                      : DL.getPrivateGlobalPrefix();
761   SmallString<60> Name;
762   raw_svector_ostream(Name)
763     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
764   return Ctx.getOrCreateSymbol(Name);
765 }
766 
767 /// Return a function-local symbol to represent the PIC base.
768 MCSymbol *MachineFunction::getPICBaseSymbol() const {
769   const DataLayout &DL = getDataLayout();
770   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
771                                Twine(getFunctionNumber()) + "$pb");
772 }
773 
774 /// \name Exception Handling
775 /// \{
776 
777 LandingPadInfo &
778 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
779   unsigned N = LandingPads.size();
780   for (unsigned i = 0; i < N; ++i) {
781     LandingPadInfo &LP = LandingPads[i];
782     if (LP.LandingPadBlock == LandingPad)
783       return LP;
784   }
785 
786   LandingPads.push_back(LandingPadInfo(LandingPad));
787   return LandingPads[N];
788 }
789 
790 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
791                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
792   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
793   LP.BeginLabels.push_back(BeginLabel);
794   LP.EndLabels.push_back(EndLabel);
795 }
796 
797 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
798   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
799   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
800   LP.LandingPadLabel = LandingPadLabel;
801 
802   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
803   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
804     // If there's no typeid list specified, then "cleanup" is implicit.
805     // Otherwise, id 0 is reserved for the cleanup action.
806     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
807       LP.TypeIds.push_back(0);
808 
809     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
810     //        correct, but we need to do it this way because of how the DWARF EH
811     //        emitter processes the clauses.
812     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
813       Value *Val = LPI->getClause(I - 1);
814       if (LPI->isCatch(I - 1)) {
815         LP.TypeIds.push_back(
816             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
817       } else {
818         // Add filters in a list.
819         auto *CVal = cast<Constant>(Val);
820         SmallVector<unsigned, 4> FilterList;
821         for (const Use &U : CVal->operands())
822           FilterList.push_back(
823               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
824 
825         LP.TypeIds.push_back(getFilterIDFor(FilterList));
826       }
827     }
828 
829   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
830     for (unsigned I = CPI->arg_size(); I != 0; --I) {
831       auto *TypeInfo =
832           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
833       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
834     }
835 
836   } else {
837     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
838   }
839 
840   return LandingPadLabel;
841 }
842 
843 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
844                                             ArrayRef<unsigned> Sites) {
845   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
846 }
847 
848 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
849   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
850     if (TypeInfos[i] == TI) return i + 1;
851 
852   TypeInfos.push_back(TI);
853   return TypeInfos.size();
854 }
855 
856 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
857   // If the new filter coincides with the tail of an existing filter, then
858   // re-use the existing filter.  Folding filters more than this requires
859   // re-ordering filters and/or their elements - probably not worth it.
860   for (unsigned i : FilterEnds) {
861     unsigned j = TyIds.size();
862 
863     while (i && j)
864       if (FilterIds[--i] != TyIds[--j])
865         goto try_next;
866 
867     if (!j)
868       // The new filter coincides with range [i, end) of the existing filter.
869       return -(1 + i);
870 
871 try_next:;
872   }
873 
874   // Add the new filter.
875   int FilterID = -(1 + FilterIds.size());
876   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
877   llvm::append_range(FilterIds, TyIds);
878   FilterEnds.push_back(FilterIds.size());
879   FilterIds.push_back(0); // terminator
880   return FilterID;
881 }
882 
883 MachineFunction::CallSiteInfoMap::iterator
884 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
885   assert(MI->isCandidateForCallSiteEntry() &&
886          "Call site info refers only to call (MI) candidates");
887 
888   if (!Target.Options.EmitCallSiteInfo)
889     return CallSitesInfo.end();
890   return CallSitesInfo.find(MI);
891 }
892 
893 /// Return the call machine instruction or find a call within bundle.
894 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
895   if (!MI->isBundle())
896     return MI;
897 
898   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
899                                     getBundleEnd(MI->getIterator())))
900     if (BMI.isCandidateForCallSiteEntry())
901       return &BMI;
902 
903   llvm_unreachable("Unexpected bundle without a call site candidate");
904 }
905 
906 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
907   assert(MI->shouldUpdateCallSiteInfo() &&
908          "Call site info refers only to call (MI) candidates or "
909          "candidates inside bundles");
910 
911   const MachineInstr *CallMI = getCallInstr(MI);
912   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
913   if (CSIt == CallSitesInfo.end())
914     return;
915   CallSitesInfo.erase(CSIt);
916 }
917 
918 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
919                                        const MachineInstr *New) {
920   assert(Old->shouldUpdateCallSiteInfo() &&
921          "Call site info refers only to call (MI) candidates or "
922          "candidates inside bundles");
923 
924   if (!New->isCandidateForCallSiteEntry())
925     return eraseCallSiteInfo(Old);
926 
927   const MachineInstr *OldCallMI = getCallInstr(Old);
928   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
929   if (CSIt == CallSitesInfo.end())
930     return;
931 
932   CallSiteInfo CSInfo = CSIt->second;
933   CallSitesInfo[New] = CSInfo;
934 }
935 
936 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
937                                        const MachineInstr *New) {
938   assert(Old->shouldUpdateCallSiteInfo() &&
939          "Call site info refers only to call (MI) candidates or "
940          "candidates inside bundles");
941 
942   if (!New->isCandidateForCallSiteEntry())
943     return eraseCallSiteInfo(Old);
944 
945   const MachineInstr *OldCallMI = getCallInstr(Old);
946   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
947   if (CSIt == CallSitesInfo.end())
948     return;
949 
950   CallSiteInfo CSInfo = std::move(CSIt->second);
951   CallSitesInfo.erase(CSIt);
952   CallSitesInfo[New] = CSInfo;
953 }
954 
955 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
956   DebugInstrNumberingCount = Num;
957 }
958 
959 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
960                                                  DebugInstrOperandPair B,
961                                                  unsigned Subreg) {
962   // Catch any accidental self-loops.
963   assert(A.first != B.first);
964   // Don't allow any substitutions _from_ the memory operand number.
965   assert(A.second != DebugOperandMemNumber);
966 
967   DebugValueSubstitutions.push_back({A, B, Subreg});
968 }
969 
970 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
971                                                    MachineInstr &New,
972                                                    unsigned MaxOperand) {
973   // If the Old instruction wasn't tracked at all, there is no work to do.
974   unsigned OldInstrNum = Old.peekDebugInstrNum();
975   if (!OldInstrNum)
976     return;
977 
978   // Iterate over all operands looking for defs to create substitutions for.
979   // Avoid creating new instr numbers unless we create a new substitution.
980   // While this has no functional effect, it risks confusing someone reading
981   // MIR output.
982   // Examine all the operands, or the first N specified by the caller.
983   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
984   for (unsigned int I = 0; I < MaxOperand; ++I) {
985     const auto &OldMO = Old.getOperand(I);
986     auto &NewMO = New.getOperand(I);
987     (void)NewMO;
988 
989     if (!OldMO.isReg() || !OldMO.isDef())
990       continue;
991     assert(NewMO.isDef());
992 
993     unsigned NewInstrNum = New.getDebugInstrNum();
994     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
995                                std::make_pair(NewInstrNum, I));
996   }
997 }
998 
999 auto MachineFunction::salvageCopySSA(
1000     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
1001     -> DebugInstrOperandPair {
1002   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1003 
1004   // Check whether this copy-like instruction has already been salvaged into
1005   // an operand pair.
1006   Register Dest;
1007   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1008     Dest = CopyDstSrc->Destination->getReg();
1009   } else {
1010     assert(MI.isSubregToReg());
1011     Dest = MI.getOperand(0).getReg();
1012   }
1013 
1014   auto CacheIt = DbgPHICache.find(Dest);
1015   if (CacheIt != DbgPHICache.end())
1016     return CacheIt->second;
1017 
1018   // Calculate the instruction number to use, or install a DBG_PHI.
1019   auto OperandPair = salvageCopySSAImpl(MI);
1020   DbgPHICache.insert({Dest, OperandPair});
1021   return OperandPair;
1022 }
1023 
1024 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1025     -> DebugInstrOperandPair {
1026   MachineRegisterInfo &MRI = getRegInfo();
1027   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1028   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1029 
1030   // Chase the value read by a copy-like instruction back to the instruction
1031   // that ultimately _defines_ that value. This may pass:
1032   //  * Through multiple intermediate copies, including subregister moves /
1033   //    copies,
1034   //  * Copies from physical registers that must then be traced back to the
1035   //    defining instruction,
1036   //  * Or, physical registers may be live-in to (only) the entry block, which
1037   //    requires a DBG_PHI to be created.
1038   // We can pursue this problem in that order: trace back through copies,
1039   // optionally through a physical register, to a defining instruction. We
1040   // should never move from physreg to vreg. As we're still in SSA form, no need
1041   // to worry about partial definitions of registers.
1042 
1043   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1044   // returns the register read and any subregister identifying which part is
1045   // read.
1046   auto GetRegAndSubreg =
1047       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1048     Register NewReg, OldReg;
1049     unsigned SubReg;
1050     if (Cpy.isCopy()) {
1051       OldReg = Cpy.getOperand(0).getReg();
1052       NewReg = Cpy.getOperand(1).getReg();
1053       SubReg = Cpy.getOperand(1).getSubReg();
1054     } else if (Cpy.isSubregToReg()) {
1055       OldReg = Cpy.getOperand(0).getReg();
1056       NewReg = Cpy.getOperand(2).getReg();
1057       SubReg = Cpy.getOperand(3).getImm();
1058     } else {
1059       auto CopyDetails = *TII.isCopyInstr(Cpy);
1060       const MachineOperand &Src = *CopyDetails.Source;
1061       const MachineOperand &Dest = *CopyDetails.Destination;
1062       OldReg = Dest.getReg();
1063       NewReg = Src.getReg();
1064       SubReg = Src.getSubReg();
1065     }
1066 
1067     return {NewReg, SubReg};
1068   };
1069 
1070   // First seek either the defining instruction, or a copy from a physreg.
1071   // During search, the current state is the current copy instruction, and which
1072   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1073   // deal with those later.
1074   auto State = GetRegAndSubreg(MI);
1075   auto CurInst = MI.getIterator();
1076   SmallVector<unsigned, 4> SubregsSeen;
1077   while (true) {
1078     // If we've found a copy from a physreg, first portion of search is over.
1079     if (!State.first.isVirtual())
1080       break;
1081 
1082     // Record any subregister qualifier.
1083     if (State.second)
1084       SubregsSeen.push_back(State.second);
1085 
1086     assert(MRI.hasOneDef(State.first));
1087     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1088     CurInst = Inst.getIterator();
1089 
1090     // Any non-copy instruction is the defining instruction we're seeking.
1091     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1092       break;
1093     State = GetRegAndSubreg(Inst);
1094   };
1095 
1096   // Helper lambda to apply additional subregister substitutions to a known
1097   // instruction/operand pair. Adds new (fake) substitutions so that we can
1098   // record the subregister. FIXME: this isn't very space efficient if multiple
1099   // values are tracked back through the same copies; cache something later.
1100   auto ApplySubregisters =
1101       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1102     for (unsigned Subreg : reverse(SubregsSeen)) {
1103       // Fetch a new instruction number, not attached to an actual instruction.
1104       unsigned NewInstrNumber = getNewDebugInstrNum();
1105       // Add a substitution from the "new" number to the known one, with a
1106       // qualifying subreg.
1107       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1108       // Return the new number; to find the underlying value, consumers need to
1109       // deal with the qualifying subreg.
1110       P = {NewInstrNumber, 0};
1111     }
1112     return P;
1113   };
1114 
1115   // If we managed to find the defining instruction after COPYs, return an
1116   // instruction / operand pair after adding subregister qualifiers.
1117   if (State.first.isVirtual()) {
1118     // Virtual register def -- we can just look up where this happens.
1119     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1120     for (auto &MO : Inst->all_defs()) {
1121       if (MO.getReg() != State.first)
1122         continue;
1123       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1124     }
1125 
1126     llvm_unreachable("Vreg def with no corresponding operand?");
1127   }
1128 
1129   // Our search ended in a copy from a physreg: walk back up the function
1130   // looking for whatever defines the physreg.
1131   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1132   State = GetRegAndSubreg(*CurInst);
1133   Register RegToSeek = State.first;
1134 
1135   auto RMII = CurInst->getReverseIterator();
1136   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1137   for (auto &ToExamine : PrevInstrs) {
1138     for (auto &MO : ToExamine.all_defs()) {
1139       // Test for operand that defines something aliasing RegToSeek.
1140       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1141         continue;
1142 
1143       return ApplySubregisters(
1144           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1145     }
1146   }
1147 
1148   MachineBasicBlock &InsertBB = *CurInst->getParent();
1149 
1150   // We reached the start of the block before finding a defining instruction.
1151   // There are numerous scenarios where this can happen:
1152   // * Constant physical registers,
1153   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1154   // * Arguments in the entry block,
1155   // * Exception handling landing pads.
1156   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1157   // the variable value at this position, rather than checking it makes sense.
1158 
1159   // Create DBG_PHI for specified physreg.
1160   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1161                          TII.get(TargetOpcode::DBG_PHI));
1162   Builder.addReg(State.first);
1163   unsigned NewNum = getNewDebugInstrNum();
1164   Builder.addImm(NewNum);
1165   return ApplySubregisters({NewNum, 0u});
1166 }
1167 
1168 void MachineFunction::finalizeDebugInstrRefs() {
1169   auto *TII = getSubtarget().getInstrInfo();
1170 
1171   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1172     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1173     MI.setDesc(RefII);
1174     MI.setDebugValueUndef();
1175   };
1176 
1177   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1178   for (auto &MBB : *this) {
1179     for (auto &MI : MBB) {
1180       if (!MI.isDebugRef())
1181         continue;
1182 
1183       bool IsValidRef = true;
1184 
1185       for (MachineOperand &MO : MI.debug_operands()) {
1186         if (!MO.isReg())
1187           continue;
1188 
1189         Register Reg = MO.getReg();
1190 
1191         // Some vregs can be deleted as redundant in the meantime. Mark those
1192         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1193         // quickly deleted, leaving dangling references to vregs with no def.
1194         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1195           IsValidRef = false;
1196           break;
1197         }
1198 
1199         assert(Reg.isVirtual());
1200         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1201 
1202         // If we've found a copy-like instruction, follow it back to the
1203         // instruction that defines the source value, see salvageCopySSA docs
1204         // for why this is important.
1205         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1206           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1207           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1208         } else {
1209           // Otherwise, identify the operand number that the VReg refers to.
1210           unsigned OperandIdx = 0;
1211           for (const auto &DefMO : DefMI.operands()) {
1212             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1213               break;
1214             ++OperandIdx;
1215           }
1216           assert(OperandIdx < DefMI.getNumOperands());
1217 
1218           // Morph this instr ref to point at the given instruction and operand.
1219           unsigned ID = DefMI.getDebugInstrNum();
1220           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1221         }
1222       }
1223 
1224       if (!IsValidRef)
1225         MakeUndefDbgValue(MI);
1226     }
1227   }
1228 }
1229 
1230 bool MachineFunction::shouldUseDebugInstrRef() const {
1231   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1232   // have optimized code inlined into this unoptimized code, however with
1233   // fewer and less aggressive optimizations happening, coverage and accuracy
1234   // should not suffer.
1235   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1236     return false;
1237 
1238   // Don't use instr-ref if this function is marked optnone.
1239   if (F.hasFnAttribute(Attribute::OptimizeNone))
1240     return false;
1241 
1242   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1243     return true;
1244 
1245   return false;
1246 }
1247 
1248 bool MachineFunction::useDebugInstrRef() const {
1249   return UseDebugInstrRef;
1250 }
1251 
1252 void MachineFunction::setUseDebugInstrRef(bool Use) {
1253   UseDebugInstrRef = Use;
1254 }
1255 
1256 // Use one million as a high / reserved number.
1257 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1258 
1259 /// \}
1260 
1261 //===----------------------------------------------------------------------===//
1262 //  MachineJumpTableInfo implementation
1263 //===----------------------------------------------------------------------===//
1264 
1265 /// Return the size of each entry in the jump table.
1266 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1267   // The size of a jump table entry is 4 bytes unless the entry is just the
1268   // address of a block, in which case it is the pointer size.
1269   switch (getEntryKind()) {
1270   case MachineJumpTableInfo::EK_BlockAddress:
1271     return TD.getPointerSize();
1272   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1273   case MachineJumpTableInfo::EK_LabelDifference64:
1274     return 8;
1275   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1276   case MachineJumpTableInfo::EK_LabelDifference32:
1277   case MachineJumpTableInfo::EK_Custom32:
1278     return 4;
1279   case MachineJumpTableInfo::EK_Inline:
1280     return 0;
1281   }
1282   llvm_unreachable("Unknown jump table encoding!");
1283 }
1284 
1285 /// Return the alignment of each entry in the jump table.
1286 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1287   // The alignment of a jump table entry is the alignment of int32 unless the
1288   // entry is just the address of a block, in which case it is the pointer
1289   // alignment.
1290   switch (getEntryKind()) {
1291   case MachineJumpTableInfo::EK_BlockAddress:
1292     return TD.getPointerABIAlignment(0).value();
1293   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1294   case MachineJumpTableInfo::EK_LabelDifference64:
1295     return TD.getABIIntegerTypeAlignment(64).value();
1296   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1297   case MachineJumpTableInfo::EK_LabelDifference32:
1298   case MachineJumpTableInfo::EK_Custom32:
1299     return TD.getABIIntegerTypeAlignment(32).value();
1300   case MachineJumpTableInfo::EK_Inline:
1301     return 1;
1302   }
1303   llvm_unreachable("Unknown jump table encoding!");
1304 }
1305 
1306 /// Create a new jump table entry in the jump table info.
1307 unsigned MachineJumpTableInfo::createJumpTableIndex(
1308                                const std::vector<MachineBasicBlock*> &DestBBs) {
1309   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1310   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1311   return JumpTables.size()-1;
1312 }
1313 
1314 /// If Old is the target of any jump tables, update the jump tables to branch
1315 /// to New instead.
1316 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1317                                                   MachineBasicBlock *New) {
1318   assert(Old != New && "Not making a change?");
1319   bool MadeChange = false;
1320   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1321     ReplaceMBBInJumpTable(i, Old, New);
1322   return MadeChange;
1323 }
1324 
1325 /// If MBB is present in any jump tables, remove it.
1326 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1327   bool MadeChange = false;
1328   for (MachineJumpTableEntry &JTE : JumpTables) {
1329     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1330     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1331     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1332   }
1333   return MadeChange;
1334 }
1335 
1336 /// If Old is a target of the jump tables, update the jump table to branch to
1337 /// New instead.
1338 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1339                                                  MachineBasicBlock *Old,
1340                                                  MachineBasicBlock *New) {
1341   assert(Old != New && "Not making a change?");
1342   bool MadeChange = false;
1343   MachineJumpTableEntry &JTE = JumpTables[Idx];
1344   for (MachineBasicBlock *&MBB : JTE.MBBs)
1345     if (MBB == Old) {
1346       MBB = New;
1347       MadeChange = true;
1348     }
1349   return MadeChange;
1350 }
1351 
1352 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1353   if (JumpTables.empty()) return;
1354 
1355   OS << "Jump Tables:\n";
1356 
1357   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1358     OS << printJumpTableEntryReference(i) << ':';
1359     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1360       OS << ' ' << printMBBReference(*MBB);
1361     if (i != e)
1362       OS << '\n';
1363   }
1364 
1365   OS << '\n';
1366 }
1367 
1368 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1369 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1370 #endif
1371 
1372 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1373   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1374 }
1375 
1376 //===----------------------------------------------------------------------===//
1377 //  MachineConstantPool implementation
1378 //===----------------------------------------------------------------------===//
1379 
1380 void MachineConstantPoolValue::anchor() {}
1381 
1382 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1383   return DL.getTypeAllocSize(Ty);
1384 }
1385 
1386 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1387   if (isMachineConstantPoolEntry())
1388     return Val.MachineCPVal->getSizeInBytes(DL);
1389   return DL.getTypeAllocSize(Val.ConstVal->getType());
1390 }
1391 
1392 bool MachineConstantPoolEntry::needsRelocation() const {
1393   if (isMachineConstantPoolEntry())
1394     return true;
1395   return Val.ConstVal->needsDynamicRelocation();
1396 }
1397 
1398 SectionKind
1399 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1400   if (needsRelocation())
1401     return SectionKind::getReadOnlyWithRel();
1402   switch (getSizeInBytes(*DL)) {
1403   case 4:
1404     return SectionKind::getMergeableConst4();
1405   case 8:
1406     return SectionKind::getMergeableConst8();
1407   case 16:
1408     return SectionKind::getMergeableConst16();
1409   case 32:
1410     return SectionKind::getMergeableConst32();
1411   default:
1412     return SectionKind::getReadOnly();
1413   }
1414 }
1415 
1416 MachineConstantPool::~MachineConstantPool() {
1417   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1418   // so keep track of which we've deleted to avoid double deletions.
1419   DenseSet<MachineConstantPoolValue*> Deleted;
1420   for (const MachineConstantPoolEntry &C : Constants)
1421     if (C.isMachineConstantPoolEntry()) {
1422       Deleted.insert(C.Val.MachineCPVal);
1423       delete C.Val.MachineCPVal;
1424     }
1425   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1426     if (Deleted.count(CPV) == 0)
1427       delete CPV;
1428   }
1429 }
1430 
1431 /// Test whether the given two constants can be allocated the same constant pool
1432 /// entry referenced by \param A.
1433 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1434                                       const DataLayout &DL) {
1435   // Handle the trivial case quickly.
1436   if (A == B) return true;
1437 
1438   // If they have the same type but weren't the same constant, quickly
1439   // reject them.
1440   if (A->getType() == B->getType()) return false;
1441 
1442   // We can't handle structs or arrays.
1443   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1444       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1445     return false;
1446 
1447   // For now, only support constants with the same size.
1448   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1449   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1450     return false;
1451 
1452   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1453 
1454   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1455 
1456   // Try constant folding a bitcast of both instructions to an integer.  If we
1457   // get two identical ConstantInt's, then we are good to share them.  We use
1458   // the constant folding APIs to do this so that we get the benefit of
1459   // DataLayout.
1460   if (isa<PointerType>(A->getType()))
1461     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1462                                 const_cast<Constant *>(A), IntTy, DL);
1463   else if (A->getType() != IntTy)
1464     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1465                                 IntTy, DL);
1466   if (isa<PointerType>(B->getType()))
1467     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1468                                 const_cast<Constant *>(B), IntTy, DL);
1469   else if (B->getType() != IntTy)
1470     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1471                                 IntTy, DL);
1472 
1473   if (A != B)
1474     return false;
1475 
1476   // Constants only safely match if A doesn't contain undef/poison.
1477   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1478   // TODO: Handle cases where A and B have the same undef/poison elements.
1479   // TODO: Merge A and B with mismatching undef/poison elements.
1480   return !ContainsUndefOrPoisonA;
1481 }
1482 
1483 /// Create a new entry in the constant pool or return an existing one.
1484 /// User must specify the log2 of the minimum required alignment for the object.
1485 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1486                                                    Align Alignment) {
1487   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1488 
1489   // Check to see if we already have this constant.
1490   //
1491   // FIXME, this could be made much more efficient for large constant pools.
1492   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1493     if (!Constants[i].isMachineConstantPoolEntry() &&
1494         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1495       if (Constants[i].getAlign() < Alignment)
1496         Constants[i].Alignment = Alignment;
1497       return i;
1498     }
1499 
1500   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1501   return Constants.size()-1;
1502 }
1503 
1504 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1505                                                    Align Alignment) {
1506   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1507 
1508   // Check to see if we already have this constant.
1509   //
1510   // FIXME, this could be made much more efficient for large constant pools.
1511   int Idx = V->getExistingMachineCPValue(this, Alignment);
1512   if (Idx != -1) {
1513     MachineCPVsSharingEntries.insert(V);
1514     return (unsigned)Idx;
1515   }
1516 
1517   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1518   return Constants.size()-1;
1519 }
1520 
1521 void MachineConstantPool::print(raw_ostream &OS) const {
1522   if (Constants.empty()) return;
1523 
1524   OS << "Constant Pool:\n";
1525   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1526     OS << "  cp#" << i << ": ";
1527     if (Constants[i].isMachineConstantPoolEntry())
1528       Constants[i].Val.MachineCPVal->print(OS);
1529     else
1530       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1531     OS << ", align=" << Constants[i].getAlign().value();
1532     OS << "\n";
1533   }
1534 }
1535 
1536 //===----------------------------------------------------------------------===//
1537 // Template specialization for MachineFunction implementation of
1538 // ProfileSummaryInfo::getEntryCount().
1539 //===----------------------------------------------------------------------===//
1540 template <>
1541 std::optional<Function::ProfileCount>
1542 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1543     const llvm::MachineFunction *F) const {
1544   return F->getFunction().getEntryCount();
1545 }
1546 
1547 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1548 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1549 #endif
1550