xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision c521e44defb53d38a46f39e29870c628f25d124a)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   switch(Prop) {
93   case P::FailedISel: return "FailedISel";
94   case P::IsSSA: return "IsSSA";
95   case P::Legalized: return "Legalized";
96   case P::NoPHIs: return "NoPHIs";
97   case P::NoVRegs: return "NoVRegs";
98   case P::RegBankSelected: return "RegBankSelected";
99   case P::Selected: return "Selected";
100   case P::TracksLiveness: return "TracksLiveness";
101   case P::TiedOpsRewritten: return "TiedOpsRewritten";
102   }
103   llvm_unreachable("Invalid machine function property");
104 }
105 
106 // Pin the vtable to this file.
107 void MachineFunction::Delegate::anchor() {}
108 
109 void MachineFunctionProperties::print(raw_ostream &OS) const {
110   const char *Separator = "";
111   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
112     if (!Properties[I])
113       continue;
114     OS << Separator << getPropertyName(static_cast<Property>(I));
115     Separator = ", ";
116   }
117 }
118 
119 //===----------------------------------------------------------------------===//
120 // MachineFunction implementation
121 //===----------------------------------------------------------------------===//
122 
123 // Out-of-line virtual method.
124 MachineFunctionInfo::~MachineFunctionInfo() = default;
125 
126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
127   MBB->getParent()->DeleteMachineBasicBlock(MBB);
128 }
129 
130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
131                                            const Function &F) {
132   if (F.hasFnAttribute(Attribute::StackAlignment))
133     return F.getFnStackAlignment();
134   return STI->getFrameLowering()->getStackAlign().value();
135 }
136 
137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
138                                  const TargetSubtargetInfo &STI,
139                                  unsigned FunctionNum, MachineModuleInfo &mmi)
140     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141   FunctionNumber = FunctionNum;
142   init();
143 }
144 
145 void MachineFunction::handleInsertion(MachineInstr &MI) {
146   if (TheDelegate)
147     TheDelegate->MF_HandleInsertion(MI);
148 }
149 
150 void MachineFunction::handleRemoval(MachineInstr &MI) {
151   if (TheDelegate)
152     TheDelegate->MF_HandleRemoval(MI);
153 }
154 
155 void MachineFunction::init() {
156   // Assume the function starts in SSA form with correct liveness.
157   Properties.set(MachineFunctionProperties::Property::IsSSA);
158   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159   if (STI->getRegisterInfo())
160     RegInfo = new (Allocator) MachineRegisterInfo(this);
161   else
162     RegInfo = nullptr;
163 
164   MFInfo = nullptr;
165   // We can realign the stack if the target supports it and the user hasn't
166   // explicitly asked us not to.
167   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168                       !F.hasFnAttribute("no-realign-stack");
169   FrameInfo = new (Allocator) MachineFrameInfo(
170       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171       /*ForcedRealign=*/CanRealignSP &&
172           F.hasFnAttribute(Attribute::StackAlignment));
173 
174   if (F.hasFnAttribute(Attribute::StackAlignment))
175     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
176 
177   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
179 
180   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181   // FIXME: Use Function::hasOptSize().
182   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183     Alignment = std::max(Alignment,
184                          STI->getTargetLowering()->getPrefFunctionAlignment());
185 
186   if (AlignAllFunctions)
187     Alignment = Align(1ULL << AlignAllFunctions);
188 
189   JumpTableInfo = nullptr;
190 
191   if (isFuncletEHPersonality(classifyEHPersonality(
192           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193     WinEHInfo = new (Allocator) WinEHFuncInfo();
194   }
195 
196   if (isScopedEHPersonality(classifyEHPersonality(
197           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199   }
200 
201   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202          "Can't create a MachineFunction using a Module with a "
203          "Target-incompatible DataLayout attached\n");
204 
205   PSVManager =
206     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207                                                   getInstrInfo()));
208 }
209 
210 MachineFunction::~MachineFunction() {
211   clear();
212 }
213 
214 void MachineFunction::clear() {
215   Properties.reset();
216   // Don't call destructors on MachineInstr and MachineOperand. All of their
217   // memory comes from the BumpPtrAllocator which is about to be purged.
218   //
219   // Do call MachineBasicBlock destructors, it contains std::vectors.
220   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221     I->Insts.clearAndLeakNodesUnsafely();
222   MBBNumbering.clear();
223 
224   InstructionRecycler.clear(Allocator);
225   OperandRecycler.clear(Allocator);
226   BasicBlockRecycler.clear(Allocator);
227   CodeViewAnnotations.clear();
228   VariableDbgInfos.clear();
229   if (RegInfo) {
230     RegInfo->~MachineRegisterInfo();
231     Allocator.Deallocate(RegInfo);
232   }
233   if (MFInfo) {
234     MFInfo->~MachineFunctionInfo();
235     Allocator.Deallocate(MFInfo);
236   }
237 
238   FrameInfo->~MachineFrameInfo();
239   Allocator.Deallocate(FrameInfo);
240 
241   ConstantPool->~MachineConstantPool();
242   Allocator.Deallocate(ConstantPool);
243 
244   if (JumpTableInfo) {
245     JumpTableInfo->~MachineJumpTableInfo();
246     Allocator.Deallocate(JumpTableInfo);
247   }
248 
249   if (WinEHInfo) {
250     WinEHInfo->~WinEHFuncInfo();
251     Allocator.Deallocate(WinEHInfo);
252   }
253 
254   if (WasmEHInfo) {
255     WasmEHInfo->~WasmEHFuncInfo();
256     Allocator.Deallocate(WasmEHInfo);
257   }
258 }
259 
260 const DataLayout &MachineFunction::getDataLayout() const {
261   return F.getParent()->getDataLayout();
262 }
263 
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo *MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind) {
268   if (JumpTableInfo) return JumpTableInfo;
269 
270   JumpTableInfo = new (Allocator)
271     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272   return JumpTableInfo;
273 }
274 
275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276   return F.getDenormalMode(FPType);
277 }
278 
279 /// Should we be emitting segmented stack stuff for the function
280 bool MachineFunction::shouldSplitStack() const {
281   return getFunction().hasFnAttribute("split-stack");
282 }
283 
284 LLVM_NODISCARD unsigned
285 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
286   FrameInstructions.push_back(Inst);
287   return FrameInstructions.size() - 1;
288 }
289 
290 /// This discards all of the MachineBasicBlock numbers and recomputes them.
291 /// This guarantees that the MBB numbers are sequential, dense, and match the
292 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
293 /// is specified, only that block and those after it are renumbered.
294 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
295   if (empty()) { MBBNumbering.clear(); return; }
296   MachineFunction::iterator MBBI, E = end();
297   if (MBB == nullptr)
298     MBBI = begin();
299   else
300     MBBI = MBB->getIterator();
301 
302   // Figure out the block number this should have.
303   unsigned BlockNo = 0;
304   if (MBBI != begin())
305     BlockNo = std::prev(MBBI)->getNumber() + 1;
306 
307   for (; MBBI != E; ++MBBI, ++BlockNo) {
308     if (MBBI->getNumber() != (int)BlockNo) {
309       // Remove use of the old number.
310       if (MBBI->getNumber() != -1) {
311         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
312                "MBB number mismatch!");
313         MBBNumbering[MBBI->getNumber()] = nullptr;
314       }
315 
316       // If BlockNo is already taken, set that block's number to -1.
317       if (MBBNumbering[BlockNo])
318         MBBNumbering[BlockNo]->setNumber(-1);
319 
320       MBBNumbering[BlockNo] = &*MBBI;
321       MBBI->setNumber(BlockNo);
322     }
323   }
324 
325   // Okay, all the blocks are renumbered.  If we have compactified the block
326   // numbering, shrink MBBNumbering now.
327   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
328   MBBNumbering.resize(BlockNo);
329 }
330 
331 /// This method iterates over the basic blocks and assigns their IsBeginSection
332 /// and IsEndSection fields. This must be called after MBB layout is finalized
333 /// and the SectionID's are assigned to MBBs.
334 void MachineFunction::assignBeginEndSections() {
335   front().setIsBeginSection();
336   auto CurrentSectionID = front().getSectionID();
337   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
338     if (MBBI->getSectionID() == CurrentSectionID)
339       continue;
340     MBBI->setIsBeginSection();
341     std::prev(MBBI)->setIsEndSection();
342     CurrentSectionID = MBBI->getSectionID();
343   }
344   back().setIsEndSection();
345 }
346 
347 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
348 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
349                                                   const DebugLoc &DL,
350                                                   bool NoImplicit) {
351   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
352       MachineInstr(*this, MCID, DL, NoImplicit);
353 }
354 
355 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
356 /// identical in all ways except the instruction has no parent, prev, or next.
357 MachineInstr *
358 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
359   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
360              MachineInstr(*this, *Orig);
361 }
362 
363 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
364     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
365   MachineInstr *FirstClone = nullptr;
366   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
367   while (true) {
368     MachineInstr *Cloned = CloneMachineInstr(&*I);
369     MBB.insert(InsertBefore, Cloned);
370     if (FirstClone == nullptr) {
371       FirstClone = Cloned;
372     } else {
373       Cloned->bundleWithPred();
374     }
375 
376     if (!I->isBundledWithSucc())
377       break;
378     ++I;
379   }
380   // Copy over call site info to the cloned instruction if needed. If Orig is in
381   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
382   // the bundle.
383   if (Orig.shouldUpdateCallSiteInfo())
384     copyCallSiteInfo(&Orig, FirstClone);
385   return *FirstClone;
386 }
387 
388 /// Delete the given MachineInstr.
389 ///
390 /// This function also serves as the MachineInstr destructor - the real
391 /// ~MachineInstr() destructor must be empty.
392 void
393 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
394   // Verify that a call site info is at valid state. This assertion should
395   // be triggered during the implementation of support for the
396   // call site info of a new architecture. If the assertion is triggered,
397   // back trace will tell where to insert a call to updateCallSiteInfo().
398   assert((!MI->isCandidateForCallSiteEntry() ||
399           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
400          "Call site info was not updated!");
401   // Strip it for parts. The operand array and the MI object itself are
402   // independently recyclable.
403   if (MI->Operands)
404     deallocateOperandArray(MI->CapOperands, MI->Operands);
405   // Don't call ~MachineInstr() which must be trivial anyway because
406   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
407   // destructors.
408   InstructionRecycler.Deallocate(Allocator, MI);
409 }
410 
411 /// Allocate a new MachineBasicBlock. Use this instead of
412 /// `new MachineBasicBlock'.
413 MachineBasicBlock *
414 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
415   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
416              MachineBasicBlock(*this, bb);
417 }
418 
419 /// Delete the given MachineBasicBlock.
420 void
421 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
422   assert(MBB->getParent() == this && "MBB parent mismatch!");
423   MBB->~MachineBasicBlock();
424   BasicBlockRecycler.Deallocate(Allocator, MBB);
425 }
426 
427 MachineMemOperand *MachineFunction::getMachineMemOperand(
428     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
429     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
430     SyncScope::ID SSID, AtomicOrdering Ordering,
431     AtomicOrdering FailureOrdering) {
432   return new (Allocator)
433       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
434                         SSID, Ordering, FailureOrdering);
435 }
436 
437 MachineMemOperand *MachineFunction::getMachineMemOperand(
438     const MachineMemOperand *MMO, MachinePointerInfo &PtrInfo, uint64_t Size) {
439   return new (Allocator) MachineMemOperand(
440       PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), AAMDNodes(), nullptr,
441       MMO->getSyncScopeID(), MMO->getOrdering(), MMO->getFailureOrdering());
442 }
443 
444 MachineMemOperand *
445 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
446                                       int64_t Offset, uint64_t Size) {
447   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
448 
449   // If there is no pointer value, the offset isn't tracked so we need to adjust
450   // the base alignment.
451   Align Alignment = PtrInfo.V.isNull()
452                         ? commonAlignment(MMO->getBaseAlign(), Offset)
453                         : MMO->getBaseAlign();
454 
455   // Do not preserve ranges, since we don't necessarily know what the high bits
456   // are anymore.
457   return new (Allocator)
458       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
459                         Alignment, MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
460                         MMO->getOrdering(), MMO->getFailureOrdering());
461 }
462 
463 MachineMemOperand *
464 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
465                                       const AAMDNodes &AAInfo) {
466   MachinePointerInfo MPI = MMO->getValue() ?
467              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
468              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
469 
470   return new (Allocator) MachineMemOperand(
471       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
472       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(),
473       MMO->getFailureOrdering());
474 }
475 
476 MachineMemOperand *
477 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
478                                       MachineMemOperand::Flags Flags) {
479   return new (Allocator) MachineMemOperand(
480       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
481       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
482       MMO->getOrdering(), MMO->getFailureOrdering());
483 }
484 
485 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
486     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
487     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
488   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
489                                          PostInstrSymbol, HeapAllocMarker);
490 }
491 
492 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
493   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
494   llvm::copy(Name, Dest);
495   Dest[Name.size()] = 0;
496   return Dest;
497 }
498 
499 uint32_t *MachineFunction::allocateRegMask() {
500   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
501   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
502   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
503   memset(Mask, 0, Size * sizeof(Mask[0]));
504   return Mask;
505 }
506 
507 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
508   int* AllocMask = Allocator.Allocate<int>(Mask.size());
509   copy(Mask, AllocMask);
510   return {AllocMask, Mask.size()};
511 }
512 
513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
514 LLVM_DUMP_METHOD void MachineFunction::dump() const {
515   print(dbgs());
516 }
517 #endif
518 
519 StringRef MachineFunction::getName() const {
520   return getFunction().getName();
521 }
522 
523 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
524   OS << "# Machine code for function " << getName() << ": ";
525   getProperties().print(OS);
526   OS << '\n';
527 
528   // Print Frame Information
529   FrameInfo->print(*this, OS);
530 
531   // Print JumpTable Information
532   if (JumpTableInfo)
533     JumpTableInfo->print(OS);
534 
535   // Print Constant Pool
536   ConstantPool->print(OS);
537 
538   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
539 
540   if (RegInfo && !RegInfo->livein_empty()) {
541     OS << "Function Live Ins: ";
542     for (MachineRegisterInfo::livein_iterator
543          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
544       OS << printReg(I->first, TRI);
545       if (I->second)
546         OS << " in " << printReg(I->second, TRI);
547       if (std::next(I) != E)
548         OS << ", ";
549     }
550     OS << '\n';
551   }
552 
553   ModuleSlotTracker MST(getFunction().getParent());
554   MST.incorporateFunction(getFunction());
555   for (const auto &BB : *this) {
556     OS << '\n';
557     // If we print the whole function, print it at its most verbose level.
558     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
559   }
560 
561   OS << "\n# End machine code for function " << getName() << ".\n\n";
562 }
563 
564 /// True if this function needs frame moves for debug or exceptions.
565 bool MachineFunction::needsFrameMoves() const {
566   return getMMI().hasDebugInfo() ||
567          getTarget().Options.ForceDwarfFrameSection ||
568          F.needsUnwindTableEntry();
569 }
570 
571 namespace llvm {
572 
573   template<>
574   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
575     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
576 
577     static std::string getGraphName(const MachineFunction *F) {
578       return ("CFG for '" + F->getName() + "' function").str();
579     }
580 
581     std::string getNodeLabel(const MachineBasicBlock *Node,
582                              const MachineFunction *Graph) {
583       std::string OutStr;
584       {
585         raw_string_ostream OSS(OutStr);
586 
587         if (isSimple()) {
588           OSS << printMBBReference(*Node);
589           if (const BasicBlock *BB = Node->getBasicBlock())
590             OSS << ": " << BB->getName();
591         } else
592           Node->print(OSS);
593       }
594 
595       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
596 
597       // Process string output to make it nicer...
598       for (unsigned i = 0; i != OutStr.length(); ++i)
599         if (OutStr[i] == '\n') {                            // Left justify
600           OutStr[i] = '\\';
601           OutStr.insert(OutStr.begin()+i+1, 'l');
602         }
603       return OutStr;
604     }
605   };
606 
607 } // end namespace llvm
608 
609 void MachineFunction::viewCFG() const
610 {
611 #ifndef NDEBUG
612   ViewGraph(this, "mf" + getName());
613 #else
614   errs() << "MachineFunction::viewCFG is only available in debug builds on "
615          << "systems with Graphviz or gv!\n";
616 #endif // NDEBUG
617 }
618 
619 void MachineFunction::viewCFGOnly() const
620 {
621 #ifndef NDEBUG
622   ViewGraph(this, "mf" + getName(), true);
623 #else
624   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
625          << "systems with Graphviz or gv!\n";
626 #endif // NDEBUG
627 }
628 
629 /// Add the specified physical register as a live-in value and
630 /// create a corresponding virtual register for it.
631 Register MachineFunction::addLiveIn(MCRegister PReg,
632                                     const TargetRegisterClass *RC) {
633   MachineRegisterInfo &MRI = getRegInfo();
634   Register VReg = MRI.getLiveInVirtReg(PReg);
635   if (VReg) {
636     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
637     (void)VRegRC;
638     // A physical register can be added several times.
639     // Between two calls, the register class of the related virtual register
640     // may have been constrained to match some operation constraints.
641     // In that case, check that the current register class includes the
642     // physical register and is a sub class of the specified RC.
643     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
644                              RC->hasSubClassEq(VRegRC))) &&
645             "Register class mismatch!");
646     return VReg;
647   }
648   VReg = MRI.createVirtualRegister(RC);
649   MRI.addLiveIn(PReg, VReg);
650   return VReg;
651 }
652 
653 /// Return the MCSymbol for the specified non-empty jump table.
654 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
655 /// normal 'L' label is returned.
656 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
657                                         bool isLinkerPrivate) const {
658   const DataLayout &DL = getDataLayout();
659   assert(JumpTableInfo && "No jump tables");
660   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
661 
662   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
663                                      : DL.getPrivateGlobalPrefix();
664   SmallString<60> Name;
665   raw_svector_ostream(Name)
666     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
667   return Ctx.getOrCreateSymbol(Name);
668 }
669 
670 /// Return a function-local symbol to represent the PIC base.
671 MCSymbol *MachineFunction::getPICBaseSymbol() const {
672   const DataLayout &DL = getDataLayout();
673   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
674                                Twine(getFunctionNumber()) + "$pb");
675 }
676 
677 /// \name Exception Handling
678 /// \{
679 
680 LandingPadInfo &
681 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
682   unsigned N = LandingPads.size();
683   for (unsigned i = 0; i < N; ++i) {
684     LandingPadInfo &LP = LandingPads[i];
685     if (LP.LandingPadBlock == LandingPad)
686       return LP;
687   }
688 
689   LandingPads.push_back(LandingPadInfo(LandingPad));
690   return LandingPads[N];
691 }
692 
693 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
694                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
695   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
696   LP.BeginLabels.push_back(BeginLabel);
697   LP.EndLabels.push_back(EndLabel);
698 }
699 
700 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
701   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
702   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
703   LP.LandingPadLabel = LandingPadLabel;
704 
705   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
706   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
707     if (const auto *PF =
708             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
709       getMMI().addPersonality(PF);
710 
711     if (LPI->isCleanup())
712       addCleanup(LandingPad);
713 
714     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
715     //        correct, but we need to do it this way because of how the DWARF EH
716     //        emitter processes the clauses.
717     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
718       Value *Val = LPI->getClause(I - 1);
719       if (LPI->isCatch(I - 1)) {
720         addCatchTypeInfo(LandingPad,
721                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
722       } else {
723         // Add filters in a list.
724         auto *CVal = cast<Constant>(Val);
725         SmallVector<const GlobalValue *, 4> FilterList;
726         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
727              II != IE; ++II)
728           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
729 
730         addFilterTypeInfo(LandingPad, FilterList);
731       }
732     }
733 
734   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
735     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
736       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
737       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
738     }
739 
740   } else {
741     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
742   }
743 
744   return LandingPadLabel;
745 }
746 
747 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
748                                        ArrayRef<const GlobalValue *> TyInfo) {
749   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
750   for (unsigned N = TyInfo.size(); N; --N)
751     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
752 }
753 
754 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
755                                         ArrayRef<const GlobalValue *> TyInfo) {
756   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
757   std::vector<unsigned> IdsInFilter(TyInfo.size());
758   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
759     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
760   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
761 }
762 
763 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
764                                       bool TidyIfNoBeginLabels) {
765   for (unsigned i = 0; i != LandingPads.size(); ) {
766     LandingPadInfo &LandingPad = LandingPads[i];
767     if (LandingPad.LandingPadLabel &&
768         !LandingPad.LandingPadLabel->isDefined() &&
769         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
770       LandingPad.LandingPadLabel = nullptr;
771 
772     // Special case: we *should* emit LPs with null LP MBB. This indicates
773     // "nounwind" case.
774     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
775       LandingPads.erase(LandingPads.begin() + i);
776       continue;
777     }
778 
779     if (TidyIfNoBeginLabels) {
780       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
781         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
782         MCSymbol *EndLabel = LandingPad.EndLabels[j];
783         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
784             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
785           continue;
786 
787         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
788         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
789         --j;
790         --e;
791       }
792 
793       // Remove landing pads with no try-ranges.
794       if (LandingPads[i].BeginLabels.empty()) {
795         LandingPads.erase(LandingPads.begin() + i);
796         continue;
797       }
798     }
799 
800     // If there is no landing pad, ensure that the list of typeids is empty.
801     // If the only typeid is a cleanup, this is the same as having no typeids.
802     if (!LandingPad.LandingPadBlock ||
803         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
804       LandingPad.TypeIds.clear();
805     ++i;
806   }
807 }
808 
809 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
810   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
811   LP.TypeIds.push_back(0);
812 }
813 
814 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
815                                          const Function *Filter,
816                                          const BlockAddress *RecoverBA) {
817   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
818   SEHHandler Handler;
819   Handler.FilterOrFinally = Filter;
820   Handler.RecoverBA = RecoverBA;
821   LP.SEHHandlers.push_back(Handler);
822 }
823 
824 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
825                                            const Function *Cleanup) {
826   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
827   SEHHandler Handler;
828   Handler.FilterOrFinally = Cleanup;
829   Handler.RecoverBA = nullptr;
830   LP.SEHHandlers.push_back(Handler);
831 }
832 
833 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
834                                             ArrayRef<unsigned> Sites) {
835   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
836 }
837 
838 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
839   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
840     if (TypeInfos[i] == TI) return i + 1;
841 
842   TypeInfos.push_back(TI);
843   return TypeInfos.size();
844 }
845 
846 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
847   // If the new filter coincides with the tail of an existing filter, then
848   // re-use the existing filter.  Folding filters more than this requires
849   // re-ordering filters and/or their elements - probably not worth it.
850   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
851        E = FilterEnds.end(); I != E; ++I) {
852     unsigned i = *I, j = TyIds.size();
853 
854     while (i && j)
855       if (FilterIds[--i] != TyIds[--j])
856         goto try_next;
857 
858     if (!j)
859       // The new filter coincides with range [i, end) of the existing filter.
860       return -(1 + i);
861 
862 try_next:;
863   }
864 
865   // Add the new filter.
866   int FilterID = -(1 + FilterIds.size());
867   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
868   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
869   FilterEnds.push_back(FilterIds.size());
870   FilterIds.push_back(0); // terminator
871   return FilterID;
872 }
873 
874 MachineFunction::CallSiteInfoMap::iterator
875 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
876   assert(MI->isCandidateForCallSiteEntry() &&
877          "Call site info refers only to call (MI) candidates");
878 
879   if (!Target.Options.EmitCallSiteInfo)
880     return CallSitesInfo.end();
881   return CallSitesInfo.find(MI);
882 }
883 
884 /// Return the call machine instruction or find a call within bundle.
885 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
886   if (!MI->isBundle())
887     return MI;
888 
889   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
890                               getBundleEnd(MI->getIterator())))
891     if (BMI.isCandidateForCallSiteEntry())
892       return &BMI;
893 
894   llvm_unreachable("Unexpected bundle without a call site candidate");
895 }
896 
897 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
898   assert(MI->shouldUpdateCallSiteInfo() &&
899          "Call site info refers only to call (MI) candidates or "
900          "candidates inside bundles");
901 
902   const MachineInstr *CallMI = getCallInstr(MI);
903   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
904   if (CSIt == CallSitesInfo.end())
905     return;
906   CallSitesInfo.erase(CSIt);
907 }
908 
909 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
910                                        const MachineInstr *New) {
911   assert(Old->shouldUpdateCallSiteInfo() &&
912          "Call site info refers only to call (MI) candidates or "
913          "candidates inside bundles");
914 
915   if (!New->isCandidateForCallSiteEntry())
916     return eraseCallSiteInfo(Old);
917 
918   const MachineInstr *OldCallMI = getCallInstr(Old);
919   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
920   if (CSIt == CallSitesInfo.end())
921     return;
922 
923   CallSiteInfo CSInfo = CSIt->second;
924   CallSitesInfo[New] = CSInfo;
925 }
926 
927 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
928                                        const MachineInstr *New) {
929   assert(Old->shouldUpdateCallSiteInfo() &&
930          "Call site info refers only to call (MI) candidates or "
931          "candidates inside bundles");
932 
933   if (!New->isCandidateForCallSiteEntry())
934     return eraseCallSiteInfo(Old);
935 
936   const MachineInstr *OldCallMI = getCallInstr(Old);
937   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
938   if (CSIt == CallSitesInfo.end())
939     return;
940 
941   CallSiteInfo CSInfo = std::move(CSIt->second);
942   CallSitesInfo.erase(CSIt);
943   CallSitesInfo[New] = CSInfo;
944 }
945 
946 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
947   DebugInstrNumberingCount = Num;
948 }
949 
950 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
951                                                  DebugInstrOperandPair B) {
952   auto Result = DebugValueSubstitutions.insert(std::make_pair(A, B));
953   (void)Result;
954   assert(Result.second && "Substitution for an already substituted value?");
955 }
956 
957 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
958                                                    MachineInstr &New) {
959   // If the Old instruction wasn't tracked at all, there is no work to do.
960   unsigned OldInstrNum = Old.peekDebugInstrNum();
961   if (!OldInstrNum)
962     return;
963 
964   // Iterate over all operands looking for defs to create substitutions for.
965   // Avoid creating new instr numbers unless we create a new substitution.
966   // While this has no functional effect, it risks confusing someone reading
967   // MIR output.
968   for (unsigned int I = 0; I < Old.getNumOperands(); ++I) {
969     const auto &OldMO = Old.getOperand(I);
970     auto &NewMO = Old.getOperand(I);
971 
972     if (!OldMO.isReg() || !OldMO.isDef())
973       continue;
974     assert(NewMO.isDef());
975 
976     unsigned NewInstrNum = New.getDebugInstrNum();
977     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
978                                std::make_pair(NewInstrNum, I));
979   }
980 }
981 
982 /// \}
983 
984 //===----------------------------------------------------------------------===//
985 //  MachineJumpTableInfo implementation
986 //===----------------------------------------------------------------------===//
987 
988 /// Return the size of each entry in the jump table.
989 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
990   // The size of a jump table entry is 4 bytes unless the entry is just the
991   // address of a block, in which case it is the pointer size.
992   switch (getEntryKind()) {
993   case MachineJumpTableInfo::EK_BlockAddress:
994     return TD.getPointerSize();
995   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
996     return 8;
997   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
998   case MachineJumpTableInfo::EK_LabelDifference32:
999   case MachineJumpTableInfo::EK_Custom32:
1000     return 4;
1001   case MachineJumpTableInfo::EK_Inline:
1002     return 0;
1003   }
1004   llvm_unreachable("Unknown jump table encoding!");
1005 }
1006 
1007 /// Return the alignment of each entry in the jump table.
1008 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1009   // The alignment of a jump table entry is the alignment of int32 unless the
1010   // entry is just the address of a block, in which case it is the pointer
1011   // alignment.
1012   switch (getEntryKind()) {
1013   case MachineJumpTableInfo::EK_BlockAddress:
1014     return TD.getPointerABIAlignment(0).value();
1015   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1016     return TD.getABIIntegerTypeAlignment(64).value();
1017   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1018   case MachineJumpTableInfo::EK_LabelDifference32:
1019   case MachineJumpTableInfo::EK_Custom32:
1020     return TD.getABIIntegerTypeAlignment(32).value();
1021   case MachineJumpTableInfo::EK_Inline:
1022     return 1;
1023   }
1024   llvm_unreachable("Unknown jump table encoding!");
1025 }
1026 
1027 /// Create a new jump table entry in the jump table info.
1028 unsigned MachineJumpTableInfo::createJumpTableIndex(
1029                                const std::vector<MachineBasicBlock*> &DestBBs) {
1030   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1031   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1032   return JumpTables.size()-1;
1033 }
1034 
1035 /// If Old is the target of any jump tables, update the jump tables to branch
1036 /// to New instead.
1037 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1038                                                   MachineBasicBlock *New) {
1039   assert(Old != New && "Not making a change?");
1040   bool MadeChange = false;
1041   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1042     ReplaceMBBInJumpTable(i, Old, New);
1043   return MadeChange;
1044 }
1045 
1046 /// If Old is a target of the jump tables, update the jump table to branch to
1047 /// New instead.
1048 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1049                                                  MachineBasicBlock *Old,
1050                                                  MachineBasicBlock *New) {
1051   assert(Old != New && "Not making a change?");
1052   bool MadeChange = false;
1053   MachineJumpTableEntry &JTE = JumpTables[Idx];
1054   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1055     if (JTE.MBBs[j] == Old) {
1056       JTE.MBBs[j] = New;
1057       MadeChange = true;
1058     }
1059   return MadeChange;
1060 }
1061 
1062 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1063   if (JumpTables.empty()) return;
1064 
1065   OS << "Jump Tables:\n";
1066 
1067   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1068     OS << printJumpTableEntryReference(i) << ':';
1069     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1070       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1071     if (i != e)
1072       OS << '\n';
1073   }
1074 
1075   OS << '\n';
1076 }
1077 
1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1079 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1080 #endif
1081 
1082 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1083   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1084 }
1085 
1086 //===----------------------------------------------------------------------===//
1087 //  MachineConstantPool implementation
1088 //===----------------------------------------------------------------------===//
1089 
1090 void MachineConstantPoolValue::anchor() {}
1091 
1092 Type *MachineConstantPoolEntry::getType() const {
1093   if (isMachineConstantPoolEntry())
1094     return Val.MachineCPVal->getType();
1095   return Val.ConstVal->getType();
1096 }
1097 
1098 bool MachineConstantPoolEntry::needsRelocation() const {
1099   if (isMachineConstantPoolEntry())
1100     return true;
1101   return Val.ConstVal->needsRelocation();
1102 }
1103 
1104 SectionKind
1105 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1106   if (needsRelocation())
1107     return SectionKind::getReadOnlyWithRel();
1108   switch (DL->getTypeAllocSize(getType())) {
1109   case 4:
1110     return SectionKind::getMergeableConst4();
1111   case 8:
1112     return SectionKind::getMergeableConst8();
1113   case 16:
1114     return SectionKind::getMergeableConst16();
1115   case 32:
1116     return SectionKind::getMergeableConst32();
1117   default:
1118     return SectionKind::getReadOnly();
1119   }
1120 }
1121 
1122 MachineConstantPool::~MachineConstantPool() {
1123   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1124   // so keep track of which we've deleted to avoid double deletions.
1125   DenseSet<MachineConstantPoolValue*> Deleted;
1126   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1127     if (Constants[i].isMachineConstantPoolEntry()) {
1128       Deleted.insert(Constants[i].Val.MachineCPVal);
1129       delete Constants[i].Val.MachineCPVal;
1130     }
1131   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1132        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1133        I != E; ++I) {
1134     if (Deleted.count(*I) == 0)
1135       delete *I;
1136   }
1137 }
1138 
1139 /// Test whether the given two constants can be allocated the same constant pool
1140 /// entry.
1141 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1142                                       const DataLayout &DL) {
1143   // Handle the trivial case quickly.
1144   if (A == B) return true;
1145 
1146   // If they have the same type but weren't the same constant, quickly
1147   // reject them.
1148   if (A->getType() == B->getType()) return false;
1149 
1150   // We can't handle structs or arrays.
1151   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1152       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1153     return false;
1154 
1155   // For now, only support constants with the same size.
1156   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1157   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1158     return false;
1159 
1160   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1161 
1162   // Try constant folding a bitcast of both instructions to an integer.  If we
1163   // get two identical ConstantInt's, then we are good to share them.  We use
1164   // the constant folding APIs to do this so that we get the benefit of
1165   // DataLayout.
1166   if (isa<PointerType>(A->getType()))
1167     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1168                                 const_cast<Constant *>(A), IntTy, DL);
1169   else if (A->getType() != IntTy)
1170     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1171                                 IntTy, DL);
1172   if (isa<PointerType>(B->getType()))
1173     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1174                                 const_cast<Constant *>(B), IntTy, DL);
1175   else if (B->getType() != IntTy)
1176     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1177                                 IntTy, DL);
1178 
1179   return A == B;
1180 }
1181 
1182 /// Create a new entry in the constant pool or return an existing one.
1183 /// User must specify the log2 of the minimum required alignment for the object.
1184 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1185                                                    Align Alignment) {
1186   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1187 
1188   // Check to see if we already have this constant.
1189   //
1190   // FIXME, this could be made much more efficient for large constant pools.
1191   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1192     if (!Constants[i].isMachineConstantPoolEntry() &&
1193         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1194       if (Constants[i].getAlign() < Alignment)
1195         Constants[i].Alignment = Alignment;
1196       return i;
1197     }
1198 
1199   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1200   return Constants.size()-1;
1201 }
1202 
1203 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1204                                                    Align Alignment) {
1205   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1206 
1207   // Check to see if we already have this constant.
1208   //
1209   // FIXME, this could be made much more efficient for large constant pools.
1210   int Idx = V->getExistingMachineCPValue(this, Alignment);
1211   if (Idx != -1) {
1212     MachineCPVsSharingEntries.insert(V);
1213     return (unsigned)Idx;
1214   }
1215 
1216   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1217   return Constants.size()-1;
1218 }
1219 
1220 void MachineConstantPool::print(raw_ostream &OS) const {
1221   if (Constants.empty()) return;
1222 
1223   OS << "Constant Pool:\n";
1224   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1225     OS << "  cp#" << i << ": ";
1226     if (Constants[i].isMachineConstantPoolEntry())
1227       Constants[i].Val.MachineCPVal->print(OS);
1228     else
1229       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1230     OS << ", align=" << Constants[i].getAlign().value();
1231     OS << "\n";
1232   }
1233 }
1234 
1235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1236 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1237 #endif
1238