1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 274 if (&FPType == &APFloat::IEEEsingle()) { 275 Attribute Attr = F.getFnAttribute("denormal-fp-math-f32"); 276 StringRef Val = Attr.getValueAsString(); 277 if (!Val.empty()) 278 return parseDenormalFPAttribute(Val); 279 280 // If the f32 variant of the attribute isn't specified, try to use the 281 // generic one. 282 } 283 284 // TODO: Should probably avoid the connection to the IR and store directly 285 // in the MachineFunction. 286 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 287 return parseDenormalFPAttribute(Attr.getValueAsString()); 288 } 289 290 /// Should we be emitting segmented stack stuff for the function 291 bool MachineFunction::shouldSplitStack() const { 292 return getFunction().hasFnAttribute("split-stack"); 293 } 294 295 LLVM_NODISCARD unsigned 296 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 297 FrameInstructions.push_back(Inst); 298 return FrameInstructions.size() - 1; 299 } 300 301 /// This discards all of the MachineBasicBlock numbers and recomputes them. 302 /// This guarantees that the MBB numbers are sequential, dense, and match the 303 /// ordering of the blocks within the function. If a specific MachineBasicBlock 304 /// is specified, only that block and those after it are renumbered. 305 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 306 if (empty()) { MBBNumbering.clear(); return; } 307 MachineFunction::iterator MBBI, E = end(); 308 if (MBB == nullptr) 309 MBBI = begin(); 310 else 311 MBBI = MBB->getIterator(); 312 313 // Figure out the block number this should have. 314 unsigned BlockNo = 0; 315 if (MBBI != begin()) 316 BlockNo = std::prev(MBBI)->getNumber() + 1; 317 318 for (; MBBI != E; ++MBBI, ++BlockNo) { 319 if (MBBI->getNumber() != (int)BlockNo) { 320 // Remove use of the old number. 321 if (MBBI->getNumber() != -1) { 322 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 323 "MBB number mismatch!"); 324 MBBNumbering[MBBI->getNumber()] = nullptr; 325 } 326 327 // If BlockNo is already taken, set that block's number to -1. 328 if (MBBNumbering[BlockNo]) 329 MBBNumbering[BlockNo]->setNumber(-1); 330 331 MBBNumbering[BlockNo] = &*MBBI; 332 MBBI->setNumber(BlockNo); 333 } 334 } 335 336 // Okay, all the blocks are renumbered. If we have compactified the block 337 // numbering, shrink MBBNumbering now. 338 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 339 MBBNumbering.resize(BlockNo); 340 } 341 342 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 343 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 344 const DebugLoc &DL, 345 bool NoImp) { 346 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 347 MachineInstr(*this, MCID, DL, NoImp); 348 } 349 350 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 351 /// identical in all ways except the instruction has no parent, prev, or next. 352 MachineInstr * 353 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 354 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 355 MachineInstr(*this, *Orig); 356 } 357 358 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 359 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 360 MachineInstr *FirstClone = nullptr; 361 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 362 while (true) { 363 MachineInstr *Cloned = CloneMachineInstr(&*I); 364 MBB.insert(InsertBefore, Cloned); 365 if (FirstClone == nullptr) { 366 FirstClone = Cloned; 367 } else { 368 Cloned->bundleWithPred(); 369 } 370 371 if (!I->isBundledWithSucc()) 372 break; 373 ++I; 374 } 375 return *FirstClone; 376 } 377 378 /// Delete the given MachineInstr. 379 /// 380 /// This function also serves as the MachineInstr destructor - the real 381 /// ~MachineInstr() destructor must be empty. 382 void 383 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 384 // Verify that a call site info is at valid state. This assertion should 385 // be triggered during the implementation of support for the 386 // call site info of a new architecture. If the assertion is triggered, 387 // back trace will tell where to insert a call to updateCallSiteInfo(). 388 assert((!MI->isCandidateForCallSiteEntry() || 389 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 390 "Call site info was not updated!"); 391 // Strip it for parts. The operand array and the MI object itself are 392 // independently recyclable. 393 if (MI->Operands) 394 deallocateOperandArray(MI->CapOperands, MI->Operands); 395 // Don't call ~MachineInstr() which must be trivial anyway because 396 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 397 // destructors. 398 InstructionRecycler.Deallocate(Allocator, MI); 399 } 400 401 /// Allocate a new MachineBasicBlock. Use this instead of 402 /// `new MachineBasicBlock'. 403 MachineBasicBlock * 404 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 405 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 406 MachineBasicBlock(*this, bb); 407 } 408 409 /// Delete the given MachineBasicBlock. 410 void 411 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 412 assert(MBB->getParent() == this && "MBB parent mismatch!"); 413 MBB->~MachineBasicBlock(); 414 BasicBlockRecycler.Deallocate(Allocator, MBB); 415 } 416 417 MachineMemOperand *MachineFunction::getMachineMemOperand( 418 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 419 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 420 SyncScope::ID SSID, AtomicOrdering Ordering, 421 AtomicOrdering FailureOrdering) { 422 return new (Allocator) 423 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 424 SSID, Ordering, FailureOrdering); 425 } 426 427 MachineMemOperand * 428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 429 int64_t Offset, uint64_t Size) { 430 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 431 432 // If there is no pointer value, the offset isn't tracked so we need to adjust 433 // the base alignment. 434 unsigned Align = PtrInfo.V.isNull() 435 ? MinAlign(MMO->getBaseAlignment(), Offset) 436 : MMO->getBaseAlignment(); 437 438 return new (Allocator) 439 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 440 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 441 MMO->getOrdering(), MMO->getFailureOrdering()); 442 } 443 444 MachineMemOperand * 445 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 446 const AAMDNodes &AAInfo) { 447 MachinePointerInfo MPI = MMO->getValue() ? 448 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 449 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 450 451 return new (Allocator) 452 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 453 MMO->getBaseAlignment(), AAInfo, 454 MMO->getRanges(), MMO->getSyncScopeID(), 455 MMO->getOrdering(), MMO->getFailureOrdering()); 456 } 457 458 MachineMemOperand * 459 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 460 MachineMemOperand::Flags Flags) { 461 return new (Allocator) MachineMemOperand( 462 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 463 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 464 MMO->getOrdering(), MMO->getFailureOrdering()); 465 } 466 467 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 468 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 469 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 470 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 471 PostInstrSymbol, HeapAllocMarker); 472 } 473 474 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 475 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 476 llvm::copy(Name, Dest); 477 Dest[Name.size()] = 0; 478 return Dest; 479 } 480 481 uint32_t *MachineFunction::allocateRegMask() { 482 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 483 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 484 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 485 memset(Mask, 0, Size * sizeof(Mask[0])); 486 return Mask; 487 } 488 489 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 490 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 491 copy(Mask, AllocMask); 492 return {AllocMask, Mask.size()}; 493 } 494 495 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 496 LLVM_DUMP_METHOD void MachineFunction::dump() const { 497 print(dbgs()); 498 } 499 #endif 500 501 StringRef MachineFunction::getName() const { 502 return getFunction().getName(); 503 } 504 505 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 506 OS << "# Machine code for function " << getName() << ": "; 507 getProperties().print(OS); 508 OS << '\n'; 509 510 // Print Frame Information 511 FrameInfo->print(*this, OS); 512 513 // Print JumpTable Information 514 if (JumpTableInfo) 515 JumpTableInfo->print(OS); 516 517 // Print Constant Pool 518 ConstantPool->print(OS); 519 520 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 521 522 if (RegInfo && !RegInfo->livein_empty()) { 523 OS << "Function Live Ins: "; 524 for (MachineRegisterInfo::livein_iterator 525 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 526 OS << printReg(I->first, TRI); 527 if (I->second) 528 OS << " in " << printReg(I->second, TRI); 529 if (std::next(I) != E) 530 OS << ", "; 531 } 532 OS << '\n'; 533 } 534 535 ModuleSlotTracker MST(getFunction().getParent()); 536 MST.incorporateFunction(getFunction()); 537 for (const auto &BB : *this) { 538 OS << '\n'; 539 // If we print the whole function, print it at its most verbose level. 540 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 541 } 542 543 OS << "\n# End machine code for function " << getName() << ".\n\n"; 544 } 545 546 /// True if this function needs frame moves for debug or exceptions. 547 bool MachineFunction::needsFrameMoves() const { 548 return getMMI().hasDebugInfo() || 549 getTarget().Options.ForceDwarfFrameSection || 550 F.needsUnwindTableEntry(); 551 } 552 553 namespace llvm { 554 555 template<> 556 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 557 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 558 559 static std::string getGraphName(const MachineFunction *F) { 560 return ("CFG for '" + F->getName() + "' function").str(); 561 } 562 563 std::string getNodeLabel(const MachineBasicBlock *Node, 564 const MachineFunction *Graph) { 565 std::string OutStr; 566 { 567 raw_string_ostream OSS(OutStr); 568 569 if (isSimple()) { 570 OSS << printMBBReference(*Node); 571 if (const BasicBlock *BB = Node->getBasicBlock()) 572 OSS << ": " << BB->getName(); 573 } else 574 Node->print(OSS); 575 } 576 577 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 578 579 // Process string output to make it nicer... 580 for (unsigned i = 0; i != OutStr.length(); ++i) 581 if (OutStr[i] == '\n') { // Left justify 582 OutStr[i] = '\\'; 583 OutStr.insert(OutStr.begin()+i+1, 'l'); 584 } 585 return OutStr; 586 } 587 }; 588 589 } // end namespace llvm 590 591 void MachineFunction::viewCFG() const 592 { 593 #ifndef NDEBUG 594 ViewGraph(this, "mf" + getName()); 595 #else 596 errs() << "MachineFunction::viewCFG is only available in debug builds on " 597 << "systems with Graphviz or gv!\n"; 598 #endif // NDEBUG 599 } 600 601 void MachineFunction::viewCFGOnly() const 602 { 603 #ifndef NDEBUG 604 ViewGraph(this, "mf" + getName(), true); 605 #else 606 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 607 << "systems with Graphviz or gv!\n"; 608 #endif // NDEBUG 609 } 610 611 /// Add the specified physical register as a live-in value and 612 /// create a corresponding virtual register for it. 613 unsigned MachineFunction::addLiveIn(unsigned PReg, 614 const TargetRegisterClass *RC) { 615 MachineRegisterInfo &MRI = getRegInfo(); 616 unsigned VReg = MRI.getLiveInVirtReg(PReg); 617 if (VReg) { 618 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 619 (void)VRegRC; 620 // A physical register can be added several times. 621 // Between two calls, the register class of the related virtual register 622 // may have been constrained to match some operation constraints. 623 // In that case, check that the current register class includes the 624 // physical register and is a sub class of the specified RC. 625 assert((VRegRC == RC || (VRegRC->contains(PReg) && 626 RC->hasSubClassEq(VRegRC))) && 627 "Register class mismatch!"); 628 return VReg; 629 } 630 VReg = MRI.createVirtualRegister(RC); 631 MRI.addLiveIn(PReg, VReg); 632 return VReg; 633 } 634 635 /// Return the MCSymbol for the specified non-empty jump table. 636 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 637 /// normal 'L' label is returned. 638 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 639 bool isLinkerPrivate) const { 640 const DataLayout &DL = getDataLayout(); 641 assert(JumpTableInfo && "No jump tables"); 642 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 643 644 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 645 : DL.getPrivateGlobalPrefix(); 646 SmallString<60> Name; 647 raw_svector_ostream(Name) 648 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 649 return Ctx.getOrCreateSymbol(Name); 650 } 651 652 /// Return a function-local symbol to represent the PIC base. 653 MCSymbol *MachineFunction::getPICBaseSymbol() const { 654 const DataLayout &DL = getDataLayout(); 655 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 656 Twine(getFunctionNumber()) + "$pb"); 657 } 658 659 /// \name Exception Handling 660 /// \{ 661 662 LandingPadInfo & 663 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 664 unsigned N = LandingPads.size(); 665 for (unsigned i = 0; i < N; ++i) { 666 LandingPadInfo &LP = LandingPads[i]; 667 if (LP.LandingPadBlock == LandingPad) 668 return LP; 669 } 670 671 LandingPads.push_back(LandingPadInfo(LandingPad)); 672 return LandingPads[N]; 673 } 674 675 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 676 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 677 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 678 LP.BeginLabels.push_back(BeginLabel); 679 LP.EndLabels.push_back(EndLabel); 680 } 681 682 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 683 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 684 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 685 LP.LandingPadLabel = LandingPadLabel; 686 687 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 688 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 689 if (const auto *PF = 690 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 691 getMMI().addPersonality(PF); 692 693 if (LPI->isCleanup()) 694 addCleanup(LandingPad); 695 696 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 697 // correct, but we need to do it this way because of how the DWARF EH 698 // emitter processes the clauses. 699 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 700 Value *Val = LPI->getClause(I - 1); 701 if (LPI->isCatch(I - 1)) { 702 addCatchTypeInfo(LandingPad, 703 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 704 } else { 705 // Add filters in a list. 706 auto *CVal = cast<Constant>(Val); 707 SmallVector<const GlobalValue *, 4> FilterList; 708 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 709 II != IE; ++II) 710 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 711 712 addFilterTypeInfo(LandingPad, FilterList); 713 } 714 } 715 716 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 717 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 718 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 719 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 720 } 721 722 } else { 723 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 724 } 725 726 return LandingPadLabel; 727 } 728 729 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 730 ArrayRef<const GlobalValue *> TyInfo) { 731 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 732 for (unsigned N = TyInfo.size(); N; --N) 733 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 734 } 735 736 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 737 ArrayRef<const GlobalValue *> TyInfo) { 738 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 739 std::vector<unsigned> IdsInFilter(TyInfo.size()); 740 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 741 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 742 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 743 } 744 745 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 746 bool TidyIfNoBeginLabels) { 747 for (unsigned i = 0; i != LandingPads.size(); ) { 748 LandingPadInfo &LandingPad = LandingPads[i]; 749 if (LandingPad.LandingPadLabel && 750 !LandingPad.LandingPadLabel->isDefined() && 751 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 752 LandingPad.LandingPadLabel = nullptr; 753 754 // Special case: we *should* emit LPs with null LP MBB. This indicates 755 // "nounwind" case. 756 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 757 LandingPads.erase(LandingPads.begin() + i); 758 continue; 759 } 760 761 if (TidyIfNoBeginLabels) { 762 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 763 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 764 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 765 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 766 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 767 continue; 768 769 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 770 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 771 --j; 772 --e; 773 } 774 775 // Remove landing pads with no try-ranges. 776 if (LandingPads[i].BeginLabels.empty()) { 777 LandingPads.erase(LandingPads.begin() + i); 778 continue; 779 } 780 } 781 782 // If there is no landing pad, ensure that the list of typeids is empty. 783 // If the only typeid is a cleanup, this is the same as having no typeids. 784 if (!LandingPad.LandingPadBlock || 785 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 786 LandingPad.TypeIds.clear(); 787 ++i; 788 } 789 } 790 791 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 792 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 793 LP.TypeIds.push_back(0); 794 } 795 796 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 797 const Function *Filter, 798 const BlockAddress *RecoverBA) { 799 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 800 SEHHandler Handler; 801 Handler.FilterOrFinally = Filter; 802 Handler.RecoverBA = RecoverBA; 803 LP.SEHHandlers.push_back(Handler); 804 } 805 806 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 807 const Function *Cleanup) { 808 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 809 SEHHandler Handler; 810 Handler.FilterOrFinally = Cleanup; 811 Handler.RecoverBA = nullptr; 812 LP.SEHHandlers.push_back(Handler); 813 } 814 815 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 816 ArrayRef<unsigned> Sites) { 817 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 818 } 819 820 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 821 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 822 if (TypeInfos[i] == TI) return i + 1; 823 824 TypeInfos.push_back(TI); 825 return TypeInfos.size(); 826 } 827 828 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 829 // If the new filter coincides with the tail of an existing filter, then 830 // re-use the existing filter. Folding filters more than this requires 831 // re-ordering filters and/or their elements - probably not worth it. 832 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 833 E = FilterEnds.end(); I != E; ++I) { 834 unsigned i = *I, j = TyIds.size(); 835 836 while (i && j) 837 if (FilterIds[--i] != TyIds[--j]) 838 goto try_next; 839 840 if (!j) 841 // The new filter coincides with range [i, end) of the existing filter. 842 return -(1 + i); 843 844 try_next:; 845 } 846 847 // Add the new filter. 848 int FilterID = -(1 + FilterIds.size()); 849 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 850 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 851 FilterEnds.push_back(FilterIds.size()); 852 FilterIds.push_back(0); // terminator 853 return FilterID; 854 } 855 856 MachineFunction::CallSiteInfoMap::iterator 857 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 858 assert(MI->isCandidateForCallSiteEntry() && 859 "Call site info refers only to call (MI) candidates"); 860 861 if (!Target.Options.EmitCallSiteInfo) 862 return CallSitesInfo.end(); 863 return CallSitesInfo.find(MI); 864 } 865 866 /// Return the call machine instruction or find a call within bundle. 867 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 868 if (!MI->isBundle()) 869 return MI; 870 871 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 872 getBundleEnd(MI->getIterator()))) 873 if (BMI.isCandidateForCallSiteEntry()) 874 return &BMI; 875 876 llvm_unreachable("Unexpected bundle without a call site candidate"); 877 } 878 879 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 880 assert(MI->shouldUpdateCallSiteInfo() && 881 "Call site info refers only to call (MI) candidates or " 882 "candidates inside bundles"); 883 884 const MachineInstr *CallMI = getCallInstr(MI); 885 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 886 if (CSIt == CallSitesInfo.end()) 887 return; 888 CallSitesInfo.erase(CSIt); 889 } 890 891 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 892 const MachineInstr *New) { 893 assert(Old->shouldUpdateCallSiteInfo() && 894 "Call site info refers only to call (MI) candidates or " 895 "candidates inside bundles"); 896 897 if (!New->isCandidateForCallSiteEntry()) 898 return eraseCallSiteInfo(Old); 899 900 const MachineInstr *OldCallMI = getCallInstr(Old); 901 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 902 if (CSIt == CallSitesInfo.end()) 903 return; 904 905 CallSiteInfo CSInfo = CSIt->second; 906 CallSitesInfo[New] = CSInfo; 907 } 908 909 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 910 const MachineInstr *New) { 911 assert(Old->shouldUpdateCallSiteInfo() && 912 "Call site info refers only to call (MI) candidates or " 913 "candidates inside bundles"); 914 915 if (!New->isCandidateForCallSiteEntry()) 916 return eraseCallSiteInfo(Old); 917 918 const MachineInstr *OldCallMI = getCallInstr(Old); 919 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 920 if (CSIt == CallSitesInfo.end()) 921 return; 922 923 CallSiteInfo CSInfo = std::move(CSIt->second); 924 CallSitesInfo.erase(CSIt); 925 CallSitesInfo[New] = CSInfo; 926 } 927 928 /// \} 929 930 //===----------------------------------------------------------------------===// 931 // MachineJumpTableInfo implementation 932 //===----------------------------------------------------------------------===// 933 934 /// Return the size of each entry in the jump table. 935 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 936 // The size of a jump table entry is 4 bytes unless the entry is just the 937 // address of a block, in which case it is the pointer size. 938 switch (getEntryKind()) { 939 case MachineJumpTableInfo::EK_BlockAddress: 940 return TD.getPointerSize(); 941 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 942 return 8; 943 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 944 case MachineJumpTableInfo::EK_LabelDifference32: 945 case MachineJumpTableInfo::EK_Custom32: 946 return 4; 947 case MachineJumpTableInfo::EK_Inline: 948 return 0; 949 } 950 llvm_unreachable("Unknown jump table encoding!"); 951 } 952 953 /// Return the alignment of each entry in the jump table. 954 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 955 // The alignment of a jump table entry is the alignment of int32 unless the 956 // entry is just the address of a block, in which case it is the pointer 957 // alignment. 958 switch (getEntryKind()) { 959 case MachineJumpTableInfo::EK_BlockAddress: 960 return TD.getPointerABIAlignment(0).value(); 961 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 962 return TD.getABIIntegerTypeAlignment(64).value(); 963 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 964 case MachineJumpTableInfo::EK_LabelDifference32: 965 case MachineJumpTableInfo::EK_Custom32: 966 return TD.getABIIntegerTypeAlignment(32).value(); 967 case MachineJumpTableInfo::EK_Inline: 968 return 1; 969 } 970 llvm_unreachable("Unknown jump table encoding!"); 971 } 972 973 /// Create a new jump table entry in the jump table info. 974 unsigned MachineJumpTableInfo::createJumpTableIndex( 975 const std::vector<MachineBasicBlock*> &DestBBs) { 976 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 977 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 978 return JumpTables.size()-1; 979 } 980 981 /// If Old is the target of any jump tables, update the jump tables to branch 982 /// to New instead. 983 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 984 MachineBasicBlock *New) { 985 assert(Old != New && "Not making a change?"); 986 bool MadeChange = false; 987 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 988 ReplaceMBBInJumpTable(i, Old, New); 989 return MadeChange; 990 } 991 992 /// If Old is a target of the jump tables, update the jump table to branch to 993 /// New instead. 994 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 995 MachineBasicBlock *Old, 996 MachineBasicBlock *New) { 997 assert(Old != New && "Not making a change?"); 998 bool MadeChange = false; 999 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1000 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1001 if (JTE.MBBs[j] == Old) { 1002 JTE.MBBs[j] = New; 1003 MadeChange = true; 1004 } 1005 return MadeChange; 1006 } 1007 1008 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1009 if (JumpTables.empty()) return; 1010 1011 OS << "Jump Tables:\n"; 1012 1013 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1014 OS << printJumpTableEntryReference(i) << ':'; 1015 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1016 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1017 if (i != e) 1018 OS << '\n'; 1019 } 1020 1021 OS << '\n'; 1022 } 1023 1024 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1025 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1026 #endif 1027 1028 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1029 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // MachineConstantPool implementation 1034 //===----------------------------------------------------------------------===// 1035 1036 void MachineConstantPoolValue::anchor() {} 1037 1038 Type *MachineConstantPoolEntry::getType() const { 1039 if (isMachineConstantPoolEntry()) 1040 return Val.MachineCPVal->getType(); 1041 return Val.ConstVal->getType(); 1042 } 1043 1044 bool MachineConstantPoolEntry::needsRelocation() const { 1045 if (isMachineConstantPoolEntry()) 1046 return true; 1047 return Val.ConstVal->needsRelocation(); 1048 } 1049 1050 SectionKind 1051 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1052 if (needsRelocation()) 1053 return SectionKind::getReadOnlyWithRel(); 1054 switch (DL->getTypeAllocSize(getType())) { 1055 case 4: 1056 return SectionKind::getMergeableConst4(); 1057 case 8: 1058 return SectionKind::getMergeableConst8(); 1059 case 16: 1060 return SectionKind::getMergeableConst16(); 1061 case 32: 1062 return SectionKind::getMergeableConst32(); 1063 default: 1064 return SectionKind::getReadOnly(); 1065 } 1066 } 1067 1068 MachineConstantPool::~MachineConstantPool() { 1069 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1070 // so keep track of which we've deleted to avoid double deletions. 1071 DenseSet<MachineConstantPoolValue*> Deleted; 1072 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1073 if (Constants[i].isMachineConstantPoolEntry()) { 1074 Deleted.insert(Constants[i].Val.MachineCPVal); 1075 delete Constants[i].Val.MachineCPVal; 1076 } 1077 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1078 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1079 I != E; ++I) { 1080 if (Deleted.count(*I) == 0) 1081 delete *I; 1082 } 1083 } 1084 1085 /// Test whether the given two constants can be allocated the same constant pool 1086 /// entry. 1087 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1088 const DataLayout &DL) { 1089 // Handle the trivial case quickly. 1090 if (A == B) return true; 1091 1092 // If they have the same type but weren't the same constant, quickly 1093 // reject them. 1094 if (A->getType() == B->getType()) return false; 1095 1096 // We can't handle structs or arrays. 1097 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1098 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1099 return false; 1100 1101 // For now, only support constants with the same size. 1102 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1103 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1104 return false; 1105 1106 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1107 1108 // Try constant folding a bitcast of both instructions to an integer. If we 1109 // get two identical ConstantInt's, then we are good to share them. We use 1110 // the constant folding APIs to do this so that we get the benefit of 1111 // DataLayout. 1112 if (isa<PointerType>(A->getType())) 1113 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1114 const_cast<Constant *>(A), IntTy, DL); 1115 else if (A->getType() != IntTy) 1116 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1117 IntTy, DL); 1118 if (isa<PointerType>(B->getType())) 1119 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1120 const_cast<Constant *>(B), IntTy, DL); 1121 else if (B->getType() != IntTy) 1122 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1123 IntTy, DL); 1124 1125 return A == B; 1126 } 1127 1128 /// Create a new entry in the constant pool or return an existing one. 1129 /// User must specify the log2 of the minimum required alignment for the object. 1130 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1131 unsigned Alignment) { 1132 assert(Alignment && "Alignment must be specified!"); 1133 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1134 1135 // Check to see if we already have this constant. 1136 // 1137 // FIXME, this could be made much more efficient for large constant pools. 1138 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1139 if (!Constants[i].isMachineConstantPoolEntry() && 1140 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1141 if ((unsigned)Constants[i].getAlignment() < Alignment) 1142 Constants[i].Alignment = Alignment; 1143 return i; 1144 } 1145 1146 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1147 return Constants.size()-1; 1148 } 1149 1150 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1151 unsigned Alignment) { 1152 assert(Alignment && "Alignment must be specified!"); 1153 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1154 1155 // Check to see if we already have this constant. 1156 // 1157 // FIXME, this could be made much more efficient for large constant pools. 1158 int Idx = V->getExistingMachineCPValue(this, Alignment); 1159 if (Idx != -1) { 1160 MachineCPVsSharingEntries.insert(V); 1161 return (unsigned)Idx; 1162 } 1163 1164 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1165 return Constants.size()-1; 1166 } 1167 1168 void MachineConstantPool::print(raw_ostream &OS) const { 1169 if (Constants.empty()) return; 1170 1171 OS << "Constant Pool:\n"; 1172 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1173 OS << " cp#" << i << ": "; 1174 if (Constants[i].isMachineConstantPoolEntry()) 1175 Constants[i].Val.MachineCPVal->print(OS); 1176 else 1177 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1178 OS << ", align=" << Constants[i].getAlignment(); 1179 OS << "\n"; 1180 } 1181 } 1182 1183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1184 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1185 #endif 1186