1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(TM); 58 else 59 RegInfo = nullptr; 60 61 MFInfo = nullptr; 62 FrameInfo = 63 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 64 65 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 66 Attribute::StackAlignment)) 67 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 68 getStackAlignment(AttributeSet::FunctionIndex)); 69 70 ConstantPool = new (Allocator) MachineConstantPool(TM); 71 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 72 73 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 74 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 75 Attribute::OptimizeForSize)) 76 Alignment = std::max(Alignment, 77 TM.getTargetLowering()->getPrefFunctionAlignment()); 78 79 FunctionNumber = FunctionNum; 80 JumpTableInfo = nullptr; 81 } 82 83 MachineFunction::~MachineFunction() { 84 // Don't call destructors on MachineInstr and MachineOperand. All of their 85 // memory comes from the BumpPtrAllocator which is about to be purged. 86 // 87 // Do call MachineBasicBlock destructors, it contains std::vectors. 88 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 89 I->Insts.clearAndLeakNodesUnsafely(); 90 91 InstructionRecycler.clear(Allocator); 92 OperandRecycler.clear(Allocator); 93 BasicBlockRecycler.clear(Allocator); 94 if (RegInfo) { 95 RegInfo->~MachineRegisterInfo(); 96 Allocator.Deallocate(RegInfo); 97 } 98 if (MFInfo) { 99 MFInfo->~MachineFunctionInfo(); 100 Allocator.Deallocate(MFInfo); 101 } 102 103 FrameInfo->~MachineFrameInfo(); 104 Allocator.Deallocate(FrameInfo); 105 106 ConstantPool->~MachineConstantPool(); 107 Allocator.Deallocate(ConstantPool); 108 109 if (JumpTableInfo) { 110 JumpTableInfo->~MachineJumpTableInfo(); 111 Allocator.Deallocate(JumpTableInfo); 112 } 113 } 114 115 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 116 /// does already exist, allocate one. 117 MachineJumpTableInfo *MachineFunction:: 118 getOrCreateJumpTableInfo(unsigned EntryKind) { 119 if (JumpTableInfo) return JumpTableInfo; 120 121 JumpTableInfo = new (Allocator) 122 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 123 return JumpTableInfo; 124 } 125 126 /// Should we be emitting segmented stack stuff for the function 127 bool MachineFunction::shouldSplitStack() { 128 return getFunction()->hasFnAttribute("split-stack"); 129 } 130 131 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 132 /// recomputes them. This guarantees that the MBB numbers are sequential, 133 /// dense, and match the ordering of the blocks within the function. If a 134 /// specific MachineBasicBlock is specified, only that block and those after 135 /// it are renumbered. 136 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 137 if (empty()) { MBBNumbering.clear(); return; } 138 MachineFunction::iterator MBBI, E = end(); 139 if (MBB == nullptr) 140 MBBI = begin(); 141 else 142 MBBI = MBB; 143 144 // Figure out the block number this should have. 145 unsigned BlockNo = 0; 146 if (MBBI != begin()) 147 BlockNo = std::prev(MBBI)->getNumber() + 1; 148 149 for (; MBBI != E; ++MBBI, ++BlockNo) { 150 if (MBBI->getNumber() != (int)BlockNo) { 151 // Remove use of the old number. 152 if (MBBI->getNumber() != -1) { 153 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 154 "MBB number mismatch!"); 155 MBBNumbering[MBBI->getNumber()] = nullptr; 156 } 157 158 // If BlockNo is already taken, set that block's number to -1. 159 if (MBBNumbering[BlockNo]) 160 MBBNumbering[BlockNo]->setNumber(-1); 161 162 MBBNumbering[BlockNo] = MBBI; 163 MBBI->setNumber(BlockNo); 164 } 165 } 166 167 // Okay, all the blocks are renumbered. If we have compactified the block 168 // numbering, shrink MBBNumbering now. 169 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 170 MBBNumbering.resize(BlockNo); 171 } 172 173 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 174 /// of `new MachineInstr'. 175 /// 176 MachineInstr * 177 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 178 DebugLoc DL, bool NoImp) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, MCID, DL, NoImp); 181 } 182 183 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 184 /// 'Orig' instruction, identical in all ways except the instruction 185 /// has no parent, prev, or next. 186 /// 187 MachineInstr * 188 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 189 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 190 MachineInstr(*this, *Orig); 191 } 192 193 /// DeleteMachineInstr - Delete the given MachineInstr. 194 /// 195 /// This function also serves as the MachineInstr destructor - the real 196 /// ~MachineInstr() destructor must be empty. 197 void 198 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 199 // Strip it for parts. The operand array and the MI object itself are 200 // independently recyclable. 201 if (MI->Operands) 202 deallocateOperandArray(MI->CapOperands, MI->Operands); 203 // Don't call ~MachineInstr() which must be trivial anyway because 204 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 205 // destructors. 206 InstructionRecycler.Deallocate(Allocator, MI); 207 } 208 209 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 210 /// instead of `new MachineBasicBlock'. 211 /// 212 MachineBasicBlock * 213 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 214 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 215 MachineBasicBlock(*this, bb); 216 } 217 218 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 219 /// 220 void 221 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 222 assert(MBB->getParent() == this && "MBB parent mismatch!"); 223 MBB->~MachineBasicBlock(); 224 BasicBlockRecycler.Deallocate(Allocator, MBB); 225 } 226 227 MachineMemOperand * 228 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 229 uint64_t s, unsigned base_alignment, 230 const MDNode *TBAAInfo, 231 const MDNode *Ranges) { 232 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 233 TBAAInfo, Ranges); 234 } 235 236 MachineMemOperand * 237 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 238 int64_t Offset, uint64_t Size) { 239 return new (Allocator) 240 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 241 MMO->getOffset()+Offset), 242 MMO->getFlags(), Size, 243 MMO->getBaseAlignment(), nullptr); 244 } 245 246 MachineInstr::mmo_iterator 247 MachineFunction::allocateMemRefsArray(unsigned long Num) { 248 return Allocator.Allocate<MachineMemOperand *>(Num); 249 } 250 251 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 252 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 253 MachineInstr::mmo_iterator End) { 254 // Count the number of load mem refs. 255 unsigned Num = 0; 256 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 257 if ((*I)->isLoad()) 258 ++Num; 259 260 // Allocate a new array and populate it with the load information. 261 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 262 unsigned Index = 0; 263 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 264 if ((*I)->isLoad()) { 265 if (!(*I)->isStore()) 266 // Reuse the MMO. 267 Result[Index] = *I; 268 else { 269 // Clone the MMO and unset the store flag. 270 MachineMemOperand *JustLoad = 271 getMachineMemOperand((*I)->getPointerInfo(), 272 (*I)->getFlags() & ~MachineMemOperand::MOStore, 273 (*I)->getSize(), (*I)->getBaseAlignment(), 274 (*I)->getTBAAInfo()); 275 Result[Index] = JustLoad; 276 } 277 ++Index; 278 } 279 } 280 return std::make_pair(Result, Result + Num); 281 } 282 283 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 284 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 285 MachineInstr::mmo_iterator End) { 286 // Count the number of load mem refs. 287 unsigned Num = 0; 288 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 289 if ((*I)->isStore()) 290 ++Num; 291 292 // Allocate a new array and populate it with the store information. 293 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 294 unsigned Index = 0; 295 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 296 if ((*I)->isStore()) { 297 if (!(*I)->isLoad()) 298 // Reuse the MMO. 299 Result[Index] = *I; 300 else { 301 // Clone the MMO and unset the load flag. 302 MachineMemOperand *JustStore = 303 getMachineMemOperand((*I)->getPointerInfo(), 304 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 305 (*I)->getSize(), (*I)->getBaseAlignment(), 306 (*I)->getTBAAInfo()); 307 Result[Index] = JustStore; 308 } 309 ++Index; 310 } 311 } 312 return std::make_pair(Result, Result + Num); 313 } 314 315 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 316 void MachineFunction::dump() const { 317 print(dbgs()); 318 } 319 #endif 320 321 StringRef MachineFunction::getName() const { 322 assert(getFunction() && "No function!"); 323 return getFunction()->getName(); 324 } 325 326 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 327 OS << "# Machine code for function " << getName() << ": "; 328 if (RegInfo) { 329 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 330 if (!RegInfo->tracksLiveness()) 331 OS << ", not tracking liveness"; 332 } 333 OS << '\n'; 334 335 // Print Frame Information 336 FrameInfo->print(*this, OS); 337 338 // Print JumpTable Information 339 if (JumpTableInfo) 340 JumpTableInfo->print(OS); 341 342 // Print Constant Pool 343 ConstantPool->print(OS); 344 345 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 346 347 if (RegInfo && !RegInfo->livein_empty()) { 348 OS << "Function Live Ins: "; 349 for (MachineRegisterInfo::livein_iterator 350 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 351 OS << PrintReg(I->first, TRI); 352 if (I->second) 353 OS << " in " << PrintReg(I->second, TRI); 354 if (std::next(I) != E) 355 OS << ", "; 356 } 357 OS << '\n'; 358 } 359 360 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 361 OS << '\n'; 362 BB->print(OS, Indexes); 363 } 364 365 OS << "\n# End machine code for function " << getName() << ".\n\n"; 366 } 367 368 namespace llvm { 369 template<> 370 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 371 372 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 373 374 static std::string getGraphName(const MachineFunction *F) { 375 return "CFG for '" + F->getName().str() + "' function"; 376 } 377 378 std::string getNodeLabel(const MachineBasicBlock *Node, 379 const MachineFunction *Graph) { 380 std::string OutStr; 381 { 382 raw_string_ostream OSS(OutStr); 383 384 if (isSimple()) { 385 OSS << "BB#" << Node->getNumber(); 386 if (const BasicBlock *BB = Node->getBasicBlock()) 387 OSS << ": " << BB->getName(); 388 } else 389 Node->print(OSS); 390 } 391 392 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 393 394 // Process string output to make it nicer... 395 for (unsigned i = 0; i != OutStr.length(); ++i) 396 if (OutStr[i] == '\n') { // Left justify 397 OutStr[i] = '\\'; 398 OutStr.insert(OutStr.begin()+i+1, 'l'); 399 } 400 return OutStr; 401 } 402 }; 403 } 404 405 void MachineFunction::viewCFG() const 406 { 407 #ifndef NDEBUG 408 ViewGraph(this, "mf" + getName()); 409 #else 410 errs() << "MachineFunction::viewCFG is only available in debug builds on " 411 << "systems with Graphviz or gv!\n"; 412 #endif // NDEBUG 413 } 414 415 void MachineFunction::viewCFGOnly() const 416 { 417 #ifndef NDEBUG 418 ViewGraph(this, "mf" + getName(), true); 419 #else 420 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 421 << "systems with Graphviz or gv!\n"; 422 #endif // NDEBUG 423 } 424 425 /// addLiveIn - Add the specified physical register as a live-in value and 426 /// create a corresponding virtual register for it. 427 unsigned MachineFunction::addLiveIn(unsigned PReg, 428 const TargetRegisterClass *RC) { 429 MachineRegisterInfo &MRI = getRegInfo(); 430 unsigned VReg = MRI.getLiveInVirtReg(PReg); 431 if (VReg) { 432 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 433 (void)VRegRC; 434 // A physical register can be added several times. 435 // Between two calls, the register class of the related virtual register 436 // may have been constrained to match some operation constraints. 437 // In that case, check that the current register class includes the 438 // physical register and is a sub class of the specified RC. 439 assert((VRegRC == RC || (VRegRC->contains(PReg) && 440 RC->hasSubClassEq(VRegRC))) && 441 "Register class mismatch!"); 442 return VReg; 443 } 444 VReg = MRI.createVirtualRegister(RC); 445 MRI.addLiveIn(PReg, VReg); 446 return VReg; 447 } 448 449 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 450 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 451 /// normal 'L' label is returned. 452 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 453 bool isLinkerPrivate) const { 454 const DataLayout *DL = getTarget().getDataLayout(); 455 assert(JumpTableInfo && "No jump tables"); 456 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 457 458 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 459 DL->getPrivateGlobalPrefix(); 460 SmallString<60> Name; 461 raw_svector_ostream(Name) 462 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 463 return Ctx.GetOrCreateSymbol(Name.str()); 464 } 465 466 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 467 /// base. 468 MCSymbol *MachineFunction::getPICBaseSymbol() const { 469 const DataLayout *DL = getTarget().getDataLayout(); 470 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 471 Twine(getFunctionNumber())+"$pb"); 472 } 473 474 //===----------------------------------------------------------------------===// 475 // MachineFrameInfo implementation 476 //===----------------------------------------------------------------------===// 477 478 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 479 return TM.getFrameLowering(); 480 } 481 482 /// ensureMaxAlignment - Make sure the function is at least Align bytes 483 /// aligned. 484 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 485 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 486 assert(Align <= getFrameLowering()->getStackAlignment() && 487 "For targets without stack realignment, Align is out of limit!"); 488 if (MaxAlignment < Align) MaxAlignment = Align; 489 } 490 491 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 492 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 493 unsigned StackAlign) { 494 if (!ShouldClamp || Align <= StackAlign) 495 return Align; 496 DEBUG(dbgs() << "Warning: requested alignment " << Align 497 << " exceeds the stack alignment " << StackAlign 498 << " when stack realignment is off" << '\n'); 499 return StackAlign; 500 } 501 502 /// CreateStackObject - Create a new statically sized stack object, returning 503 /// a nonnegative identifier to represent it. 504 /// 505 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 506 bool isSS, const AllocaInst *Alloca) { 507 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 508 Alignment = 509 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 510 !RealignOption, 511 Alignment, getFrameLowering()->getStackAlignment()); 512 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 513 int Index = (int)Objects.size() - NumFixedObjects - 1; 514 assert(Index >= 0 && "Bad frame index!"); 515 ensureMaxAlignment(Alignment); 516 return Index; 517 } 518 519 /// CreateSpillStackObject - Create a new statically sized stack object that 520 /// represents a spill slot, returning a nonnegative identifier to represent 521 /// it. 522 /// 523 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 524 unsigned Alignment) { 525 Alignment = 526 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 527 !RealignOption, 528 Alignment, getFrameLowering()->getStackAlignment()); 529 CreateStackObject(Size, Alignment, true); 530 int Index = (int)Objects.size() - NumFixedObjects - 1; 531 ensureMaxAlignment(Alignment); 532 return Index; 533 } 534 535 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 536 /// variable sized object has been created. This must be created whenever a 537 /// variable sized object is created, whether or not the index returned is 538 /// actually used. 539 /// 540 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 541 const AllocaInst *Alloca) { 542 HasVarSizedObjects = true; 543 Alignment = 544 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 545 !RealignOption, 546 Alignment, getFrameLowering()->getStackAlignment()); 547 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 548 ensureMaxAlignment(Alignment); 549 return (int)Objects.size()-NumFixedObjects-1; 550 } 551 552 /// CreateFixedObject - Create a new object at a fixed location on the stack. 553 /// All fixed objects should be created before other objects are created for 554 /// efficiency. By default, fixed objects are immutable. This returns an 555 /// index with a negative value. 556 /// 557 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 558 bool Immutable) { 559 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 560 // The alignment of the frame index can be determined from its offset from 561 // the incoming frame position. If the frame object is at offset 32 and 562 // the stack is guaranteed to be 16-byte aligned, then we know that the 563 // object is 16-byte aligned. 564 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 565 unsigned Align = MinAlign(SPOffset, StackAlign); 566 Align = 567 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 568 !RealignOption, 569 Align, getFrameLowering()->getStackAlignment()); 570 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 571 /*isSS*/ false, 572 /*Alloca*/ nullptr)); 573 return -++NumFixedObjects; 574 } 575 576 577 BitVector 578 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 579 assert(MBB && "MBB must be valid"); 580 const MachineFunction *MF = MBB->getParent(); 581 assert(MF && "MBB must be part of a MachineFunction"); 582 const TargetMachine &TM = MF->getTarget(); 583 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 584 BitVector BV(TRI->getNumRegs()); 585 586 // Before CSI is calculated, no registers are considered pristine. They can be 587 // freely used and PEI will make sure they are saved. 588 if (!isCalleeSavedInfoValid()) 589 return BV; 590 591 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 592 BV.set(*CSR); 593 594 // The entry MBB always has all CSRs pristine. 595 if (MBB == &MF->front()) 596 return BV; 597 598 // On other MBBs the saved CSRs are not pristine. 599 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 600 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 601 E = CSI.end(); I != E; ++I) 602 BV.reset(I->getReg()); 603 604 return BV; 605 } 606 607 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 608 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 609 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 610 unsigned MaxAlign = getMaxAlignment(); 611 int Offset = 0; 612 613 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 614 // It really should be refactored to share code. Until then, changes 615 // should keep in mind that there's tight coupling between the two. 616 617 for (int i = getObjectIndexBegin(); i != 0; ++i) { 618 int FixedOff = -getObjectOffset(i); 619 if (FixedOff > Offset) Offset = FixedOff; 620 } 621 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 622 if (isDeadObjectIndex(i)) 623 continue; 624 Offset += getObjectSize(i); 625 unsigned Align = getObjectAlignment(i); 626 // Adjust to alignment boundary 627 Offset = (Offset+Align-1)/Align*Align; 628 629 MaxAlign = std::max(Align, MaxAlign); 630 } 631 632 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 633 Offset += getMaxCallFrameSize(); 634 635 // Round up the size to a multiple of the alignment. If the function has 636 // any calls or alloca's, align to the target's StackAlignment value to 637 // ensure that the callee's frame or the alloca data is suitably aligned; 638 // otherwise, for leaf functions, align to the TransientStackAlignment 639 // value. 640 unsigned StackAlign; 641 if (adjustsStack() || hasVarSizedObjects() || 642 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 643 StackAlign = TFI->getStackAlignment(); 644 else 645 StackAlign = TFI->getTransientStackAlignment(); 646 647 // If the frame pointer is eliminated, all frame offsets will be relative to 648 // SP not FP. Align to MaxAlign so this works. 649 StackAlign = std::max(StackAlign, MaxAlign); 650 unsigned AlignMask = StackAlign - 1; 651 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 652 653 return (unsigned)Offset; 654 } 655 656 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 657 if (Objects.empty()) return; 658 659 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 660 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 661 662 OS << "Frame Objects:\n"; 663 664 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 665 const StackObject &SO = Objects[i]; 666 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 667 if (SO.Size == ~0ULL) { 668 OS << "dead\n"; 669 continue; 670 } 671 if (SO.Size == 0) 672 OS << "variable sized"; 673 else 674 OS << "size=" << SO.Size; 675 OS << ", align=" << SO.Alignment; 676 677 if (i < NumFixedObjects) 678 OS << ", fixed"; 679 if (i < NumFixedObjects || SO.SPOffset != -1) { 680 int64_t Off = SO.SPOffset - ValOffset; 681 OS << ", at location [SP"; 682 if (Off > 0) 683 OS << "+" << Off; 684 else if (Off < 0) 685 OS << Off; 686 OS << "]"; 687 } 688 OS << "\n"; 689 } 690 } 691 692 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 693 void MachineFrameInfo::dump(const MachineFunction &MF) const { 694 print(MF, dbgs()); 695 } 696 #endif 697 698 //===----------------------------------------------------------------------===// 699 // MachineJumpTableInfo implementation 700 //===----------------------------------------------------------------------===// 701 702 /// getEntrySize - Return the size of each entry in the jump table. 703 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 704 // The size of a jump table entry is 4 bytes unless the entry is just the 705 // address of a block, in which case it is the pointer size. 706 switch (getEntryKind()) { 707 case MachineJumpTableInfo::EK_BlockAddress: 708 return TD.getPointerSize(); 709 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 710 return 8; 711 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 712 case MachineJumpTableInfo::EK_LabelDifference32: 713 case MachineJumpTableInfo::EK_Custom32: 714 return 4; 715 case MachineJumpTableInfo::EK_Inline: 716 return 0; 717 } 718 llvm_unreachable("Unknown jump table encoding!"); 719 } 720 721 /// getEntryAlignment - Return the alignment of each entry in the jump table. 722 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 723 // The alignment of a jump table entry is the alignment of int32 unless the 724 // entry is just the address of a block, in which case it is the pointer 725 // alignment. 726 switch (getEntryKind()) { 727 case MachineJumpTableInfo::EK_BlockAddress: 728 return TD.getPointerABIAlignment(); 729 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 730 return TD.getABIIntegerTypeAlignment(64); 731 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 732 case MachineJumpTableInfo::EK_LabelDifference32: 733 case MachineJumpTableInfo::EK_Custom32: 734 return TD.getABIIntegerTypeAlignment(32); 735 case MachineJumpTableInfo::EK_Inline: 736 return 1; 737 } 738 llvm_unreachable("Unknown jump table encoding!"); 739 } 740 741 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 742 /// 743 unsigned MachineJumpTableInfo::createJumpTableIndex( 744 const std::vector<MachineBasicBlock*> &DestBBs) { 745 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 746 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 747 return JumpTables.size()-1; 748 } 749 750 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 751 /// the jump tables to branch to New instead. 752 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 753 MachineBasicBlock *New) { 754 assert(Old != New && "Not making a change?"); 755 bool MadeChange = false; 756 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 757 ReplaceMBBInJumpTable(i, Old, New); 758 return MadeChange; 759 } 760 761 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 762 /// the jump table to branch to New instead. 763 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 764 MachineBasicBlock *Old, 765 MachineBasicBlock *New) { 766 assert(Old != New && "Not making a change?"); 767 bool MadeChange = false; 768 MachineJumpTableEntry &JTE = JumpTables[Idx]; 769 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 770 if (JTE.MBBs[j] == Old) { 771 JTE.MBBs[j] = New; 772 MadeChange = true; 773 } 774 return MadeChange; 775 } 776 777 void MachineJumpTableInfo::print(raw_ostream &OS) const { 778 if (JumpTables.empty()) return; 779 780 OS << "Jump Tables:\n"; 781 782 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 783 OS << " jt#" << i << ": "; 784 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 785 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 786 } 787 788 OS << '\n'; 789 } 790 791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 792 void MachineJumpTableInfo::dump() const { print(dbgs()); } 793 #endif 794 795 796 //===----------------------------------------------------------------------===// 797 // MachineConstantPool implementation 798 //===----------------------------------------------------------------------===// 799 800 void MachineConstantPoolValue::anchor() { } 801 802 const DataLayout *MachineConstantPool::getDataLayout() const { 803 return TM.getDataLayout(); 804 } 805 806 Type *MachineConstantPoolEntry::getType() const { 807 if (isMachineConstantPoolEntry()) 808 return Val.MachineCPVal->getType(); 809 return Val.ConstVal->getType(); 810 } 811 812 813 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 814 if (isMachineConstantPoolEntry()) 815 return Val.MachineCPVal->getRelocationInfo(); 816 return Val.ConstVal->getRelocationInfo(); 817 } 818 819 MachineConstantPool::~MachineConstantPool() { 820 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 821 if (Constants[i].isMachineConstantPoolEntry()) 822 delete Constants[i].Val.MachineCPVal; 823 for (DenseSet<MachineConstantPoolValue*>::iterator I = 824 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 825 I != E; ++I) 826 delete *I; 827 } 828 829 /// CanShareConstantPoolEntry - Test whether the given two constants 830 /// can be allocated the same constant pool entry. 831 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 832 const DataLayout *TD) { 833 // Handle the trivial case quickly. 834 if (A == B) return true; 835 836 // If they have the same type but weren't the same constant, quickly 837 // reject them. 838 if (A->getType() == B->getType()) return false; 839 840 // We can't handle structs or arrays. 841 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 842 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 843 return false; 844 845 // For now, only support constants with the same size. 846 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 847 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 848 StoreSize > 128) 849 return false; 850 851 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 852 853 // Try constant folding a bitcast of both instructions to an integer. If we 854 // get two identical ConstantInt's, then we are good to share them. We use 855 // the constant folding APIs to do this so that we get the benefit of 856 // DataLayout. 857 if (isa<PointerType>(A->getType())) 858 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 859 const_cast<Constant*>(A), TD); 860 else if (A->getType() != IntTy) 861 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 862 const_cast<Constant*>(A), TD); 863 if (isa<PointerType>(B->getType())) 864 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 865 const_cast<Constant*>(B), TD); 866 else if (B->getType() != IntTy) 867 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 868 const_cast<Constant*>(B), TD); 869 870 return A == B; 871 } 872 873 /// getConstantPoolIndex - Create a new entry in the constant pool or return 874 /// an existing one. User must specify the log2 of the minimum required 875 /// alignment for the object. 876 /// 877 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 878 unsigned Alignment) { 879 assert(Alignment && "Alignment must be specified!"); 880 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 881 882 // Check to see if we already have this constant. 883 // 884 // FIXME, this could be made much more efficient for large constant pools. 885 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 886 if (!Constants[i].isMachineConstantPoolEntry() && 887 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 888 getDataLayout())) { 889 if ((unsigned)Constants[i].getAlignment() < Alignment) 890 Constants[i].Alignment = Alignment; 891 return i; 892 } 893 894 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 895 return Constants.size()-1; 896 } 897 898 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 899 unsigned Alignment) { 900 assert(Alignment && "Alignment must be specified!"); 901 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 902 903 // Check to see if we already have this constant. 904 // 905 // FIXME, this could be made much more efficient for large constant pools. 906 int Idx = V->getExistingMachineCPValue(this, Alignment); 907 if (Idx != -1) { 908 MachineCPVsSharingEntries.insert(V); 909 return (unsigned)Idx; 910 } 911 912 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 913 return Constants.size()-1; 914 } 915 916 void MachineConstantPool::print(raw_ostream &OS) const { 917 if (Constants.empty()) return; 918 919 OS << "Constant Pool:\n"; 920 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 921 OS << " cp#" << i << ": "; 922 if (Constants[i].isMachineConstantPoolEntry()) 923 Constants[i].Val.MachineCPVal->print(OS); 924 else 925 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 926 OS << ", align=" << Constants[i].getAlignment(); 927 OS << "\n"; 928 } 929 } 930 931 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 932 void MachineConstantPool::dump() const { print(dbgs()); } 933 #endif 934