1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/WinEHFuncInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSlotTracker.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetFrameLowering.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 #define DEBUG_TYPE "codegen" 48 49 static cl::opt<unsigned> 50 AlignAllFunctions("align-all-functions", 51 cl::desc("Force the alignment of all functions."), 52 cl::init(0), cl::Hidden); 53 54 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 55 typedef MachineFunctionProperties::Property P; 56 switch(Prop) { 57 case P::FailedISel: return "FailedISel"; 58 case P::IsSSA: return "IsSSA"; 59 case P::Legalized: return "Legalized"; 60 case P::NoPHIs: return "NoPHIs"; 61 case P::NoVRegs: return "NoVRegs"; 62 case P::RegBankSelected: return "RegBankSelected"; 63 case P::Selected: return "Selected"; 64 case P::TracksLiveness: return "TracksLiveness"; 65 } 66 llvm_unreachable("Invalid machine function property"); 67 } 68 69 void MachineFunctionProperties::print(raw_ostream &OS) const { 70 const char *Separator = ""; 71 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 72 if (!Properties[I]) 73 continue; 74 OS << Separator << getPropertyName(static_cast<Property>(I)); 75 Separator = ", "; 76 } 77 } 78 79 //===----------------------------------------------------------------------===// 80 // MachineFunction implementation 81 //===----------------------------------------------------------------------===// 82 83 // Out-of-line virtual method. 84 MachineFunctionInfo::~MachineFunctionInfo() {} 85 86 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 87 MBB->getParent()->DeleteMachineBasicBlock(MBB); 88 } 89 90 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 91 const Function *Fn) { 92 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 93 return Fn->getFnStackAlignment(); 94 return STI->getFrameLowering()->getStackAlignment(); 95 } 96 97 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 98 unsigned FunctionNum, MachineModuleInfo &mmi) 99 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 100 MMI(mmi) { 101 FunctionNumber = FunctionNum; 102 init(); 103 } 104 105 void MachineFunction::init() { 106 // Assume the function starts in SSA form with correct liveness. 107 Properties.set(MachineFunctionProperties::Property::IsSSA); 108 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 109 if (STI->getRegisterInfo()) 110 RegInfo = new (Allocator) MachineRegisterInfo(this); 111 else 112 RegInfo = nullptr; 113 114 MFInfo = nullptr; 115 // We can realign the stack if the target supports it and the user hasn't 116 // explicitly asked us not to. 117 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 118 !Fn->hasFnAttribute("no-realign-stack"); 119 FrameInfo = new (Allocator) MachineFrameInfo( 120 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 121 /*ForceRealign=*/CanRealignSP && 122 Fn->hasFnAttribute(Attribute::StackAlignment)); 123 124 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 125 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 126 127 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 128 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 129 130 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 131 // FIXME: Use Function::optForSize(). 132 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 133 Alignment = std::max(Alignment, 134 STI->getTargetLowering()->getPrefFunctionAlignment()); 135 136 if (AlignAllFunctions) 137 Alignment = AlignAllFunctions; 138 139 JumpTableInfo = nullptr; 140 141 if (isFuncletEHPersonality(classifyEHPersonality( 142 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) { 143 WinEHInfo = new (Allocator) WinEHFuncInfo(); 144 } 145 146 assert(Target.isCompatibleDataLayout(getDataLayout()) && 147 "Can't create a MachineFunction using a Module with a " 148 "Target-incompatible DataLayout attached\n"); 149 150 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 151 } 152 153 MachineFunction::~MachineFunction() { 154 clear(); 155 } 156 157 void MachineFunction::clear() { 158 Properties.reset(); 159 // Don't call destructors on MachineInstr and MachineOperand. All of their 160 // memory comes from the BumpPtrAllocator which is about to be purged. 161 // 162 // Do call MachineBasicBlock destructors, it contains std::vectors. 163 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 164 I->Insts.clearAndLeakNodesUnsafely(); 165 166 InstructionRecycler.clear(Allocator); 167 OperandRecycler.clear(Allocator); 168 BasicBlockRecycler.clear(Allocator); 169 VariableDbgInfos.clear(); 170 if (RegInfo) { 171 RegInfo->~MachineRegisterInfo(); 172 Allocator.Deallocate(RegInfo); 173 } 174 if (MFInfo) { 175 MFInfo->~MachineFunctionInfo(); 176 Allocator.Deallocate(MFInfo); 177 } 178 179 FrameInfo->~MachineFrameInfo(); 180 Allocator.Deallocate(FrameInfo); 181 182 ConstantPool->~MachineConstantPool(); 183 Allocator.Deallocate(ConstantPool); 184 185 if (JumpTableInfo) { 186 JumpTableInfo->~MachineJumpTableInfo(); 187 Allocator.Deallocate(JumpTableInfo); 188 } 189 190 if (WinEHInfo) { 191 WinEHInfo->~WinEHFuncInfo(); 192 Allocator.Deallocate(WinEHInfo); 193 } 194 } 195 196 const DataLayout &MachineFunction::getDataLayout() const { 197 return Fn->getParent()->getDataLayout(); 198 } 199 200 /// Get the JumpTableInfo for this function. 201 /// If it does not already exist, allocate one. 202 MachineJumpTableInfo *MachineFunction:: 203 getOrCreateJumpTableInfo(unsigned EntryKind) { 204 if (JumpTableInfo) return JumpTableInfo; 205 206 JumpTableInfo = new (Allocator) 207 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 208 return JumpTableInfo; 209 } 210 211 /// Should we be emitting segmented stack stuff for the function 212 bool MachineFunction::shouldSplitStack() const { 213 return getFunction()->hasFnAttribute("split-stack"); 214 } 215 216 /// This discards all of the MachineBasicBlock numbers and recomputes them. 217 /// This guarantees that the MBB numbers are sequential, dense, and match the 218 /// ordering of the blocks within the function. If a specific MachineBasicBlock 219 /// is specified, only that block and those after it are renumbered. 220 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 221 if (empty()) { MBBNumbering.clear(); return; } 222 MachineFunction::iterator MBBI, E = end(); 223 if (MBB == nullptr) 224 MBBI = begin(); 225 else 226 MBBI = MBB->getIterator(); 227 228 // Figure out the block number this should have. 229 unsigned BlockNo = 0; 230 if (MBBI != begin()) 231 BlockNo = std::prev(MBBI)->getNumber() + 1; 232 233 for (; MBBI != E; ++MBBI, ++BlockNo) { 234 if (MBBI->getNumber() != (int)BlockNo) { 235 // Remove use of the old number. 236 if (MBBI->getNumber() != -1) { 237 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 238 "MBB number mismatch!"); 239 MBBNumbering[MBBI->getNumber()] = nullptr; 240 } 241 242 // If BlockNo is already taken, set that block's number to -1. 243 if (MBBNumbering[BlockNo]) 244 MBBNumbering[BlockNo]->setNumber(-1); 245 246 MBBNumbering[BlockNo] = &*MBBI; 247 MBBI->setNumber(BlockNo); 248 } 249 } 250 251 // Okay, all the blocks are renumbered. If we have compactified the block 252 // numbering, shrink MBBNumbering now. 253 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 254 MBBNumbering.resize(BlockNo); 255 } 256 257 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 258 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 259 const DebugLoc &DL, 260 bool NoImp) { 261 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 262 MachineInstr(*this, MCID, DL, NoImp); 263 } 264 265 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 266 /// identical in all ways except the instruction has no parent, prev, or next. 267 MachineInstr * 268 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 269 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 270 MachineInstr(*this, *Orig); 271 } 272 273 /// Delete the given MachineInstr. 274 /// 275 /// This function also serves as the MachineInstr destructor - the real 276 /// ~MachineInstr() destructor must be empty. 277 void 278 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 279 // Strip it for parts. The operand array and the MI object itself are 280 // independently recyclable. 281 if (MI->Operands) 282 deallocateOperandArray(MI->CapOperands, MI->Operands); 283 // Don't call ~MachineInstr() which must be trivial anyway because 284 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 285 // destructors. 286 InstructionRecycler.Deallocate(Allocator, MI); 287 } 288 289 /// Allocate a new MachineBasicBlock. Use this instead of 290 /// `new MachineBasicBlock'. 291 MachineBasicBlock * 292 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 293 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 294 MachineBasicBlock(*this, bb); 295 } 296 297 /// Delete the given MachineBasicBlock. 298 void 299 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 300 assert(MBB->getParent() == this && "MBB parent mismatch!"); 301 MBB->~MachineBasicBlock(); 302 BasicBlockRecycler.Deallocate(Allocator, MBB); 303 } 304 305 MachineMemOperand *MachineFunction::getMachineMemOperand( 306 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 307 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 308 SyncScope::ID SSID, AtomicOrdering Ordering, 309 AtomicOrdering FailureOrdering) { 310 return new (Allocator) 311 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 312 SSID, Ordering, FailureOrdering); 313 } 314 315 MachineMemOperand * 316 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 317 int64_t Offset, uint64_t Size) { 318 if (MMO->getValue()) 319 return new (Allocator) 320 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 321 MMO->getOffset()+Offset), 322 MMO->getFlags(), Size, MMO->getBaseAlignment(), 323 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 324 MMO->getOrdering(), MMO->getFailureOrdering()); 325 return new (Allocator) 326 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 327 MMO->getOffset()+Offset), 328 MMO->getFlags(), Size, MMO->getBaseAlignment(), 329 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 330 MMO->getOrdering(), MMO->getFailureOrdering()); 331 } 332 333 MachineMemOperand * 334 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 335 const AAMDNodes &AAInfo) { 336 MachinePointerInfo MPI = MMO->getValue() ? 337 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 338 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 339 340 return new (Allocator) 341 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 342 MMO->getBaseAlignment(), AAInfo, 343 MMO->getRanges(), MMO->getSyncScopeID(), 344 MMO->getOrdering(), MMO->getFailureOrdering()); 345 } 346 347 MachineInstr::mmo_iterator 348 MachineFunction::allocateMemRefsArray(unsigned long Num) { 349 return Allocator.Allocate<MachineMemOperand *>(Num); 350 } 351 352 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 353 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 354 MachineInstr::mmo_iterator End) { 355 // Count the number of load mem refs. 356 unsigned Num = 0; 357 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 358 if ((*I)->isLoad()) 359 ++Num; 360 361 // Allocate a new array and populate it with the load information. 362 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 363 unsigned Index = 0; 364 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 365 if ((*I)->isLoad()) { 366 if (!(*I)->isStore()) 367 // Reuse the MMO. 368 Result[Index] = *I; 369 else { 370 // Clone the MMO and unset the store flag. 371 MachineMemOperand *JustLoad = 372 getMachineMemOperand((*I)->getPointerInfo(), 373 (*I)->getFlags() & ~MachineMemOperand::MOStore, 374 (*I)->getSize(), (*I)->getBaseAlignment(), 375 (*I)->getAAInfo(), nullptr, 376 (*I)->getSyncScopeID(), (*I)->getOrdering(), 377 (*I)->getFailureOrdering()); 378 Result[Index] = JustLoad; 379 } 380 ++Index; 381 } 382 } 383 return std::make_pair(Result, Result + Num); 384 } 385 386 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 387 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 388 MachineInstr::mmo_iterator End) { 389 // Count the number of load mem refs. 390 unsigned Num = 0; 391 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 392 if ((*I)->isStore()) 393 ++Num; 394 395 // Allocate a new array and populate it with the store information. 396 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 397 unsigned Index = 0; 398 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 399 if ((*I)->isStore()) { 400 if (!(*I)->isLoad()) 401 // Reuse the MMO. 402 Result[Index] = *I; 403 else { 404 // Clone the MMO and unset the load flag. 405 MachineMemOperand *JustStore = 406 getMachineMemOperand((*I)->getPointerInfo(), 407 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 408 (*I)->getSize(), (*I)->getBaseAlignment(), 409 (*I)->getAAInfo(), nullptr, 410 (*I)->getSyncScopeID(), (*I)->getOrdering(), 411 (*I)->getFailureOrdering()); 412 Result[Index] = JustStore; 413 } 414 ++Index; 415 } 416 } 417 return std::make_pair(Result, Result + Num); 418 } 419 420 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 421 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 422 std::copy(Name.begin(), Name.end(), Dest); 423 Dest[Name.size()] = 0; 424 return Dest; 425 } 426 427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 428 LLVM_DUMP_METHOD void MachineFunction::dump() const { 429 print(dbgs()); 430 } 431 #endif 432 433 StringRef MachineFunction::getName() const { 434 assert(getFunction() && "No function!"); 435 return getFunction()->getName(); 436 } 437 438 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 439 OS << "# Machine code for function " << getName() << ": "; 440 getProperties().print(OS); 441 OS << '\n'; 442 443 // Print Frame Information 444 FrameInfo->print(*this, OS); 445 446 // Print JumpTable Information 447 if (JumpTableInfo) 448 JumpTableInfo->print(OS); 449 450 // Print Constant Pool 451 ConstantPool->print(OS); 452 453 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 454 455 if (RegInfo && !RegInfo->livein_empty()) { 456 OS << "Function Live Ins: "; 457 for (MachineRegisterInfo::livein_iterator 458 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 459 OS << PrintReg(I->first, TRI); 460 if (I->second) 461 OS << " in " << PrintReg(I->second, TRI); 462 if (std::next(I) != E) 463 OS << ", "; 464 } 465 OS << '\n'; 466 } 467 468 ModuleSlotTracker MST(getFunction()->getParent()); 469 MST.incorporateFunction(*getFunction()); 470 for (const auto &BB : *this) { 471 OS << '\n'; 472 BB.print(OS, MST, Indexes); 473 } 474 475 OS << "\n# End machine code for function " << getName() << ".\n\n"; 476 } 477 478 namespace llvm { 479 template<> 480 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 481 482 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 483 484 static std::string getGraphName(const MachineFunction *F) { 485 return ("CFG for '" + F->getName() + "' function").str(); 486 } 487 488 std::string getNodeLabel(const MachineBasicBlock *Node, 489 const MachineFunction *Graph) { 490 std::string OutStr; 491 { 492 raw_string_ostream OSS(OutStr); 493 494 if (isSimple()) { 495 OSS << "BB#" << Node->getNumber(); 496 if (const BasicBlock *BB = Node->getBasicBlock()) 497 OSS << ": " << BB->getName(); 498 } else 499 Node->print(OSS); 500 } 501 502 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 503 504 // Process string output to make it nicer... 505 for (unsigned i = 0; i != OutStr.length(); ++i) 506 if (OutStr[i] == '\n') { // Left justify 507 OutStr[i] = '\\'; 508 OutStr.insert(OutStr.begin()+i+1, 'l'); 509 } 510 return OutStr; 511 } 512 }; 513 } 514 515 void MachineFunction::viewCFG() const 516 { 517 #ifndef NDEBUG 518 ViewGraph(this, "mf" + getName()); 519 #else 520 errs() << "MachineFunction::viewCFG is only available in debug builds on " 521 << "systems with Graphviz or gv!\n"; 522 #endif // NDEBUG 523 } 524 525 void MachineFunction::viewCFGOnly() const 526 { 527 #ifndef NDEBUG 528 ViewGraph(this, "mf" + getName(), true); 529 #else 530 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 531 << "systems with Graphviz or gv!\n"; 532 #endif // NDEBUG 533 } 534 535 /// Add the specified physical register as a live-in value and 536 /// create a corresponding virtual register for it. 537 unsigned MachineFunction::addLiveIn(unsigned PReg, 538 const TargetRegisterClass *RC) { 539 MachineRegisterInfo &MRI = getRegInfo(); 540 unsigned VReg = MRI.getLiveInVirtReg(PReg); 541 if (VReg) { 542 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 543 (void)VRegRC; 544 // A physical register can be added several times. 545 // Between two calls, the register class of the related virtual register 546 // may have been constrained to match some operation constraints. 547 // In that case, check that the current register class includes the 548 // physical register and is a sub class of the specified RC. 549 assert((VRegRC == RC || (VRegRC->contains(PReg) && 550 RC->hasSubClassEq(VRegRC))) && 551 "Register class mismatch!"); 552 return VReg; 553 } 554 VReg = MRI.createVirtualRegister(RC); 555 MRI.addLiveIn(PReg, VReg); 556 return VReg; 557 } 558 559 /// Return the MCSymbol for the specified non-empty jump table. 560 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 561 /// normal 'L' label is returned. 562 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 563 bool isLinkerPrivate) const { 564 const DataLayout &DL = getDataLayout(); 565 assert(JumpTableInfo && "No jump tables"); 566 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 567 568 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 569 : DL.getPrivateGlobalPrefix(); 570 SmallString<60> Name; 571 raw_svector_ostream(Name) 572 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 573 return Ctx.getOrCreateSymbol(Name); 574 } 575 576 /// Return a function-local symbol to represent the PIC base. 577 MCSymbol *MachineFunction::getPICBaseSymbol() const { 578 const DataLayout &DL = getDataLayout(); 579 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 580 Twine(getFunctionNumber()) + "$pb"); 581 } 582 583 /// \name Exception Handling 584 /// \{ 585 586 LandingPadInfo & 587 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 588 unsigned N = LandingPads.size(); 589 for (unsigned i = 0; i < N; ++i) { 590 LandingPadInfo &LP = LandingPads[i]; 591 if (LP.LandingPadBlock == LandingPad) 592 return LP; 593 } 594 595 LandingPads.push_back(LandingPadInfo(LandingPad)); 596 return LandingPads[N]; 597 } 598 599 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 600 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 601 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 602 LP.BeginLabels.push_back(BeginLabel); 603 LP.EndLabels.push_back(EndLabel); 604 } 605 606 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 607 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 608 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 609 LP.LandingPadLabel = LandingPadLabel; 610 return LandingPadLabel; 611 } 612 613 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 614 ArrayRef<const GlobalValue *> TyInfo) { 615 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 616 for (unsigned N = TyInfo.size(); N; --N) 617 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 618 } 619 620 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 621 ArrayRef<const GlobalValue *> TyInfo) { 622 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 623 std::vector<unsigned> IdsInFilter(TyInfo.size()); 624 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 625 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 626 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 627 } 628 629 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { 630 for (unsigned i = 0; i != LandingPads.size(); ) { 631 LandingPadInfo &LandingPad = LandingPads[i]; 632 if (LandingPad.LandingPadLabel && 633 !LandingPad.LandingPadLabel->isDefined() && 634 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 635 LandingPad.LandingPadLabel = nullptr; 636 637 // Special case: we *should* emit LPs with null LP MBB. This indicates 638 // "nounwind" case. 639 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 640 LandingPads.erase(LandingPads.begin() + i); 641 continue; 642 } 643 644 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 645 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 646 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 647 if ((BeginLabel->isDefined() || 648 (LPMap && (*LPMap)[BeginLabel] != 0)) && 649 (EndLabel->isDefined() || 650 (LPMap && (*LPMap)[EndLabel] != 0))) continue; 651 652 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 653 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 654 --j; 655 --e; 656 } 657 658 // Remove landing pads with no try-ranges. 659 if (LandingPads[i].BeginLabels.empty()) { 660 LandingPads.erase(LandingPads.begin() + i); 661 continue; 662 } 663 664 // If there is no landing pad, ensure that the list of typeids is empty. 665 // If the only typeid is a cleanup, this is the same as having no typeids. 666 if (!LandingPad.LandingPadBlock || 667 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 668 LandingPad.TypeIds.clear(); 669 ++i; 670 } 671 } 672 673 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 674 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 675 LP.TypeIds.push_back(0); 676 } 677 678 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 679 const Function *Filter, 680 const BlockAddress *RecoverBA) { 681 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 682 SEHHandler Handler; 683 Handler.FilterOrFinally = Filter; 684 Handler.RecoverBA = RecoverBA; 685 LP.SEHHandlers.push_back(Handler); 686 } 687 688 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 689 const Function *Cleanup) { 690 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 691 SEHHandler Handler; 692 Handler.FilterOrFinally = Cleanup; 693 Handler.RecoverBA = nullptr; 694 LP.SEHHandlers.push_back(Handler); 695 } 696 697 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 698 ArrayRef<unsigned> Sites) { 699 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 700 } 701 702 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 703 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 704 if (TypeInfos[i] == TI) return i + 1; 705 706 TypeInfos.push_back(TI); 707 return TypeInfos.size(); 708 } 709 710 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 711 // If the new filter coincides with the tail of an existing filter, then 712 // re-use the existing filter. Folding filters more than this requires 713 // re-ordering filters and/or their elements - probably not worth it. 714 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 715 E = FilterEnds.end(); I != E; ++I) { 716 unsigned i = *I, j = TyIds.size(); 717 718 while (i && j) 719 if (FilterIds[--i] != TyIds[--j]) 720 goto try_next; 721 722 if (!j) 723 // The new filter coincides with range [i, end) of the existing filter. 724 return -(1 + i); 725 726 try_next:; 727 } 728 729 // Add the new filter. 730 int FilterID = -(1 + FilterIds.size()); 731 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 732 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 733 FilterEnds.push_back(FilterIds.size()); 734 FilterIds.push_back(0); // terminator 735 return FilterID; 736 } 737 738 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) { 739 MachineFunction &MF = *MBB.getParent(); 740 if (const auto *PF = dyn_cast<Function>( 741 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 742 MF.getMMI().addPersonality(PF); 743 744 if (I.isCleanup()) 745 MF.addCleanup(&MBB); 746 747 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 748 // but we need to do it this way because of how the DWARF EH emitter 749 // processes the clauses. 750 for (unsigned i = I.getNumClauses(); i != 0; --i) { 751 Value *Val = I.getClause(i - 1); 752 if (I.isCatch(i - 1)) { 753 MF.addCatchTypeInfo(&MBB, 754 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 755 } else { 756 // Add filters in a list. 757 Constant *CVal = cast<Constant>(Val); 758 SmallVector<const GlobalValue *, 4> FilterList; 759 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 760 II != IE; ++II) 761 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 762 763 MF.addFilterTypeInfo(&MBB, FilterList); 764 } 765 } 766 } 767 768 /// \} 769 770 //===----------------------------------------------------------------------===// 771 // MachineJumpTableInfo implementation 772 //===----------------------------------------------------------------------===// 773 774 /// Return the size of each entry in the jump table. 775 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 776 // The size of a jump table entry is 4 bytes unless the entry is just the 777 // address of a block, in which case it is the pointer size. 778 switch (getEntryKind()) { 779 case MachineJumpTableInfo::EK_BlockAddress: 780 return TD.getPointerSize(); 781 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 782 return 8; 783 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 784 case MachineJumpTableInfo::EK_LabelDifference32: 785 case MachineJumpTableInfo::EK_Custom32: 786 return 4; 787 case MachineJumpTableInfo::EK_Inline: 788 return 0; 789 } 790 llvm_unreachable("Unknown jump table encoding!"); 791 } 792 793 /// Return the alignment of each entry in the jump table. 794 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 795 // The alignment of a jump table entry is the alignment of int32 unless the 796 // entry is just the address of a block, in which case it is the pointer 797 // alignment. 798 switch (getEntryKind()) { 799 case MachineJumpTableInfo::EK_BlockAddress: 800 return TD.getPointerABIAlignment(); 801 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 802 return TD.getABIIntegerTypeAlignment(64); 803 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 804 case MachineJumpTableInfo::EK_LabelDifference32: 805 case MachineJumpTableInfo::EK_Custom32: 806 return TD.getABIIntegerTypeAlignment(32); 807 case MachineJumpTableInfo::EK_Inline: 808 return 1; 809 } 810 llvm_unreachable("Unknown jump table encoding!"); 811 } 812 813 /// Create a new jump table entry in the jump table info. 814 unsigned MachineJumpTableInfo::createJumpTableIndex( 815 const std::vector<MachineBasicBlock*> &DestBBs) { 816 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 817 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 818 return JumpTables.size()-1; 819 } 820 821 /// If Old is the target of any jump tables, update the jump tables to branch 822 /// to New instead. 823 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 824 MachineBasicBlock *New) { 825 assert(Old != New && "Not making a change?"); 826 bool MadeChange = false; 827 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 828 ReplaceMBBInJumpTable(i, Old, New); 829 return MadeChange; 830 } 831 832 /// If Old is a target of the jump tables, update the jump table to branch to 833 /// New instead. 834 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 835 MachineBasicBlock *Old, 836 MachineBasicBlock *New) { 837 assert(Old != New && "Not making a change?"); 838 bool MadeChange = false; 839 MachineJumpTableEntry &JTE = JumpTables[Idx]; 840 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 841 if (JTE.MBBs[j] == Old) { 842 JTE.MBBs[j] = New; 843 MadeChange = true; 844 } 845 return MadeChange; 846 } 847 848 void MachineJumpTableInfo::print(raw_ostream &OS) const { 849 if (JumpTables.empty()) return; 850 851 OS << "Jump Tables:\n"; 852 853 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 854 OS << " jt#" << i << ": "; 855 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 856 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 857 } 858 859 OS << '\n'; 860 } 861 862 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 863 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 864 #endif 865 866 867 //===----------------------------------------------------------------------===// 868 // MachineConstantPool implementation 869 //===----------------------------------------------------------------------===// 870 871 void MachineConstantPoolValue::anchor() { } 872 873 Type *MachineConstantPoolEntry::getType() const { 874 if (isMachineConstantPoolEntry()) 875 return Val.MachineCPVal->getType(); 876 return Val.ConstVal->getType(); 877 } 878 879 bool MachineConstantPoolEntry::needsRelocation() const { 880 if (isMachineConstantPoolEntry()) 881 return true; 882 return Val.ConstVal->needsRelocation(); 883 } 884 885 SectionKind 886 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 887 if (needsRelocation()) 888 return SectionKind::getReadOnlyWithRel(); 889 switch (DL->getTypeAllocSize(getType())) { 890 case 4: 891 return SectionKind::getMergeableConst4(); 892 case 8: 893 return SectionKind::getMergeableConst8(); 894 case 16: 895 return SectionKind::getMergeableConst16(); 896 case 32: 897 return SectionKind::getMergeableConst32(); 898 default: 899 return SectionKind::getReadOnly(); 900 } 901 } 902 903 MachineConstantPool::~MachineConstantPool() { 904 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 905 // so keep track of which we've deleted to avoid double deletions. 906 DenseSet<MachineConstantPoolValue*> Deleted; 907 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 908 if (Constants[i].isMachineConstantPoolEntry()) { 909 Deleted.insert(Constants[i].Val.MachineCPVal); 910 delete Constants[i].Val.MachineCPVal; 911 } 912 for (DenseSet<MachineConstantPoolValue*>::iterator I = 913 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 914 I != E; ++I) { 915 if (Deleted.count(*I) == 0) 916 delete *I; 917 } 918 } 919 920 /// Test whether the given two constants can be allocated the same constant pool 921 /// entry. 922 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 923 const DataLayout &DL) { 924 // Handle the trivial case quickly. 925 if (A == B) return true; 926 927 // If they have the same type but weren't the same constant, quickly 928 // reject them. 929 if (A->getType() == B->getType()) return false; 930 931 // We can't handle structs or arrays. 932 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 933 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 934 return false; 935 936 // For now, only support constants with the same size. 937 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 938 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 939 return false; 940 941 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 942 943 // Try constant folding a bitcast of both instructions to an integer. If we 944 // get two identical ConstantInt's, then we are good to share them. We use 945 // the constant folding APIs to do this so that we get the benefit of 946 // DataLayout. 947 if (isa<PointerType>(A->getType())) 948 A = ConstantFoldCastOperand(Instruction::PtrToInt, 949 const_cast<Constant *>(A), IntTy, DL); 950 else if (A->getType() != IntTy) 951 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 952 IntTy, DL); 953 if (isa<PointerType>(B->getType())) 954 B = ConstantFoldCastOperand(Instruction::PtrToInt, 955 const_cast<Constant *>(B), IntTy, DL); 956 else if (B->getType() != IntTy) 957 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 958 IntTy, DL); 959 960 return A == B; 961 } 962 963 /// Create a new entry in the constant pool or return an existing one. 964 /// User must specify the log2 of the minimum required alignment for the object. 965 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 966 unsigned Alignment) { 967 assert(Alignment && "Alignment must be specified!"); 968 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 969 970 // Check to see if we already have this constant. 971 // 972 // FIXME, this could be made much more efficient for large constant pools. 973 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 974 if (!Constants[i].isMachineConstantPoolEntry() && 975 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 976 if ((unsigned)Constants[i].getAlignment() < Alignment) 977 Constants[i].Alignment = Alignment; 978 return i; 979 } 980 981 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 982 return Constants.size()-1; 983 } 984 985 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 986 unsigned Alignment) { 987 assert(Alignment && "Alignment must be specified!"); 988 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 989 990 // Check to see if we already have this constant. 991 // 992 // FIXME, this could be made much more efficient for large constant pools. 993 int Idx = V->getExistingMachineCPValue(this, Alignment); 994 if (Idx != -1) { 995 MachineCPVsSharingEntries.insert(V); 996 return (unsigned)Idx; 997 } 998 999 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1000 return Constants.size()-1; 1001 } 1002 1003 void MachineConstantPool::print(raw_ostream &OS) const { 1004 if (Constants.empty()) return; 1005 1006 OS << "Constant Pool:\n"; 1007 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1008 OS << " cp#" << i << ": "; 1009 if (Constants[i].isMachineConstantPoolEntry()) 1010 Constants[i].Val.MachineCPVal->print(OS); 1011 else 1012 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1013 OS << ", align=" << Constants[i].getAlignment(); 1014 OS << "\n"; 1015 } 1016 } 1017 1018 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1019 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1020 #endif 1021