1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DebugInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Writer.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetFrameLowering.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineFunction implementation 44 //===----------------------------------------------------------------------===// 45 46 // Out of line virtual method. 47 MachineFunctionInfo::~MachineFunctionInfo() {} 48 49 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 50 MBB->getParent()->DeleteMachineBasicBlock(MBB); 51 } 52 53 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 54 unsigned FunctionNum, MachineModuleInfo &mmi, 55 GCModuleInfo* gmi) 56 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 57 if (TM.getRegisterInfo()) 58 RegInfo = new (Allocator) MachineRegisterInfo(TM); 59 else 60 RegInfo = 0; 61 62 MFInfo = 0; 63 FrameInfo = 64 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 65 66 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 67 Attribute::StackAlignment)) 68 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 69 getStackAlignment(AttributeSet::FunctionIndex)); 70 71 ConstantPool = new (Allocator) MachineConstantPool(TM); 72 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 73 74 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 75 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 76 Attribute::OptimizeForSize)) 77 Alignment = std::max(Alignment, 78 TM.getTargetLowering()->getPrefFunctionAlignment()); 79 80 FunctionNumber = FunctionNum; 81 JumpTableInfo = 0; 82 } 83 84 MachineFunction::~MachineFunction() { 85 // Don't call destructors on MachineInstr and MachineOperand. All of their 86 // memory comes from the BumpPtrAllocator which is about to be purged. 87 // 88 // Do call MachineBasicBlock destructors, it contains std::vectors. 89 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 90 I->Insts.clearAndLeakNodesUnsafely(); 91 92 InstructionRecycler.clear(Allocator); 93 OperandRecycler.clear(Allocator); 94 BasicBlockRecycler.clear(Allocator); 95 if (RegInfo) { 96 RegInfo->~MachineRegisterInfo(); 97 Allocator.Deallocate(RegInfo); 98 } 99 if (MFInfo) { 100 MFInfo->~MachineFunctionInfo(); 101 Allocator.Deallocate(MFInfo); 102 } 103 104 FrameInfo->~MachineFrameInfo(); 105 Allocator.Deallocate(FrameInfo); 106 107 ConstantPool->~MachineConstantPool(); 108 Allocator.Deallocate(ConstantPool); 109 110 if (JumpTableInfo) { 111 JumpTableInfo->~MachineJumpTableInfo(); 112 Allocator.Deallocate(JumpTableInfo); 113 } 114 } 115 116 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 117 /// does already exist, allocate one. 118 MachineJumpTableInfo *MachineFunction:: 119 getOrCreateJumpTableInfo(unsigned EntryKind) { 120 if (JumpTableInfo) return JumpTableInfo; 121 122 JumpTableInfo = new (Allocator) 123 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 124 return JumpTableInfo; 125 } 126 127 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 128 /// recomputes them. This guarantees that the MBB numbers are sequential, 129 /// dense, and match the ordering of the blocks within the function. If a 130 /// specific MachineBasicBlock is specified, only that block and those after 131 /// it are renumbered. 132 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 133 if (empty()) { MBBNumbering.clear(); return; } 134 MachineFunction::iterator MBBI, E = end(); 135 if (MBB == 0) 136 MBBI = begin(); 137 else 138 MBBI = MBB; 139 140 // Figure out the block number this should have. 141 unsigned BlockNo = 0; 142 if (MBBI != begin()) 143 BlockNo = prior(MBBI)->getNumber()+1; 144 145 for (; MBBI != E; ++MBBI, ++BlockNo) { 146 if (MBBI->getNumber() != (int)BlockNo) { 147 // Remove use of the old number. 148 if (MBBI->getNumber() != -1) { 149 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 150 "MBB number mismatch!"); 151 MBBNumbering[MBBI->getNumber()] = 0; 152 } 153 154 // If BlockNo is already taken, set that block's number to -1. 155 if (MBBNumbering[BlockNo]) 156 MBBNumbering[BlockNo]->setNumber(-1); 157 158 MBBNumbering[BlockNo] = MBBI; 159 MBBI->setNumber(BlockNo); 160 } 161 } 162 163 // Okay, all the blocks are renumbered. If we have compactified the block 164 // numbering, shrink MBBNumbering now. 165 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 166 MBBNumbering.resize(BlockNo); 167 } 168 169 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 170 /// of `new MachineInstr'. 171 /// 172 MachineInstr * 173 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 174 DebugLoc DL, bool NoImp) { 175 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 176 MachineInstr(*this, MCID, DL, NoImp); 177 } 178 179 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 180 /// 'Orig' instruction, identical in all ways except the instruction 181 /// has no parent, prev, or next. 182 /// 183 MachineInstr * 184 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 185 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 186 MachineInstr(*this, *Orig); 187 } 188 189 /// DeleteMachineInstr - Delete the given MachineInstr. 190 /// 191 /// This function also serves as the MachineInstr destructor - the real 192 /// ~MachineInstr() destructor must be empty. 193 void 194 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 195 // Strip it for parts. The operand array and the MI object itself are 196 // independently recyclable. 197 if (MI->Operands) 198 deallocateOperandArray(MI->CapOperands, MI->Operands); 199 // Don't call ~MachineInstr() which must be trivial anyway because 200 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 201 // destructors. 202 InstructionRecycler.Deallocate(Allocator, MI); 203 } 204 205 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 206 /// instead of `new MachineBasicBlock'. 207 /// 208 MachineBasicBlock * 209 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 210 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 211 MachineBasicBlock(*this, bb); 212 } 213 214 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 215 /// 216 void 217 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 218 assert(MBB->getParent() == this && "MBB parent mismatch!"); 219 MBB->~MachineBasicBlock(); 220 BasicBlockRecycler.Deallocate(Allocator, MBB); 221 } 222 223 MachineMemOperand * 224 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 225 uint64_t s, unsigned base_alignment, 226 const MDNode *TBAAInfo, 227 const MDNode *Ranges) { 228 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 229 TBAAInfo, Ranges); 230 } 231 232 MachineMemOperand * 233 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 234 int64_t Offset, uint64_t Size) { 235 return new (Allocator) 236 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 237 MMO->getOffset()+Offset), 238 MMO->getFlags(), Size, 239 MMO->getBaseAlignment(), 0); 240 } 241 242 MachineInstr::mmo_iterator 243 MachineFunction::allocateMemRefsArray(unsigned long Num) { 244 return Allocator.Allocate<MachineMemOperand *>(Num); 245 } 246 247 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 248 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 249 MachineInstr::mmo_iterator End) { 250 // Count the number of load mem refs. 251 unsigned Num = 0; 252 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 253 if ((*I)->isLoad()) 254 ++Num; 255 256 // Allocate a new array and populate it with the load information. 257 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 258 unsigned Index = 0; 259 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 260 if ((*I)->isLoad()) { 261 if (!(*I)->isStore()) 262 // Reuse the MMO. 263 Result[Index] = *I; 264 else { 265 // Clone the MMO and unset the store flag. 266 MachineMemOperand *JustLoad = 267 getMachineMemOperand((*I)->getPointerInfo(), 268 (*I)->getFlags() & ~MachineMemOperand::MOStore, 269 (*I)->getSize(), (*I)->getBaseAlignment(), 270 (*I)->getTBAAInfo()); 271 Result[Index] = JustLoad; 272 } 273 ++Index; 274 } 275 } 276 return std::make_pair(Result, Result + Num); 277 } 278 279 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 280 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 281 MachineInstr::mmo_iterator End) { 282 // Count the number of load mem refs. 283 unsigned Num = 0; 284 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 285 if ((*I)->isStore()) 286 ++Num; 287 288 // Allocate a new array and populate it with the store information. 289 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 290 unsigned Index = 0; 291 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 292 if ((*I)->isStore()) { 293 if (!(*I)->isLoad()) 294 // Reuse the MMO. 295 Result[Index] = *I; 296 else { 297 // Clone the MMO and unset the load flag. 298 MachineMemOperand *JustStore = 299 getMachineMemOperand((*I)->getPointerInfo(), 300 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 301 (*I)->getSize(), (*I)->getBaseAlignment(), 302 (*I)->getTBAAInfo()); 303 Result[Index] = JustStore; 304 } 305 ++Index; 306 } 307 } 308 return std::make_pair(Result, Result + Num); 309 } 310 311 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 312 void MachineFunction::dump() const { 313 print(dbgs()); 314 } 315 #endif 316 317 StringRef MachineFunction::getName() const { 318 assert(getFunction() && "No function!"); 319 return getFunction()->getName(); 320 } 321 322 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 323 OS << "# Machine code for function " << getName() << ": "; 324 if (RegInfo) { 325 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 326 if (!RegInfo->tracksLiveness()) 327 OS << ", not tracking liveness"; 328 } 329 OS << '\n'; 330 331 // Print Frame Information 332 FrameInfo->print(*this, OS); 333 334 // Print JumpTable Information 335 if (JumpTableInfo) 336 JumpTableInfo->print(OS); 337 338 // Print Constant Pool 339 ConstantPool->print(OS); 340 341 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 342 343 if (RegInfo && !RegInfo->livein_empty()) { 344 OS << "Function Live Ins: "; 345 for (MachineRegisterInfo::livein_iterator 346 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 347 OS << PrintReg(I->first, TRI); 348 if (I->second) 349 OS << " in " << PrintReg(I->second, TRI); 350 if (llvm::next(I) != E) 351 OS << ", "; 352 } 353 OS << '\n'; 354 } 355 356 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 357 OS << '\n'; 358 BB->print(OS, Indexes); 359 } 360 361 OS << "\n# End machine code for function " << getName() << ".\n\n"; 362 } 363 364 namespace llvm { 365 template<> 366 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 367 368 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 369 370 static std::string getGraphName(const MachineFunction *F) { 371 return "CFG for '" + F->getName().str() + "' function"; 372 } 373 374 std::string getNodeLabel(const MachineBasicBlock *Node, 375 const MachineFunction *Graph) { 376 std::string OutStr; 377 { 378 raw_string_ostream OSS(OutStr); 379 380 if (isSimple()) { 381 OSS << "BB#" << Node->getNumber(); 382 if (const BasicBlock *BB = Node->getBasicBlock()) 383 OSS << ": " << BB->getName(); 384 } else 385 Node->print(OSS); 386 } 387 388 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 389 390 // Process string output to make it nicer... 391 for (unsigned i = 0; i != OutStr.length(); ++i) 392 if (OutStr[i] == '\n') { // Left justify 393 OutStr[i] = '\\'; 394 OutStr.insert(OutStr.begin()+i+1, 'l'); 395 } 396 return OutStr; 397 } 398 }; 399 } 400 401 void MachineFunction::viewCFG() const 402 { 403 #ifndef NDEBUG 404 ViewGraph(this, "mf" + getName()); 405 #else 406 errs() << "MachineFunction::viewCFG is only available in debug builds on " 407 << "systems with Graphviz or gv!\n"; 408 #endif // NDEBUG 409 } 410 411 void MachineFunction::viewCFGOnly() const 412 { 413 #ifndef NDEBUG 414 ViewGraph(this, "mf" + getName(), true); 415 #else 416 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 417 << "systems with Graphviz or gv!\n"; 418 #endif // NDEBUG 419 } 420 421 /// addLiveIn - Add the specified physical register as a live-in value and 422 /// create a corresponding virtual register for it. 423 unsigned MachineFunction::addLiveIn(unsigned PReg, 424 const TargetRegisterClass *RC) { 425 MachineRegisterInfo &MRI = getRegInfo(); 426 unsigned VReg = MRI.getLiveInVirtReg(PReg); 427 if (VReg) { 428 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 429 (void)VRegRC; 430 // A physical register can be added several times. 431 // Between two calls, the register class of the related virtual register 432 // may have been constrained to match some operation constraints. 433 // In that case, check that the current register class includes the 434 // physical register and is a sub class of the specified RC. 435 assert((VRegRC == RC || (VRegRC->contains(PReg) && 436 RC->hasSubClassEq(VRegRC))) && 437 "Register class mismatch!"); 438 return VReg; 439 } 440 VReg = MRI.createVirtualRegister(RC); 441 MRI.addLiveIn(PReg, VReg); 442 return VReg; 443 } 444 445 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 446 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 447 /// normal 'L' label is returned. 448 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 449 bool isLinkerPrivate) const { 450 const DataLayout *DL = getTarget().getDataLayout(); 451 assert(JumpTableInfo && "No jump tables"); 452 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 453 454 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 455 DL->getPrivateGlobalPrefix(); 456 SmallString<60> Name; 457 raw_svector_ostream(Name) 458 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 459 return Ctx.GetOrCreateSymbol(Name.str()); 460 } 461 462 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 463 /// base. 464 MCSymbol *MachineFunction::getPICBaseSymbol() const { 465 const DataLayout *DL = getTarget().getDataLayout(); 466 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 467 Twine(getFunctionNumber())+"$pb"); 468 } 469 470 //===----------------------------------------------------------------------===// 471 // MachineFrameInfo implementation 472 //===----------------------------------------------------------------------===// 473 474 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 475 return TM.getFrameLowering(); 476 } 477 478 /// ensureMaxAlignment - Make sure the function is at least Align bytes 479 /// aligned. 480 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 481 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 482 assert(Align <= getFrameLowering()->getStackAlignment() && 483 "For targets without stack realignment, Align is out of limit!"); 484 if (MaxAlignment < Align) MaxAlignment = Align; 485 } 486 487 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 488 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 489 unsigned StackAlign) { 490 if (!ShouldClamp || Align <= StackAlign) 491 return Align; 492 DEBUG(dbgs() << "Warning: requested alignment " << Align 493 << " exceeds the stack alignment " << StackAlign 494 << " when stack realignment is off" << '\n'); 495 return StackAlign; 496 } 497 498 /// CreateStackObject - Create a new statically sized stack object, returning 499 /// a nonnegative identifier to represent it. 500 /// 501 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 502 bool isSS, const AllocaInst *Alloca) { 503 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 504 Alignment = 505 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 506 !RealignOption, 507 Alignment, getFrameLowering()->getStackAlignment()); 508 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 509 int Index = (int)Objects.size() - NumFixedObjects - 1; 510 assert(Index >= 0 && "Bad frame index!"); 511 ensureMaxAlignment(Alignment); 512 return Index; 513 } 514 515 /// CreateSpillStackObject - Create a new statically sized stack object that 516 /// represents a spill slot, returning a nonnegative identifier to represent 517 /// it. 518 /// 519 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 520 unsigned Alignment) { 521 Alignment = 522 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 523 !RealignOption, 524 Alignment, getFrameLowering()->getStackAlignment()); 525 CreateStackObject(Size, Alignment, true); 526 int Index = (int)Objects.size() - NumFixedObjects - 1; 527 ensureMaxAlignment(Alignment); 528 return Index; 529 } 530 531 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 532 /// variable sized object has been created. This must be created whenever a 533 /// variable sized object is created, whether or not the index returned is 534 /// actually used. 535 /// 536 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 537 const AllocaInst *Alloca) { 538 HasVarSizedObjects = true; 539 Alignment = 540 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 541 !RealignOption, 542 Alignment, getFrameLowering()->getStackAlignment()); 543 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 544 ensureMaxAlignment(Alignment); 545 return (int)Objects.size()-NumFixedObjects-1; 546 } 547 548 /// CreateFixedObject - Create a new object at a fixed location on the stack. 549 /// All fixed objects should be created before other objects are created for 550 /// efficiency. By default, fixed objects are immutable. This returns an 551 /// index with a negative value. 552 /// 553 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 554 bool Immutable) { 555 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 556 // The alignment of the frame index can be determined from its offset from 557 // the incoming frame position. If the frame object is at offset 32 and 558 // the stack is guaranteed to be 16-byte aligned, then we know that the 559 // object is 16-byte aligned. 560 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 561 unsigned Align = MinAlign(SPOffset, StackAlign); 562 Align = 563 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 564 !RealignOption, 565 Align, getFrameLowering()->getStackAlignment()); 566 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 567 /*isSS*/ false, 568 /*Alloca*/ 0)); 569 return -++NumFixedObjects; 570 } 571 572 573 BitVector 574 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 575 assert(MBB && "MBB must be valid"); 576 const MachineFunction *MF = MBB->getParent(); 577 assert(MF && "MBB must be part of a MachineFunction"); 578 const TargetMachine &TM = MF->getTarget(); 579 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 580 BitVector BV(TRI->getNumRegs()); 581 582 // Before CSI is calculated, no registers are considered pristine. They can be 583 // freely used and PEI will make sure they are saved. 584 if (!isCalleeSavedInfoValid()) 585 return BV; 586 587 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 588 BV.set(*CSR); 589 590 // The entry MBB always has all CSRs pristine. 591 if (MBB == &MF->front()) 592 return BV; 593 594 // On other MBBs the saved CSRs are not pristine. 595 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 596 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 597 E = CSI.end(); I != E; ++I) 598 BV.reset(I->getReg()); 599 600 return BV; 601 } 602 603 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 604 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 605 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 606 unsigned MaxAlign = getMaxAlignment(); 607 int Offset = 0; 608 609 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 610 // It really should be refactored to share code. Until then, changes 611 // should keep in mind that there's tight coupling between the two. 612 613 for (int i = getObjectIndexBegin(); i != 0; ++i) { 614 int FixedOff = -getObjectOffset(i); 615 if (FixedOff > Offset) Offset = FixedOff; 616 } 617 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 618 if (isDeadObjectIndex(i)) 619 continue; 620 Offset += getObjectSize(i); 621 unsigned Align = getObjectAlignment(i); 622 // Adjust to alignment boundary 623 Offset = (Offset+Align-1)/Align*Align; 624 625 MaxAlign = std::max(Align, MaxAlign); 626 } 627 628 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 629 Offset += getMaxCallFrameSize(); 630 631 // Round up the size to a multiple of the alignment. If the function has 632 // any calls or alloca's, align to the target's StackAlignment value to 633 // ensure that the callee's frame or the alloca data is suitably aligned; 634 // otherwise, for leaf functions, align to the TransientStackAlignment 635 // value. 636 unsigned StackAlign; 637 if (adjustsStack() || hasVarSizedObjects() || 638 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 639 StackAlign = TFI->getStackAlignment(); 640 else 641 StackAlign = TFI->getTransientStackAlignment(); 642 643 // If the frame pointer is eliminated, all frame offsets will be relative to 644 // SP not FP. Align to MaxAlign so this works. 645 StackAlign = std::max(StackAlign, MaxAlign); 646 unsigned AlignMask = StackAlign - 1; 647 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 648 649 return (unsigned)Offset; 650 } 651 652 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 653 if (Objects.empty()) return; 654 655 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 656 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 657 658 OS << "Frame Objects:\n"; 659 660 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 661 const StackObject &SO = Objects[i]; 662 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 663 if (SO.Size == ~0ULL) { 664 OS << "dead\n"; 665 continue; 666 } 667 if (SO.Size == 0) 668 OS << "variable sized"; 669 else 670 OS << "size=" << SO.Size; 671 OS << ", align=" << SO.Alignment; 672 673 if (i < NumFixedObjects) 674 OS << ", fixed"; 675 if (i < NumFixedObjects || SO.SPOffset != -1) { 676 int64_t Off = SO.SPOffset - ValOffset; 677 OS << ", at location [SP"; 678 if (Off > 0) 679 OS << "+" << Off; 680 else if (Off < 0) 681 OS << Off; 682 OS << "]"; 683 } 684 OS << "\n"; 685 } 686 } 687 688 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 689 void MachineFrameInfo::dump(const MachineFunction &MF) const { 690 print(MF, dbgs()); 691 } 692 #endif 693 694 //===----------------------------------------------------------------------===// 695 // MachineJumpTableInfo implementation 696 //===----------------------------------------------------------------------===// 697 698 /// getEntrySize - Return the size of each entry in the jump table. 699 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 700 // The size of a jump table entry is 4 bytes unless the entry is just the 701 // address of a block, in which case it is the pointer size. 702 switch (getEntryKind()) { 703 case MachineJumpTableInfo::EK_BlockAddress: 704 return TD.getPointerSize(); 705 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 706 return 8; 707 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 708 case MachineJumpTableInfo::EK_LabelDifference32: 709 case MachineJumpTableInfo::EK_Custom32: 710 return 4; 711 case MachineJumpTableInfo::EK_Inline: 712 return 0; 713 } 714 llvm_unreachable("Unknown jump table encoding!"); 715 } 716 717 /// getEntryAlignment - Return the alignment of each entry in the jump table. 718 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 719 // The alignment of a jump table entry is the alignment of int32 unless the 720 // entry is just the address of a block, in which case it is the pointer 721 // alignment. 722 switch (getEntryKind()) { 723 case MachineJumpTableInfo::EK_BlockAddress: 724 return TD.getPointerABIAlignment(); 725 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 726 return TD.getABIIntegerTypeAlignment(64); 727 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 728 case MachineJumpTableInfo::EK_LabelDifference32: 729 case MachineJumpTableInfo::EK_Custom32: 730 return TD.getABIIntegerTypeAlignment(32); 731 case MachineJumpTableInfo::EK_Inline: 732 return 1; 733 } 734 llvm_unreachable("Unknown jump table encoding!"); 735 } 736 737 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 738 /// 739 unsigned MachineJumpTableInfo::createJumpTableIndex( 740 const std::vector<MachineBasicBlock*> &DestBBs) { 741 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 742 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 743 return JumpTables.size()-1; 744 } 745 746 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 747 /// the jump tables to branch to New instead. 748 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 749 MachineBasicBlock *New) { 750 assert(Old != New && "Not making a change?"); 751 bool MadeChange = false; 752 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 753 ReplaceMBBInJumpTable(i, Old, New); 754 return MadeChange; 755 } 756 757 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 758 /// the jump table to branch to New instead. 759 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 760 MachineBasicBlock *Old, 761 MachineBasicBlock *New) { 762 assert(Old != New && "Not making a change?"); 763 bool MadeChange = false; 764 MachineJumpTableEntry &JTE = JumpTables[Idx]; 765 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 766 if (JTE.MBBs[j] == Old) { 767 JTE.MBBs[j] = New; 768 MadeChange = true; 769 } 770 return MadeChange; 771 } 772 773 void MachineJumpTableInfo::print(raw_ostream &OS) const { 774 if (JumpTables.empty()) return; 775 776 OS << "Jump Tables:\n"; 777 778 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 779 OS << " jt#" << i << ": "; 780 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 781 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 782 } 783 784 OS << '\n'; 785 } 786 787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 788 void MachineJumpTableInfo::dump() const { print(dbgs()); } 789 #endif 790 791 792 //===----------------------------------------------------------------------===// 793 // MachineConstantPool implementation 794 //===----------------------------------------------------------------------===// 795 796 void MachineConstantPoolValue::anchor() { } 797 798 const DataLayout *MachineConstantPool::getDataLayout() const { 799 return TM.getDataLayout(); 800 } 801 802 Type *MachineConstantPoolEntry::getType() const { 803 if (isMachineConstantPoolEntry()) 804 return Val.MachineCPVal->getType(); 805 return Val.ConstVal->getType(); 806 } 807 808 809 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 810 if (isMachineConstantPoolEntry()) 811 return Val.MachineCPVal->getRelocationInfo(); 812 return Val.ConstVal->getRelocationInfo(); 813 } 814 815 MachineConstantPool::~MachineConstantPool() { 816 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 817 if (Constants[i].isMachineConstantPoolEntry()) 818 delete Constants[i].Val.MachineCPVal; 819 for (DenseSet<MachineConstantPoolValue*>::iterator I = 820 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 821 I != E; ++I) 822 delete *I; 823 } 824 825 /// CanShareConstantPoolEntry - Test whether the given two constants 826 /// can be allocated the same constant pool entry. 827 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 828 const DataLayout *TD) { 829 // Handle the trivial case quickly. 830 if (A == B) return true; 831 832 // If they have the same type but weren't the same constant, quickly 833 // reject them. 834 if (A->getType() == B->getType()) return false; 835 836 // We can't handle structs or arrays. 837 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 838 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 839 return false; 840 841 // For now, only support constants with the same size. 842 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 843 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 844 StoreSize > 128) 845 return false; 846 847 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 848 849 // Try constant folding a bitcast of both instructions to an integer. If we 850 // get two identical ConstantInt's, then we are good to share them. We use 851 // the constant folding APIs to do this so that we get the benefit of 852 // DataLayout. 853 if (isa<PointerType>(A->getType())) 854 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 855 const_cast<Constant*>(A), TD); 856 else if (A->getType() != IntTy) 857 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 858 const_cast<Constant*>(A), TD); 859 if (isa<PointerType>(B->getType())) 860 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 861 const_cast<Constant*>(B), TD); 862 else if (B->getType() != IntTy) 863 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 864 const_cast<Constant*>(B), TD); 865 866 return A == B; 867 } 868 869 /// getConstantPoolIndex - Create a new entry in the constant pool or return 870 /// an existing one. User must specify the log2 of the minimum required 871 /// alignment for the object. 872 /// 873 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 874 unsigned Alignment) { 875 assert(Alignment && "Alignment must be specified!"); 876 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 877 878 // Check to see if we already have this constant. 879 // 880 // FIXME, this could be made much more efficient for large constant pools. 881 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 882 if (!Constants[i].isMachineConstantPoolEntry() && 883 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 884 getDataLayout())) { 885 if ((unsigned)Constants[i].getAlignment() < Alignment) 886 Constants[i].Alignment = Alignment; 887 return i; 888 } 889 890 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 891 return Constants.size()-1; 892 } 893 894 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 895 unsigned Alignment) { 896 assert(Alignment && "Alignment must be specified!"); 897 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 898 899 // Check to see if we already have this constant. 900 // 901 // FIXME, this could be made much more efficient for large constant pools. 902 int Idx = V->getExistingMachineCPValue(this, Alignment); 903 if (Idx != -1) { 904 MachineCPVsSharingEntries.insert(V); 905 return (unsigned)Idx; 906 } 907 908 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 909 return Constants.size()-1; 910 } 911 912 void MachineConstantPool::print(raw_ostream &OS) const { 913 if (Constants.empty()) return; 914 915 OS << "Constant Pool:\n"; 916 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 917 OS << " cp#" << i << ": "; 918 if (Constants[i].isMachineConstantPoolEntry()) 919 Constants[i].Val.MachineCPVal->print(OS); 920 else 921 WriteAsOperand(OS, Constants[i].Val.ConstVal, /*PrintType=*/false); 922 OS << ", align=" << Constants[i].getAlignment(); 923 OS << "\n"; 924 } 925 } 926 927 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 928 void MachineConstantPool::dump() const { print(dbgs()); } 929 #endif 930