1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 /// Should we be emitting segmented stack stuff for the function 274 bool MachineFunction::shouldSplitStack() const { 275 return getFunction().hasFnAttribute("split-stack"); 276 } 277 278 LLVM_NODISCARD unsigned 279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 280 FrameInstructions.push_back(Inst); 281 return FrameInstructions.size() - 1; 282 } 283 284 /// This discards all of the MachineBasicBlock numbers and recomputes them. 285 /// This guarantees that the MBB numbers are sequential, dense, and match the 286 /// ordering of the blocks within the function. If a specific MachineBasicBlock 287 /// is specified, only that block and those after it are renumbered. 288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 289 if (empty()) { MBBNumbering.clear(); return; } 290 MachineFunction::iterator MBBI, E = end(); 291 if (MBB == nullptr) 292 MBBI = begin(); 293 else 294 MBBI = MBB->getIterator(); 295 296 // Figure out the block number this should have. 297 unsigned BlockNo = 0; 298 if (MBBI != begin()) 299 BlockNo = std::prev(MBBI)->getNumber() + 1; 300 301 for (; MBBI != E; ++MBBI, ++BlockNo) { 302 if (MBBI->getNumber() != (int)BlockNo) { 303 // Remove use of the old number. 304 if (MBBI->getNumber() != -1) { 305 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 306 "MBB number mismatch!"); 307 MBBNumbering[MBBI->getNumber()] = nullptr; 308 } 309 310 // If BlockNo is already taken, set that block's number to -1. 311 if (MBBNumbering[BlockNo]) 312 MBBNumbering[BlockNo]->setNumber(-1); 313 314 MBBNumbering[BlockNo] = &*MBBI; 315 MBBI->setNumber(BlockNo); 316 } 317 } 318 319 // Okay, all the blocks are renumbered. If we have compactified the block 320 // numbering, shrink MBBNumbering now. 321 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 322 MBBNumbering.resize(BlockNo); 323 } 324 325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 327 const DebugLoc &DL, 328 bool NoImp) { 329 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 330 MachineInstr(*this, MCID, DL, NoImp); 331 } 332 333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 334 /// identical in all ways except the instruction has no parent, prev, or next. 335 MachineInstr * 336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 337 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 338 MachineInstr(*this, *Orig); 339 } 340 341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 342 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 343 MachineInstr *FirstClone = nullptr; 344 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 345 while (true) { 346 MachineInstr *Cloned = CloneMachineInstr(&*I); 347 MBB.insert(InsertBefore, Cloned); 348 if (FirstClone == nullptr) { 349 FirstClone = Cloned; 350 } else { 351 Cloned->bundleWithPred(); 352 } 353 354 if (!I->isBundledWithSucc()) 355 break; 356 ++I; 357 } 358 return *FirstClone; 359 } 360 361 /// Delete the given MachineInstr. 362 /// 363 /// This function also serves as the MachineInstr destructor - the real 364 /// ~MachineInstr() destructor must be empty. 365 void 366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 367 // Verify that a call site info is at valid state. This assertion should 368 // be triggered during the implementation of support for the 369 // call site info of a new architecture. If the assertion is triggered, 370 // back trace will tell where to insert a call to updateCallSiteInfo(). 371 assert((!MI->isCall(MachineInstr::IgnoreBundle) || 372 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 373 "Call site info was not updated!"); 374 // Strip it for parts. The operand array and the MI object itself are 375 // independently recyclable. 376 if (MI->Operands) 377 deallocateOperandArray(MI->CapOperands, MI->Operands); 378 // Don't call ~MachineInstr() which must be trivial anyway because 379 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 380 // destructors. 381 InstructionRecycler.Deallocate(Allocator, MI); 382 } 383 384 /// Allocate a new MachineBasicBlock. Use this instead of 385 /// `new MachineBasicBlock'. 386 MachineBasicBlock * 387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 388 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 389 MachineBasicBlock(*this, bb); 390 } 391 392 /// Delete the given MachineBasicBlock. 393 void 394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 395 assert(MBB->getParent() == this && "MBB parent mismatch!"); 396 MBB->~MachineBasicBlock(); 397 BasicBlockRecycler.Deallocate(Allocator, MBB); 398 } 399 400 MachineMemOperand *MachineFunction::getMachineMemOperand( 401 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 402 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 403 SyncScope::ID SSID, AtomicOrdering Ordering, 404 AtomicOrdering FailureOrdering) { 405 return new (Allocator) 406 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 407 SSID, Ordering, FailureOrdering); 408 } 409 410 MachineMemOperand * 411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 412 int64_t Offset, uint64_t Size) { 413 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 414 415 // If there is no pointer value, the offset isn't tracked so we need to adjust 416 // the base alignment. 417 unsigned Align = PtrInfo.V.isNull() 418 ? MinAlign(MMO->getBaseAlignment(), Offset) 419 : MMO->getBaseAlignment(); 420 421 return new (Allocator) 422 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 423 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 424 MMO->getOrdering(), MMO->getFailureOrdering()); 425 } 426 427 MachineMemOperand * 428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 429 const AAMDNodes &AAInfo) { 430 MachinePointerInfo MPI = MMO->getValue() ? 431 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 432 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 433 434 return new (Allocator) 435 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 436 MMO->getBaseAlignment(), AAInfo, 437 MMO->getRanges(), MMO->getSyncScopeID(), 438 MMO->getOrdering(), MMO->getFailureOrdering()); 439 } 440 441 MachineMemOperand * 442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 443 MachineMemOperand::Flags Flags) { 444 return new (Allocator) MachineMemOperand( 445 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 446 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 447 MMO->getOrdering(), MMO->getFailureOrdering()); 448 } 449 450 MachineInstr::ExtraInfo * 451 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs, 452 MCSymbol *PreInstrSymbol, 453 MCSymbol *PostInstrSymbol) { 454 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 455 PostInstrSymbol); 456 } 457 458 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 459 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 460 llvm::copy(Name, Dest); 461 Dest[Name.size()] = 0; 462 return Dest; 463 } 464 465 uint32_t *MachineFunction::allocateRegMask() { 466 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 467 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 468 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 469 memset(Mask, 0, Size * sizeof(Mask[0])); 470 return Mask; 471 } 472 473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 474 LLVM_DUMP_METHOD void MachineFunction::dump() const { 475 print(dbgs()); 476 } 477 #endif 478 479 StringRef MachineFunction::getName() const { 480 return getFunction().getName(); 481 } 482 483 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 484 OS << "# Machine code for function " << getName() << ": "; 485 getProperties().print(OS); 486 OS << '\n'; 487 488 // Print Frame Information 489 FrameInfo->print(*this, OS); 490 491 // Print JumpTable Information 492 if (JumpTableInfo) 493 JumpTableInfo->print(OS); 494 495 // Print Constant Pool 496 ConstantPool->print(OS); 497 498 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 499 500 if (RegInfo && !RegInfo->livein_empty()) { 501 OS << "Function Live Ins: "; 502 for (MachineRegisterInfo::livein_iterator 503 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 504 OS << printReg(I->first, TRI); 505 if (I->second) 506 OS << " in " << printReg(I->second, TRI); 507 if (std::next(I) != E) 508 OS << ", "; 509 } 510 OS << '\n'; 511 } 512 513 ModuleSlotTracker MST(getFunction().getParent()); 514 MST.incorporateFunction(getFunction()); 515 for (const auto &BB : *this) { 516 OS << '\n'; 517 // If we print the whole function, print it at its most verbose level. 518 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 519 } 520 521 OS << "\n# End machine code for function " << getName() << ".\n\n"; 522 } 523 524 namespace llvm { 525 526 template<> 527 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 528 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 529 530 static std::string getGraphName(const MachineFunction *F) { 531 return ("CFG for '" + F->getName() + "' function").str(); 532 } 533 534 std::string getNodeLabel(const MachineBasicBlock *Node, 535 const MachineFunction *Graph) { 536 std::string OutStr; 537 { 538 raw_string_ostream OSS(OutStr); 539 540 if (isSimple()) { 541 OSS << printMBBReference(*Node); 542 if (const BasicBlock *BB = Node->getBasicBlock()) 543 OSS << ": " << BB->getName(); 544 } else 545 Node->print(OSS); 546 } 547 548 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 549 550 // Process string output to make it nicer... 551 for (unsigned i = 0; i != OutStr.length(); ++i) 552 if (OutStr[i] == '\n') { // Left justify 553 OutStr[i] = '\\'; 554 OutStr.insert(OutStr.begin()+i+1, 'l'); 555 } 556 return OutStr; 557 } 558 }; 559 560 } // end namespace llvm 561 562 void MachineFunction::viewCFG() const 563 { 564 #ifndef NDEBUG 565 ViewGraph(this, "mf" + getName()); 566 #else 567 errs() << "MachineFunction::viewCFG is only available in debug builds on " 568 << "systems with Graphviz or gv!\n"; 569 #endif // NDEBUG 570 } 571 572 void MachineFunction::viewCFGOnly() const 573 { 574 #ifndef NDEBUG 575 ViewGraph(this, "mf" + getName(), true); 576 #else 577 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 578 << "systems with Graphviz or gv!\n"; 579 #endif // NDEBUG 580 } 581 582 /// Add the specified physical register as a live-in value and 583 /// create a corresponding virtual register for it. 584 unsigned MachineFunction::addLiveIn(unsigned PReg, 585 const TargetRegisterClass *RC) { 586 MachineRegisterInfo &MRI = getRegInfo(); 587 unsigned VReg = MRI.getLiveInVirtReg(PReg); 588 if (VReg) { 589 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 590 (void)VRegRC; 591 // A physical register can be added several times. 592 // Between two calls, the register class of the related virtual register 593 // may have been constrained to match some operation constraints. 594 // In that case, check that the current register class includes the 595 // physical register and is a sub class of the specified RC. 596 assert((VRegRC == RC || (VRegRC->contains(PReg) && 597 RC->hasSubClassEq(VRegRC))) && 598 "Register class mismatch!"); 599 return VReg; 600 } 601 VReg = MRI.createVirtualRegister(RC); 602 MRI.addLiveIn(PReg, VReg); 603 return VReg; 604 } 605 606 /// Return the MCSymbol for the specified non-empty jump table. 607 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 608 /// normal 'L' label is returned. 609 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 610 bool isLinkerPrivate) const { 611 const DataLayout &DL = getDataLayout(); 612 assert(JumpTableInfo && "No jump tables"); 613 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 614 615 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 616 : DL.getPrivateGlobalPrefix(); 617 SmallString<60> Name; 618 raw_svector_ostream(Name) 619 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 620 return Ctx.getOrCreateSymbol(Name); 621 } 622 623 /// Return a function-local symbol to represent the PIC base. 624 MCSymbol *MachineFunction::getPICBaseSymbol() const { 625 const DataLayout &DL = getDataLayout(); 626 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 627 Twine(getFunctionNumber()) + "$pb"); 628 } 629 630 /// \name Exception Handling 631 /// \{ 632 633 LandingPadInfo & 634 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 635 unsigned N = LandingPads.size(); 636 for (unsigned i = 0; i < N; ++i) { 637 LandingPadInfo &LP = LandingPads[i]; 638 if (LP.LandingPadBlock == LandingPad) 639 return LP; 640 } 641 642 LandingPads.push_back(LandingPadInfo(LandingPad)); 643 return LandingPads[N]; 644 } 645 646 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 647 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 648 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 649 LP.BeginLabels.push_back(BeginLabel); 650 LP.EndLabels.push_back(EndLabel); 651 } 652 653 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 654 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 655 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 656 LP.LandingPadLabel = LandingPadLabel; 657 658 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 659 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 660 if (const auto *PF = 661 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 662 getMMI().addPersonality(PF); 663 664 if (LPI->isCleanup()) 665 addCleanup(LandingPad); 666 667 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 668 // correct, but we need to do it this way because of how the DWARF EH 669 // emitter processes the clauses. 670 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 671 Value *Val = LPI->getClause(I - 1); 672 if (LPI->isCatch(I - 1)) { 673 addCatchTypeInfo(LandingPad, 674 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 675 } else { 676 // Add filters in a list. 677 auto *CVal = cast<Constant>(Val); 678 SmallVector<const GlobalValue *, 4> FilterList; 679 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 680 II != IE; ++II) 681 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 682 683 addFilterTypeInfo(LandingPad, FilterList); 684 } 685 } 686 687 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 688 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 689 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 690 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 691 } 692 693 } else { 694 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 695 } 696 697 return LandingPadLabel; 698 } 699 700 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 701 ArrayRef<const GlobalValue *> TyInfo) { 702 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 703 for (unsigned N = TyInfo.size(); N; --N) 704 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 705 } 706 707 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 708 ArrayRef<const GlobalValue *> TyInfo) { 709 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 710 std::vector<unsigned> IdsInFilter(TyInfo.size()); 711 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 712 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 713 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 714 } 715 716 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 717 bool TidyIfNoBeginLabels) { 718 for (unsigned i = 0; i != LandingPads.size(); ) { 719 LandingPadInfo &LandingPad = LandingPads[i]; 720 if (LandingPad.LandingPadLabel && 721 !LandingPad.LandingPadLabel->isDefined() && 722 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 723 LandingPad.LandingPadLabel = nullptr; 724 725 // Special case: we *should* emit LPs with null LP MBB. This indicates 726 // "nounwind" case. 727 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 728 LandingPads.erase(LandingPads.begin() + i); 729 continue; 730 } 731 732 if (TidyIfNoBeginLabels) { 733 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 734 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 735 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 736 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 737 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 738 continue; 739 740 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 741 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 742 --j; 743 --e; 744 } 745 746 // Remove landing pads with no try-ranges. 747 if (LandingPads[i].BeginLabels.empty()) { 748 LandingPads.erase(LandingPads.begin() + i); 749 continue; 750 } 751 } 752 753 // If there is no landing pad, ensure that the list of typeids is empty. 754 // If the only typeid is a cleanup, this is the same as having no typeids. 755 if (!LandingPad.LandingPadBlock || 756 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 757 LandingPad.TypeIds.clear(); 758 ++i; 759 } 760 } 761 762 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 763 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 764 LP.TypeIds.push_back(0); 765 } 766 767 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 768 const Function *Filter, 769 const BlockAddress *RecoverBA) { 770 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 771 SEHHandler Handler; 772 Handler.FilterOrFinally = Filter; 773 Handler.RecoverBA = RecoverBA; 774 LP.SEHHandlers.push_back(Handler); 775 } 776 777 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 778 const Function *Cleanup) { 779 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 780 SEHHandler Handler; 781 Handler.FilterOrFinally = Cleanup; 782 Handler.RecoverBA = nullptr; 783 LP.SEHHandlers.push_back(Handler); 784 } 785 786 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 787 ArrayRef<unsigned> Sites) { 788 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 789 } 790 791 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 792 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 793 if (TypeInfos[i] == TI) return i + 1; 794 795 TypeInfos.push_back(TI); 796 return TypeInfos.size(); 797 } 798 799 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 800 // If the new filter coincides with the tail of an existing filter, then 801 // re-use the existing filter. Folding filters more than this requires 802 // re-ordering filters and/or their elements - probably not worth it. 803 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 804 E = FilterEnds.end(); I != E; ++I) { 805 unsigned i = *I, j = TyIds.size(); 806 807 while (i && j) 808 if (FilterIds[--i] != TyIds[--j]) 809 goto try_next; 810 811 if (!j) 812 // The new filter coincides with range [i, end) of the existing filter. 813 return -(1 + i); 814 815 try_next:; 816 } 817 818 // Add the new filter. 819 int FilterID = -(1 + FilterIds.size()); 820 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 821 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 822 FilterEnds.push_back(FilterIds.size()); 823 FilterIds.push_back(0); // terminator 824 return FilterID; 825 } 826 827 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I, 828 const MDNode *MD) { 829 MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true); 830 MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true); 831 I->setPreInstrSymbol(*this, BeginLabel); 832 I->setPostInstrSymbol(*this, EndLabel); 833 834 const DIType *DI = dyn_cast<DIType>(MD); 835 CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI)); 836 } 837 838 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 839 const MachineInstr *New) { 840 assert(New->isCall() && "Call site info refers only to call instructions!"); 841 842 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 843 if (CSIt == CallSitesInfo.end()) 844 return; 845 846 CallSiteInfo CSInfo = std::move(CSIt->second); 847 CallSitesInfo.erase(CSIt); 848 CallSitesInfo[New] = CSInfo; 849 } 850 851 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 852 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI); 853 if (CSIt == CallSitesInfo.end()) 854 return; 855 CallSitesInfo.erase(CSIt); 856 } 857 858 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 859 const MachineInstr *New) { 860 assert(New->isCall() && "Call site info refers only to call instructions!"); 861 862 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 863 if (CSIt == CallSitesInfo.end()) 864 return; 865 866 CallSiteInfo CSInfo = CSIt->second; 867 CallSitesInfo[New] = CSInfo; 868 } 869 870 /// \} 871 872 //===----------------------------------------------------------------------===// 873 // MachineJumpTableInfo implementation 874 //===----------------------------------------------------------------------===// 875 876 /// Return the size of each entry in the jump table. 877 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 878 // The size of a jump table entry is 4 bytes unless the entry is just the 879 // address of a block, in which case it is the pointer size. 880 switch (getEntryKind()) { 881 case MachineJumpTableInfo::EK_BlockAddress: 882 return TD.getPointerSize(); 883 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 884 return 8; 885 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 886 case MachineJumpTableInfo::EK_LabelDifference32: 887 case MachineJumpTableInfo::EK_Custom32: 888 return 4; 889 case MachineJumpTableInfo::EK_Inline: 890 return 0; 891 } 892 llvm_unreachable("Unknown jump table encoding!"); 893 } 894 895 /// Return the alignment of each entry in the jump table. 896 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 897 // The alignment of a jump table entry is the alignment of int32 unless the 898 // entry is just the address of a block, in which case it is the pointer 899 // alignment. 900 switch (getEntryKind()) { 901 case MachineJumpTableInfo::EK_BlockAddress: 902 return TD.getPointerABIAlignment(0).value(); 903 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 904 return TD.getABIIntegerTypeAlignment(64).value(); 905 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 906 case MachineJumpTableInfo::EK_LabelDifference32: 907 case MachineJumpTableInfo::EK_Custom32: 908 return TD.getABIIntegerTypeAlignment(32).value(); 909 case MachineJumpTableInfo::EK_Inline: 910 return 1; 911 } 912 llvm_unreachable("Unknown jump table encoding!"); 913 } 914 915 /// Create a new jump table entry in the jump table info. 916 unsigned MachineJumpTableInfo::createJumpTableIndex( 917 const std::vector<MachineBasicBlock*> &DestBBs) { 918 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 919 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 920 return JumpTables.size()-1; 921 } 922 923 /// If Old is the target of any jump tables, update the jump tables to branch 924 /// to New instead. 925 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 926 MachineBasicBlock *New) { 927 assert(Old != New && "Not making a change?"); 928 bool MadeChange = false; 929 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 930 ReplaceMBBInJumpTable(i, Old, New); 931 return MadeChange; 932 } 933 934 /// If Old is a target of the jump tables, update the jump table to branch to 935 /// New instead. 936 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 937 MachineBasicBlock *Old, 938 MachineBasicBlock *New) { 939 assert(Old != New && "Not making a change?"); 940 bool MadeChange = false; 941 MachineJumpTableEntry &JTE = JumpTables[Idx]; 942 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 943 if (JTE.MBBs[j] == Old) { 944 JTE.MBBs[j] = New; 945 MadeChange = true; 946 } 947 return MadeChange; 948 } 949 950 void MachineJumpTableInfo::print(raw_ostream &OS) const { 951 if (JumpTables.empty()) return; 952 953 OS << "Jump Tables:\n"; 954 955 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 956 OS << printJumpTableEntryReference(i) << ':'; 957 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 958 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 959 if (i != e) 960 OS << '\n'; 961 } 962 963 OS << '\n'; 964 } 965 966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 967 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 968 #endif 969 970 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 971 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // MachineConstantPool implementation 976 //===----------------------------------------------------------------------===// 977 978 void MachineConstantPoolValue::anchor() {} 979 980 Type *MachineConstantPoolEntry::getType() const { 981 if (isMachineConstantPoolEntry()) 982 return Val.MachineCPVal->getType(); 983 return Val.ConstVal->getType(); 984 } 985 986 bool MachineConstantPoolEntry::needsRelocation() const { 987 if (isMachineConstantPoolEntry()) 988 return true; 989 return Val.ConstVal->needsRelocation(); 990 } 991 992 SectionKind 993 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 994 if (needsRelocation()) 995 return SectionKind::getReadOnlyWithRel(); 996 switch (DL->getTypeAllocSize(getType())) { 997 case 4: 998 return SectionKind::getMergeableConst4(); 999 case 8: 1000 return SectionKind::getMergeableConst8(); 1001 case 16: 1002 return SectionKind::getMergeableConst16(); 1003 case 32: 1004 return SectionKind::getMergeableConst32(); 1005 default: 1006 return SectionKind::getReadOnly(); 1007 } 1008 } 1009 1010 MachineConstantPool::~MachineConstantPool() { 1011 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1012 // so keep track of which we've deleted to avoid double deletions. 1013 DenseSet<MachineConstantPoolValue*> Deleted; 1014 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1015 if (Constants[i].isMachineConstantPoolEntry()) { 1016 Deleted.insert(Constants[i].Val.MachineCPVal); 1017 delete Constants[i].Val.MachineCPVal; 1018 } 1019 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1020 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1021 I != E; ++I) { 1022 if (Deleted.count(*I) == 0) 1023 delete *I; 1024 } 1025 } 1026 1027 /// Test whether the given two constants can be allocated the same constant pool 1028 /// entry. 1029 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1030 const DataLayout &DL) { 1031 // Handle the trivial case quickly. 1032 if (A == B) return true; 1033 1034 // If they have the same type but weren't the same constant, quickly 1035 // reject them. 1036 if (A->getType() == B->getType()) return false; 1037 1038 // We can't handle structs or arrays. 1039 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1040 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1041 return false; 1042 1043 // For now, only support constants with the same size. 1044 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1045 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1046 return false; 1047 1048 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1049 1050 // Try constant folding a bitcast of both instructions to an integer. If we 1051 // get two identical ConstantInt's, then we are good to share them. We use 1052 // the constant folding APIs to do this so that we get the benefit of 1053 // DataLayout. 1054 if (isa<PointerType>(A->getType())) 1055 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1056 const_cast<Constant *>(A), IntTy, DL); 1057 else if (A->getType() != IntTy) 1058 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1059 IntTy, DL); 1060 if (isa<PointerType>(B->getType())) 1061 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1062 const_cast<Constant *>(B), IntTy, DL); 1063 else if (B->getType() != IntTy) 1064 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1065 IntTy, DL); 1066 1067 return A == B; 1068 } 1069 1070 /// Create a new entry in the constant pool or return an existing one. 1071 /// User must specify the log2 of the minimum required alignment for the object. 1072 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1073 unsigned Alignment) { 1074 assert(Alignment && "Alignment must be specified!"); 1075 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1076 1077 // Check to see if we already have this constant. 1078 // 1079 // FIXME, this could be made much more efficient for large constant pools. 1080 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1081 if (!Constants[i].isMachineConstantPoolEntry() && 1082 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1083 if ((unsigned)Constants[i].getAlignment() < Alignment) 1084 Constants[i].Alignment = Alignment; 1085 return i; 1086 } 1087 1088 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1089 return Constants.size()-1; 1090 } 1091 1092 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1093 unsigned Alignment) { 1094 assert(Alignment && "Alignment must be specified!"); 1095 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1096 1097 // Check to see if we already have this constant. 1098 // 1099 // FIXME, this could be made much more efficient for large constant pools. 1100 int Idx = V->getExistingMachineCPValue(this, Alignment); 1101 if (Idx != -1) { 1102 MachineCPVsSharingEntries.insert(V); 1103 return (unsigned)Idx; 1104 } 1105 1106 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1107 return Constants.size()-1; 1108 } 1109 1110 void MachineConstantPool::print(raw_ostream &OS) const { 1111 if (Constants.empty()) return; 1112 1113 OS << "Constant Pool:\n"; 1114 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1115 OS << " cp#" << i << ": "; 1116 if (Constants[i].isMachineConstantPoolEntry()) 1117 Constants[i].Val.MachineCPVal->print(OS); 1118 else 1119 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1120 OS << ", align=" << Constants[i].getAlignment(); 1121 OS << "\n"; 1122 } 1123 } 1124 1125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1126 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1127 #endif 1128