1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 274 if (&FPType == &APFloat::IEEEsingle()) { 275 Attribute Attr = F.getFnAttribute("denormal-fp-math-f32"); 276 StringRef Val = Attr.getValueAsString(); 277 if (!Val.empty()) 278 return parseDenormalFPAttribute(Val); 279 280 // If the f32 variant of the attribute isn't specified, try to use the 281 // generic one. 282 } 283 284 // TODO: Should probably avoid the connection to the IR and store directly 285 // in the MachineFunction. 286 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 287 288 // FIXME: This should assume IEEE behavior on an unspecified 289 // attribute. However, the one current user incorrectly assumes a non-IEEE 290 // target by default. 291 StringRef Val = Attr.getValueAsString(); 292 if (Val.empty()) 293 return DenormalMode::getInvalid(); 294 295 return parseDenormalFPAttribute(Val); 296 } 297 298 /// Should we be emitting segmented stack stuff for the function 299 bool MachineFunction::shouldSplitStack() const { 300 return getFunction().hasFnAttribute("split-stack"); 301 } 302 303 LLVM_NODISCARD unsigned 304 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 305 FrameInstructions.push_back(Inst); 306 return FrameInstructions.size() - 1; 307 } 308 309 /// This discards all of the MachineBasicBlock numbers and recomputes them. 310 /// This guarantees that the MBB numbers are sequential, dense, and match the 311 /// ordering of the blocks within the function. If a specific MachineBasicBlock 312 /// is specified, only that block and those after it are renumbered. 313 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 314 if (empty()) { MBBNumbering.clear(); return; } 315 MachineFunction::iterator MBBI, E = end(); 316 if (MBB == nullptr) 317 MBBI = begin(); 318 else 319 MBBI = MBB->getIterator(); 320 321 // Figure out the block number this should have. 322 unsigned BlockNo = 0; 323 if (MBBI != begin()) 324 BlockNo = std::prev(MBBI)->getNumber() + 1; 325 326 for (; MBBI != E; ++MBBI, ++BlockNo) { 327 if (MBBI->getNumber() != (int)BlockNo) { 328 // Remove use of the old number. 329 if (MBBI->getNumber() != -1) { 330 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 331 "MBB number mismatch!"); 332 MBBNumbering[MBBI->getNumber()] = nullptr; 333 } 334 335 // If BlockNo is already taken, set that block's number to -1. 336 if (MBBNumbering[BlockNo]) 337 MBBNumbering[BlockNo]->setNumber(-1); 338 339 MBBNumbering[BlockNo] = &*MBBI; 340 MBBI->setNumber(BlockNo); 341 } 342 } 343 344 // Okay, all the blocks are renumbered. If we have compactified the block 345 // numbering, shrink MBBNumbering now. 346 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 347 MBBNumbering.resize(BlockNo); 348 } 349 350 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 351 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 352 const DebugLoc &DL, 353 bool NoImp) { 354 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 355 MachineInstr(*this, MCID, DL, NoImp); 356 } 357 358 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 359 /// identical in all ways except the instruction has no parent, prev, or next. 360 MachineInstr * 361 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 362 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 363 MachineInstr(*this, *Orig); 364 } 365 366 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 367 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 368 MachineInstr *FirstClone = nullptr; 369 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 370 while (true) { 371 MachineInstr *Cloned = CloneMachineInstr(&*I); 372 MBB.insert(InsertBefore, Cloned); 373 if (FirstClone == nullptr) { 374 FirstClone = Cloned; 375 } else { 376 Cloned->bundleWithPred(); 377 } 378 379 if (!I->isBundledWithSucc()) 380 break; 381 ++I; 382 } 383 return *FirstClone; 384 } 385 386 /// Delete the given MachineInstr. 387 /// 388 /// This function also serves as the MachineInstr destructor - the real 389 /// ~MachineInstr() destructor must be empty. 390 void 391 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 392 // Verify that a call site info is at valid state. This assertion should 393 // be triggered during the implementation of support for the 394 // call site info of a new architecture. If the assertion is triggered, 395 // back trace will tell where to insert a call to updateCallSiteInfo(). 396 assert((!MI->isCall(MachineInstr::IgnoreBundle) || 397 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 398 "Call site info was not updated!"); 399 // Strip it for parts. The operand array and the MI object itself are 400 // independently recyclable. 401 if (MI->Operands) 402 deallocateOperandArray(MI->CapOperands, MI->Operands); 403 // Don't call ~MachineInstr() which must be trivial anyway because 404 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 405 // destructors. 406 InstructionRecycler.Deallocate(Allocator, MI); 407 } 408 409 /// Allocate a new MachineBasicBlock. Use this instead of 410 /// `new MachineBasicBlock'. 411 MachineBasicBlock * 412 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 413 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 414 MachineBasicBlock(*this, bb); 415 } 416 417 /// Delete the given MachineBasicBlock. 418 void 419 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 420 assert(MBB->getParent() == this && "MBB parent mismatch!"); 421 MBB->~MachineBasicBlock(); 422 BasicBlockRecycler.Deallocate(Allocator, MBB); 423 } 424 425 MachineMemOperand *MachineFunction::getMachineMemOperand( 426 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 427 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 428 SyncScope::ID SSID, AtomicOrdering Ordering, 429 AtomicOrdering FailureOrdering) { 430 return new (Allocator) 431 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 432 SSID, Ordering, FailureOrdering); 433 } 434 435 MachineMemOperand * 436 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 437 int64_t Offset, uint64_t Size) { 438 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 439 440 // If there is no pointer value, the offset isn't tracked so we need to adjust 441 // the base alignment. 442 unsigned Align = PtrInfo.V.isNull() 443 ? MinAlign(MMO->getBaseAlignment(), Offset) 444 : MMO->getBaseAlignment(); 445 446 return new (Allocator) 447 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 448 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 449 MMO->getOrdering(), MMO->getFailureOrdering()); 450 } 451 452 MachineMemOperand * 453 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 454 const AAMDNodes &AAInfo) { 455 MachinePointerInfo MPI = MMO->getValue() ? 456 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 457 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 458 459 return new (Allocator) 460 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 461 MMO->getBaseAlignment(), AAInfo, 462 MMO->getRanges(), MMO->getSyncScopeID(), 463 MMO->getOrdering(), MMO->getFailureOrdering()); 464 } 465 466 MachineMemOperand * 467 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 468 MachineMemOperand::Flags Flags) { 469 return new (Allocator) MachineMemOperand( 470 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 471 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 472 MMO->getOrdering(), MMO->getFailureOrdering()); 473 } 474 475 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 476 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 477 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 478 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 479 PostInstrSymbol, HeapAllocMarker); 480 } 481 482 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 483 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 484 llvm::copy(Name, Dest); 485 Dest[Name.size()] = 0; 486 return Dest; 487 } 488 489 uint32_t *MachineFunction::allocateRegMask() { 490 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 491 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 492 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 493 memset(Mask, 0, Size * sizeof(Mask[0])); 494 return Mask; 495 } 496 497 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 498 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 499 copy(Mask, AllocMask); 500 return {AllocMask, Mask.size()}; 501 } 502 503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 504 LLVM_DUMP_METHOD void MachineFunction::dump() const { 505 print(dbgs()); 506 } 507 #endif 508 509 StringRef MachineFunction::getName() const { 510 return getFunction().getName(); 511 } 512 513 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 514 OS << "# Machine code for function " << getName() << ": "; 515 getProperties().print(OS); 516 OS << '\n'; 517 518 // Print Frame Information 519 FrameInfo->print(*this, OS); 520 521 // Print JumpTable Information 522 if (JumpTableInfo) 523 JumpTableInfo->print(OS); 524 525 // Print Constant Pool 526 ConstantPool->print(OS); 527 528 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 529 530 if (RegInfo && !RegInfo->livein_empty()) { 531 OS << "Function Live Ins: "; 532 for (MachineRegisterInfo::livein_iterator 533 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 534 OS << printReg(I->first, TRI); 535 if (I->second) 536 OS << " in " << printReg(I->second, TRI); 537 if (std::next(I) != E) 538 OS << ", "; 539 } 540 OS << '\n'; 541 } 542 543 ModuleSlotTracker MST(getFunction().getParent()); 544 MST.incorporateFunction(getFunction()); 545 for (const auto &BB : *this) { 546 OS << '\n'; 547 // If we print the whole function, print it at its most verbose level. 548 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 549 } 550 551 OS << "\n# End machine code for function " << getName() << ".\n\n"; 552 } 553 554 /// True if this function needs frame moves for debug or exceptions. 555 bool MachineFunction::needsFrameMoves() const { 556 return getMMI().hasDebugInfo() || 557 getTarget().Options.ForceDwarfFrameSection || 558 F.needsUnwindTableEntry(); 559 } 560 561 namespace llvm { 562 563 template<> 564 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 565 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 566 567 static std::string getGraphName(const MachineFunction *F) { 568 return ("CFG for '" + F->getName() + "' function").str(); 569 } 570 571 std::string getNodeLabel(const MachineBasicBlock *Node, 572 const MachineFunction *Graph) { 573 std::string OutStr; 574 { 575 raw_string_ostream OSS(OutStr); 576 577 if (isSimple()) { 578 OSS << printMBBReference(*Node); 579 if (const BasicBlock *BB = Node->getBasicBlock()) 580 OSS << ": " << BB->getName(); 581 } else 582 Node->print(OSS); 583 } 584 585 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 586 587 // Process string output to make it nicer... 588 for (unsigned i = 0; i != OutStr.length(); ++i) 589 if (OutStr[i] == '\n') { // Left justify 590 OutStr[i] = '\\'; 591 OutStr.insert(OutStr.begin()+i+1, 'l'); 592 } 593 return OutStr; 594 } 595 }; 596 597 } // end namespace llvm 598 599 void MachineFunction::viewCFG() const 600 { 601 #ifndef NDEBUG 602 ViewGraph(this, "mf" + getName()); 603 #else 604 errs() << "MachineFunction::viewCFG is only available in debug builds on " 605 << "systems with Graphviz or gv!\n"; 606 #endif // NDEBUG 607 } 608 609 void MachineFunction::viewCFGOnly() const 610 { 611 #ifndef NDEBUG 612 ViewGraph(this, "mf" + getName(), true); 613 #else 614 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 615 << "systems with Graphviz or gv!\n"; 616 #endif // NDEBUG 617 } 618 619 /// Add the specified physical register as a live-in value and 620 /// create a corresponding virtual register for it. 621 unsigned MachineFunction::addLiveIn(unsigned PReg, 622 const TargetRegisterClass *RC) { 623 MachineRegisterInfo &MRI = getRegInfo(); 624 unsigned VReg = MRI.getLiveInVirtReg(PReg); 625 if (VReg) { 626 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 627 (void)VRegRC; 628 // A physical register can be added several times. 629 // Between two calls, the register class of the related virtual register 630 // may have been constrained to match some operation constraints. 631 // In that case, check that the current register class includes the 632 // physical register and is a sub class of the specified RC. 633 assert((VRegRC == RC || (VRegRC->contains(PReg) && 634 RC->hasSubClassEq(VRegRC))) && 635 "Register class mismatch!"); 636 return VReg; 637 } 638 VReg = MRI.createVirtualRegister(RC); 639 MRI.addLiveIn(PReg, VReg); 640 return VReg; 641 } 642 643 /// Return the MCSymbol for the specified non-empty jump table. 644 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 645 /// normal 'L' label is returned. 646 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 647 bool isLinkerPrivate) const { 648 const DataLayout &DL = getDataLayout(); 649 assert(JumpTableInfo && "No jump tables"); 650 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 651 652 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 653 : DL.getPrivateGlobalPrefix(); 654 SmallString<60> Name; 655 raw_svector_ostream(Name) 656 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 657 return Ctx.getOrCreateSymbol(Name); 658 } 659 660 /// Return a function-local symbol to represent the PIC base. 661 MCSymbol *MachineFunction::getPICBaseSymbol() const { 662 const DataLayout &DL = getDataLayout(); 663 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 664 Twine(getFunctionNumber()) + "$pb"); 665 } 666 667 /// \name Exception Handling 668 /// \{ 669 670 LandingPadInfo & 671 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 672 unsigned N = LandingPads.size(); 673 for (unsigned i = 0; i < N; ++i) { 674 LandingPadInfo &LP = LandingPads[i]; 675 if (LP.LandingPadBlock == LandingPad) 676 return LP; 677 } 678 679 LandingPads.push_back(LandingPadInfo(LandingPad)); 680 return LandingPads[N]; 681 } 682 683 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 684 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 685 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 686 LP.BeginLabels.push_back(BeginLabel); 687 LP.EndLabels.push_back(EndLabel); 688 } 689 690 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 691 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 692 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 693 LP.LandingPadLabel = LandingPadLabel; 694 695 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 696 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 697 if (const auto *PF = 698 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 699 getMMI().addPersonality(PF); 700 701 if (LPI->isCleanup()) 702 addCleanup(LandingPad); 703 704 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 705 // correct, but we need to do it this way because of how the DWARF EH 706 // emitter processes the clauses. 707 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 708 Value *Val = LPI->getClause(I - 1); 709 if (LPI->isCatch(I - 1)) { 710 addCatchTypeInfo(LandingPad, 711 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 712 } else { 713 // Add filters in a list. 714 auto *CVal = cast<Constant>(Val); 715 SmallVector<const GlobalValue *, 4> FilterList; 716 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 717 II != IE; ++II) 718 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 719 720 addFilterTypeInfo(LandingPad, FilterList); 721 } 722 } 723 724 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 725 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 726 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 727 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 728 } 729 730 } else { 731 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 732 } 733 734 return LandingPadLabel; 735 } 736 737 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 738 ArrayRef<const GlobalValue *> TyInfo) { 739 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 740 for (unsigned N = TyInfo.size(); N; --N) 741 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 742 } 743 744 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 745 ArrayRef<const GlobalValue *> TyInfo) { 746 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 747 std::vector<unsigned> IdsInFilter(TyInfo.size()); 748 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 749 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 750 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 751 } 752 753 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 754 bool TidyIfNoBeginLabels) { 755 for (unsigned i = 0; i != LandingPads.size(); ) { 756 LandingPadInfo &LandingPad = LandingPads[i]; 757 if (LandingPad.LandingPadLabel && 758 !LandingPad.LandingPadLabel->isDefined() && 759 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 760 LandingPad.LandingPadLabel = nullptr; 761 762 // Special case: we *should* emit LPs with null LP MBB. This indicates 763 // "nounwind" case. 764 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 765 LandingPads.erase(LandingPads.begin() + i); 766 continue; 767 } 768 769 if (TidyIfNoBeginLabels) { 770 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 771 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 772 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 773 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 774 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 775 continue; 776 777 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 778 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 779 --j; 780 --e; 781 } 782 783 // Remove landing pads with no try-ranges. 784 if (LandingPads[i].BeginLabels.empty()) { 785 LandingPads.erase(LandingPads.begin() + i); 786 continue; 787 } 788 } 789 790 // If there is no landing pad, ensure that the list of typeids is empty. 791 // If the only typeid is a cleanup, this is the same as having no typeids. 792 if (!LandingPad.LandingPadBlock || 793 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 794 LandingPad.TypeIds.clear(); 795 ++i; 796 } 797 } 798 799 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 800 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 801 LP.TypeIds.push_back(0); 802 } 803 804 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 805 const Function *Filter, 806 const BlockAddress *RecoverBA) { 807 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 808 SEHHandler Handler; 809 Handler.FilterOrFinally = Filter; 810 Handler.RecoverBA = RecoverBA; 811 LP.SEHHandlers.push_back(Handler); 812 } 813 814 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 815 const Function *Cleanup) { 816 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 817 SEHHandler Handler; 818 Handler.FilterOrFinally = Cleanup; 819 Handler.RecoverBA = nullptr; 820 LP.SEHHandlers.push_back(Handler); 821 } 822 823 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 824 ArrayRef<unsigned> Sites) { 825 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 826 } 827 828 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 829 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 830 if (TypeInfos[i] == TI) return i + 1; 831 832 TypeInfos.push_back(TI); 833 return TypeInfos.size(); 834 } 835 836 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 837 // If the new filter coincides with the tail of an existing filter, then 838 // re-use the existing filter. Folding filters more than this requires 839 // re-ordering filters and/or their elements - probably not worth it. 840 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 841 E = FilterEnds.end(); I != E; ++I) { 842 unsigned i = *I, j = TyIds.size(); 843 844 while (i && j) 845 if (FilterIds[--i] != TyIds[--j]) 846 goto try_next; 847 848 if (!j) 849 // The new filter coincides with range [i, end) of the existing filter. 850 return -(1 + i); 851 852 try_next:; 853 } 854 855 // Add the new filter. 856 int FilterID = -(1 + FilterIds.size()); 857 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 858 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 859 FilterEnds.push_back(FilterIds.size()); 860 FilterIds.push_back(0); // terminator 861 return FilterID; 862 } 863 864 MachineFunction::CallSiteInfoMap::iterator 865 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 866 assert(MI->isCandidateForCallSiteEntry() && 867 "Call site info refers only to call (MI) candidates"); 868 869 if (!Target.Options.EnableDebugEntryValues) 870 return CallSitesInfo.end(); 871 return CallSitesInfo.find(MI); 872 } 873 874 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 875 const MachineInstr *New) { 876 assert(Old->isCandidateForCallSiteEntry() && 877 "Call site info refers only to call (MI) candidates"); 878 879 if (!New->isCandidateForCallSiteEntry()) 880 return eraseCallSiteInfo(Old); 881 882 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 883 if (CSIt == CallSitesInfo.end()) 884 return; 885 886 CallSiteInfo CSInfo = std::move(CSIt->second); 887 CallSitesInfo.erase(CSIt); 888 CallSitesInfo[New] = CSInfo; 889 } 890 891 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 892 assert(MI->isCandidateForCallSiteEntry() && 893 "Call site info refers only to call (MI) candidates"); 894 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI); 895 if (CSIt == CallSitesInfo.end()) 896 return; 897 CallSitesInfo.erase(CSIt); 898 } 899 900 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 901 const MachineInstr *New) { 902 assert(Old->isCandidateForCallSiteEntry() && 903 "Call site info refers only to call (MI) candidates"); 904 905 if (!New->isCandidateForCallSiteEntry()) 906 return eraseCallSiteInfo(Old); 907 908 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 909 if (CSIt == CallSitesInfo.end()) 910 return; 911 912 CallSiteInfo CSInfo = CSIt->second; 913 CallSitesInfo[New] = CSInfo; 914 } 915 916 /// \} 917 918 //===----------------------------------------------------------------------===// 919 // MachineJumpTableInfo implementation 920 //===----------------------------------------------------------------------===// 921 922 /// Return the size of each entry in the jump table. 923 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 924 // The size of a jump table entry is 4 bytes unless the entry is just the 925 // address of a block, in which case it is the pointer size. 926 switch (getEntryKind()) { 927 case MachineJumpTableInfo::EK_BlockAddress: 928 return TD.getPointerSize(); 929 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 930 return 8; 931 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 932 case MachineJumpTableInfo::EK_LabelDifference32: 933 case MachineJumpTableInfo::EK_Custom32: 934 return 4; 935 case MachineJumpTableInfo::EK_Inline: 936 return 0; 937 } 938 llvm_unreachable("Unknown jump table encoding!"); 939 } 940 941 /// Return the alignment of each entry in the jump table. 942 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 943 // The alignment of a jump table entry is the alignment of int32 unless the 944 // entry is just the address of a block, in which case it is the pointer 945 // alignment. 946 switch (getEntryKind()) { 947 case MachineJumpTableInfo::EK_BlockAddress: 948 return TD.getPointerABIAlignment(0).value(); 949 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 950 return TD.getABIIntegerTypeAlignment(64).value(); 951 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 952 case MachineJumpTableInfo::EK_LabelDifference32: 953 case MachineJumpTableInfo::EK_Custom32: 954 return TD.getABIIntegerTypeAlignment(32).value(); 955 case MachineJumpTableInfo::EK_Inline: 956 return 1; 957 } 958 llvm_unreachable("Unknown jump table encoding!"); 959 } 960 961 /// Create a new jump table entry in the jump table info. 962 unsigned MachineJumpTableInfo::createJumpTableIndex( 963 const std::vector<MachineBasicBlock*> &DestBBs) { 964 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 965 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 966 return JumpTables.size()-1; 967 } 968 969 /// If Old is the target of any jump tables, update the jump tables to branch 970 /// to New instead. 971 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 972 MachineBasicBlock *New) { 973 assert(Old != New && "Not making a change?"); 974 bool MadeChange = false; 975 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 976 ReplaceMBBInJumpTable(i, Old, New); 977 return MadeChange; 978 } 979 980 /// If Old is a target of the jump tables, update the jump table to branch to 981 /// New instead. 982 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 983 MachineBasicBlock *Old, 984 MachineBasicBlock *New) { 985 assert(Old != New && "Not making a change?"); 986 bool MadeChange = false; 987 MachineJumpTableEntry &JTE = JumpTables[Idx]; 988 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 989 if (JTE.MBBs[j] == Old) { 990 JTE.MBBs[j] = New; 991 MadeChange = true; 992 } 993 return MadeChange; 994 } 995 996 void MachineJumpTableInfo::print(raw_ostream &OS) const { 997 if (JumpTables.empty()) return; 998 999 OS << "Jump Tables:\n"; 1000 1001 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1002 OS << printJumpTableEntryReference(i) << ':'; 1003 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1004 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1005 if (i != e) 1006 OS << '\n'; 1007 } 1008 1009 OS << '\n'; 1010 } 1011 1012 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1013 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1014 #endif 1015 1016 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1017 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1018 } 1019 1020 //===----------------------------------------------------------------------===// 1021 // MachineConstantPool implementation 1022 //===----------------------------------------------------------------------===// 1023 1024 void MachineConstantPoolValue::anchor() {} 1025 1026 Type *MachineConstantPoolEntry::getType() const { 1027 if (isMachineConstantPoolEntry()) 1028 return Val.MachineCPVal->getType(); 1029 return Val.ConstVal->getType(); 1030 } 1031 1032 bool MachineConstantPoolEntry::needsRelocation() const { 1033 if (isMachineConstantPoolEntry()) 1034 return true; 1035 return Val.ConstVal->needsRelocation(); 1036 } 1037 1038 SectionKind 1039 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1040 if (needsRelocation()) 1041 return SectionKind::getReadOnlyWithRel(); 1042 switch (DL->getTypeAllocSize(getType())) { 1043 case 4: 1044 return SectionKind::getMergeableConst4(); 1045 case 8: 1046 return SectionKind::getMergeableConst8(); 1047 case 16: 1048 return SectionKind::getMergeableConst16(); 1049 case 32: 1050 return SectionKind::getMergeableConst32(); 1051 default: 1052 return SectionKind::getReadOnly(); 1053 } 1054 } 1055 1056 MachineConstantPool::~MachineConstantPool() { 1057 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1058 // so keep track of which we've deleted to avoid double deletions. 1059 DenseSet<MachineConstantPoolValue*> Deleted; 1060 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1061 if (Constants[i].isMachineConstantPoolEntry()) { 1062 Deleted.insert(Constants[i].Val.MachineCPVal); 1063 delete Constants[i].Val.MachineCPVal; 1064 } 1065 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1066 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1067 I != E; ++I) { 1068 if (Deleted.count(*I) == 0) 1069 delete *I; 1070 } 1071 } 1072 1073 /// Test whether the given two constants can be allocated the same constant pool 1074 /// entry. 1075 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1076 const DataLayout &DL) { 1077 // Handle the trivial case quickly. 1078 if (A == B) return true; 1079 1080 // If they have the same type but weren't the same constant, quickly 1081 // reject them. 1082 if (A->getType() == B->getType()) return false; 1083 1084 // We can't handle structs or arrays. 1085 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1086 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1087 return false; 1088 1089 // For now, only support constants with the same size. 1090 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1091 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1092 return false; 1093 1094 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1095 1096 // Try constant folding a bitcast of both instructions to an integer. If we 1097 // get two identical ConstantInt's, then we are good to share them. We use 1098 // the constant folding APIs to do this so that we get the benefit of 1099 // DataLayout. 1100 if (isa<PointerType>(A->getType())) 1101 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1102 const_cast<Constant *>(A), IntTy, DL); 1103 else if (A->getType() != IntTy) 1104 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1105 IntTy, DL); 1106 if (isa<PointerType>(B->getType())) 1107 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1108 const_cast<Constant *>(B), IntTy, DL); 1109 else if (B->getType() != IntTy) 1110 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1111 IntTy, DL); 1112 1113 return A == B; 1114 } 1115 1116 /// Create a new entry in the constant pool or return an existing one. 1117 /// User must specify the log2 of the minimum required alignment for the object. 1118 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1119 unsigned Alignment) { 1120 assert(Alignment && "Alignment must be specified!"); 1121 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1122 1123 // Check to see if we already have this constant. 1124 // 1125 // FIXME, this could be made much more efficient for large constant pools. 1126 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1127 if (!Constants[i].isMachineConstantPoolEntry() && 1128 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1129 if ((unsigned)Constants[i].getAlignment() < Alignment) 1130 Constants[i].Alignment = Alignment; 1131 return i; 1132 } 1133 1134 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1135 return Constants.size()-1; 1136 } 1137 1138 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1139 unsigned Alignment) { 1140 assert(Alignment && "Alignment must be specified!"); 1141 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1142 1143 // Check to see if we already have this constant. 1144 // 1145 // FIXME, this could be made much more efficient for large constant pools. 1146 int Idx = V->getExistingMachineCPValue(this, Alignment); 1147 if (Idx != -1) { 1148 MachineCPVsSharingEntries.insert(V); 1149 return (unsigned)Idx; 1150 } 1151 1152 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1153 return Constants.size()-1; 1154 } 1155 1156 void MachineConstantPool::print(raw_ostream &OS) const { 1157 if (Constants.empty()) return; 1158 1159 OS << "Constant Pool:\n"; 1160 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1161 OS << " cp#" << i << ": "; 1162 if (Constants[i].isMachineConstantPoolEntry()) 1163 Constants[i].Val.MachineCPVal->print(OS); 1164 else 1165 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1166 OS << ", align=" << Constants[i].getAlignment(); 1167 OS << "\n"; 1168 } 1169 } 1170 1171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1172 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1173 #endif 1174