1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/MC/SectionKind.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/DOTGraphTraits.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/GraphWriter.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "codegen" 79 80 static cl::opt<unsigned> 81 AlignAllFunctions("align-all-functions", 82 cl::desc("Force the alignment of all functions."), 83 cl::init(0), cl::Hidden); 84 85 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 86 using P = MachineFunctionProperties::Property; 87 88 switch(Prop) { 89 case P::FailedISel: return "FailedISel"; 90 case P::IsSSA: return "IsSSA"; 91 case P::Legalized: return "Legalized"; 92 case P::NoPHIs: return "NoPHIs"; 93 case P::NoVRegs: return "NoVRegs"; 94 case P::RegBankSelected: return "RegBankSelected"; 95 case P::Selected: return "Selected"; 96 case P::TracksLiveness: return "TracksLiveness"; 97 } 98 llvm_unreachable("Invalid machine function property"); 99 } 100 101 // Pin the vtable to this file. 102 void MachineFunction::Delegate::anchor() {} 103 104 void MachineFunctionProperties::print(raw_ostream &OS) const { 105 const char *Separator = ""; 106 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 107 if (!Properties[I]) 108 continue; 109 OS << Separator << getPropertyName(static_cast<Property>(I)); 110 Separator = ", "; 111 } 112 } 113 114 //===----------------------------------------------------------------------===// 115 // MachineFunction implementation 116 //===----------------------------------------------------------------------===// 117 118 // Out-of-line virtual method. 119 MachineFunctionInfo::~MachineFunctionInfo() = default; 120 121 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 122 MBB->getParent()->DeleteMachineBasicBlock(MBB); 123 } 124 125 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 126 const Function &F) { 127 if (F.hasFnAttribute(Attribute::StackAlignment)) 128 return F.getFnStackAlignment(); 129 return STI->getFrameLowering()->getStackAlignment(); 130 } 131 132 MachineFunction::MachineFunction(const Function &F, 133 const LLVMTargetMachine &Target, 134 const TargetSubtargetInfo &STI, 135 unsigned FunctionNum, MachineModuleInfo &mmi) 136 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 137 FunctionNumber = FunctionNum; 138 init(); 139 } 140 141 void MachineFunction::handleInsertion(MachineInstr &MI) { 142 if (TheDelegate) 143 TheDelegate->MF_HandleInsertion(MI); 144 } 145 146 void MachineFunction::handleRemoval(MachineInstr &MI) { 147 if (TheDelegate) 148 TheDelegate->MF_HandleRemoval(MI); 149 } 150 151 void MachineFunction::init() { 152 // Assume the function starts in SSA form with correct liveness. 153 Properties.set(MachineFunctionProperties::Property::IsSSA); 154 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 155 if (STI->getRegisterInfo()) 156 RegInfo = new (Allocator) MachineRegisterInfo(this); 157 else 158 RegInfo = nullptr; 159 160 MFInfo = nullptr; 161 // We can realign the stack if the target supports it and the user hasn't 162 // explicitly asked us not to. 163 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 164 !F.hasFnAttribute("no-realign-stack"); 165 FrameInfo = new (Allocator) MachineFrameInfo( 166 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 167 /*ForceRealign=*/CanRealignSP && 168 F.hasFnAttribute(Attribute::StackAlignment)); 169 170 if (F.hasFnAttribute(Attribute::StackAlignment)) 171 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 172 173 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 174 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 175 176 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 177 // FIXME: Use Function::optForSize(). 178 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 179 Alignment = std::max(Alignment, 180 STI->getTargetLowering()->getPrefFunctionAlignment()); 181 182 if (AlignAllFunctions) 183 Alignment = AlignAllFunctions; 184 185 JumpTableInfo = nullptr; 186 187 if (isFuncletEHPersonality(classifyEHPersonality( 188 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 189 WinEHInfo = new (Allocator) WinEHFuncInfo(); 190 } 191 192 if (isScopedEHPersonality(classifyEHPersonality( 193 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 194 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 195 } 196 197 assert(Target.isCompatibleDataLayout(getDataLayout()) && 198 "Can't create a MachineFunction using a Module with a " 199 "Target-incompatible DataLayout attached\n"); 200 201 PSVManager = 202 llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 203 getInstrInfo())); 204 } 205 206 MachineFunction::~MachineFunction() { 207 clear(); 208 } 209 210 void MachineFunction::clear() { 211 Properties.reset(); 212 // Don't call destructors on MachineInstr and MachineOperand. All of their 213 // memory comes from the BumpPtrAllocator which is about to be purged. 214 // 215 // Do call MachineBasicBlock destructors, it contains std::vectors. 216 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 217 I->Insts.clearAndLeakNodesUnsafely(); 218 MBBNumbering.clear(); 219 220 InstructionRecycler.clear(Allocator); 221 OperandRecycler.clear(Allocator); 222 BasicBlockRecycler.clear(Allocator); 223 CodeViewAnnotations.clear(); 224 VariableDbgInfos.clear(); 225 if (RegInfo) { 226 RegInfo->~MachineRegisterInfo(); 227 Allocator.Deallocate(RegInfo); 228 } 229 if (MFInfo) { 230 MFInfo->~MachineFunctionInfo(); 231 Allocator.Deallocate(MFInfo); 232 } 233 234 FrameInfo->~MachineFrameInfo(); 235 Allocator.Deallocate(FrameInfo); 236 237 ConstantPool->~MachineConstantPool(); 238 Allocator.Deallocate(ConstantPool); 239 240 if (JumpTableInfo) { 241 JumpTableInfo->~MachineJumpTableInfo(); 242 Allocator.Deallocate(JumpTableInfo); 243 } 244 245 if (WinEHInfo) { 246 WinEHInfo->~WinEHFuncInfo(); 247 Allocator.Deallocate(WinEHInfo); 248 } 249 250 if (WasmEHInfo) { 251 WasmEHInfo->~WasmEHFuncInfo(); 252 Allocator.Deallocate(WasmEHInfo); 253 } 254 } 255 256 const DataLayout &MachineFunction::getDataLayout() const { 257 return F.getParent()->getDataLayout(); 258 } 259 260 /// Get the JumpTableInfo for this function. 261 /// If it does not already exist, allocate one. 262 MachineJumpTableInfo *MachineFunction:: 263 getOrCreateJumpTableInfo(unsigned EntryKind) { 264 if (JumpTableInfo) return JumpTableInfo; 265 266 JumpTableInfo = new (Allocator) 267 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 268 return JumpTableInfo; 269 } 270 271 /// Should we be emitting segmented stack stuff for the function 272 bool MachineFunction::shouldSplitStack() const { 273 return getFunction().hasFnAttribute("split-stack"); 274 } 275 276 /// This discards all of the MachineBasicBlock numbers and recomputes them. 277 /// This guarantees that the MBB numbers are sequential, dense, and match the 278 /// ordering of the blocks within the function. If a specific MachineBasicBlock 279 /// is specified, only that block and those after it are renumbered. 280 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 281 if (empty()) { MBBNumbering.clear(); return; } 282 MachineFunction::iterator MBBI, E = end(); 283 if (MBB == nullptr) 284 MBBI = begin(); 285 else 286 MBBI = MBB->getIterator(); 287 288 // Figure out the block number this should have. 289 unsigned BlockNo = 0; 290 if (MBBI != begin()) 291 BlockNo = std::prev(MBBI)->getNumber() + 1; 292 293 for (; MBBI != E; ++MBBI, ++BlockNo) { 294 if (MBBI->getNumber() != (int)BlockNo) { 295 // Remove use of the old number. 296 if (MBBI->getNumber() != -1) { 297 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 298 "MBB number mismatch!"); 299 MBBNumbering[MBBI->getNumber()] = nullptr; 300 } 301 302 // If BlockNo is already taken, set that block's number to -1. 303 if (MBBNumbering[BlockNo]) 304 MBBNumbering[BlockNo]->setNumber(-1); 305 306 MBBNumbering[BlockNo] = &*MBBI; 307 MBBI->setNumber(BlockNo); 308 } 309 } 310 311 // Okay, all the blocks are renumbered. If we have compactified the block 312 // numbering, shrink MBBNumbering now. 313 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 314 MBBNumbering.resize(BlockNo); 315 } 316 317 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 318 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 319 const DebugLoc &DL, 320 bool NoImp) { 321 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 322 MachineInstr(*this, MCID, DL, NoImp); 323 } 324 325 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 326 /// identical in all ways except the instruction has no parent, prev, or next. 327 MachineInstr * 328 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 329 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 330 MachineInstr(*this, *Orig); 331 } 332 333 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 334 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 335 MachineInstr *FirstClone = nullptr; 336 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 337 while (true) { 338 MachineInstr *Cloned = CloneMachineInstr(&*I); 339 MBB.insert(InsertBefore, Cloned); 340 if (FirstClone == nullptr) { 341 FirstClone = Cloned; 342 } else { 343 Cloned->bundleWithPred(); 344 } 345 346 if (!I->isBundledWithSucc()) 347 break; 348 ++I; 349 } 350 return *FirstClone; 351 } 352 353 /// Delete the given MachineInstr. 354 /// 355 /// This function also serves as the MachineInstr destructor - the real 356 /// ~MachineInstr() destructor must be empty. 357 void 358 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 359 // Strip it for parts. The operand array and the MI object itself are 360 // independently recyclable. 361 if (MI->Operands) 362 deallocateOperandArray(MI->CapOperands, MI->Operands); 363 // Don't call ~MachineInstr() which must be trivial anyway because 364 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 365 // destructors. 366 InstructionRecycler.Deallocate(Allocator, MI); 367 } 368 369 /// Allocate a new MachineBasicBlock. Use this instead of 370 /// `new MachineBasicBlock'. 371 MachineBasicBlock * 372 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 373 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 374 MachineBasicBlock(*this, bb); 375 } 376 377 /// Delete the given MachineBasicBlock. 378 void 379 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 380 assert(MBB->getParent() == this && "MBB parent mismatch!"); 381 MBB->~MachineBasicBlock(); 382 BasicBlockRecycler.Deallocate(Allocator, MBB); 383 } 384 385 MachineMemOperand *MachineFunction::getMachineMemOperand( 386 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 387 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 388 SyncScope::ID SSID, AtomicOrdering Ordering, 389 AtomicOrdering FailureOrdering) { 390 return new (Allocator) 391 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 392 SSID, Ordering, FailureOrdering); 393 } 394 395 MachineMemOperand * 396 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 397 int64_t Offset, uint64_t Size) { 398 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 399 400 // If there is no pointer value, the offset isn't tracked so we need to adjust 401 // the base alignment. 402 unsigned Align = PtrInfo.V.isNull() 403 ? MinAlign(MMO->getBaseAlignment(), Offset) 404 : MMO->getBaseAlignment(); 405 406 return new (Allocator) 407 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 408 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 409 MMO->getOrdering(), MMO->getFailureOrdering()); 410 } 411 412 MachineMemOperand * 413 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 414 const AAMDNodes &AAInfo) { 415 MachinePointerInfo MPI = MMO->getValue() ? 416 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 417 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 418 419 return new (Allocator) 420 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 421 MMO->getBaseAlignment(), AAInfo, 422 MMO->getRanges(), MMO->getSyncScopeID(), 423 MMO->getOrdering(), MMO->getFailureOrdering()); 424 } 425 426 MachineInstr::ExtraInfo * 427 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs, 428 MCSymbol *PreInstrSymbol, 429 MCSymbol *PostInstrSymbol) { 430 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 431 PostInstrSymbol); 432 } 433 434 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 435 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 436 llvm::copy(Name, Dest); 437 Dest[Name.size()] = 0; 438 return Dest; 439 } 440 441 uint32_t *MachineFunction::allocateRegMask() { 442 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 443 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 444 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 445 memset(Mask, 0, Size * sizeof(Mask[0])); 446 return Mask; 447 } 448 449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 450 LLVM_DUMP_METHOD void MachineFunction::dump() const { 451 print(dbgs()); 452 } 453 #endif 454 455 StringRef MachineFunction::getName() const { 456 return getFunction().getName(); 457 } 458 459 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 460 OS << "# Machine code for function " << getName() << ": "; 461 getProperties().print(OS); 462 OS << '\n'; 463 464 // Print Frame Information 465 FrameInfo->print(*this, OS); 466 467 // Print JumpTable Information 468 if (JumpTableInfo) 469 JumpTableInfo->print(OS); 470 471 // Print Constant Pool 472 ConstantPool->print(OS); 473 474 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 475 476 if (RegInfo && !RegInfo->livein_empty()) { 477 OS << "Function Live Ins: "; 478 for (MachineRegisterInfo::livein_iterator 479 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 480 OS << printReg(I->first, TRI); 481 if (I->second) 482 OS << " in " << printReg(I->second, TRI); 483 if (std::next(I) != E) 484 OS << ", "; 485 } 486 OS << '\n'; 487 } 488 489 ModuleSlotTracker MST(getFunction().getParent()); 490 MST.incorporateFunction(getFunction()); 491 for (const auto &BB : *this) { 492 OS << '\n'; 493 // If we print the whole function, print it at its most verbose level. 494 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 495 } 496 497 OS << "\n# End machine code for function " << getName() << ".\n\n"; 498 } 499 500 namespace llvm { 501 502 template<> 503 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 504 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 505 506 static std::string getGraphName(const MachineFunction *F) { 507 return ("CFG for '" + F->getName() + "' function").str(); 508 } 509 510 std::string getNodeLabel(const MachineBasicBlock *Node, 511 const MachineFunction *Graph) { 512 std::string OutStr; 513 { 514 raw_string_ostream OSS(OutStr); 515 516 if (isSimple()) { 517 OSS << printMBBReference(*Node); 518 if (const BasicBlock *BB = Node->getBasicBlock()) 519 OSS << ": " << BB->getName(); 520 } else 521 Node->print(OSS); 522 } 523 524 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 525 526 // Process string output to make it nicer... 527 for (unsigned i = 0; i != OutStr.length(); ++i) 528 if (OutStr[i] == '\n') { // Left justify 529 OutStr[i] = '\\'; 530 OutStr.insert(OutStr.begin()+i+1, 'l'); 531 } 532 return OutStr; 533 } 534 }; 535 536 } // end namespace llvm 537 538 void MachineFunction::viewCFG() const 539 { 540 #ifndef NDEBUG 541 ViewGraph(this, "mf" + getName()); 542 #else 543 errs() << "MachineFunction::viewCFG is only available in debug builds on " 544 << "systems with Graphviz or gv!\n"; 545 #endif // NDEBUG 546 } 547 548 void MachineFunction::viewCFGOnly() const 549 { 550 #ifndef NDEBUG 551 ViewGraph(this, "mf" + getName(), true); 552 #else 553 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 554 << "systems with Graphviz or gv!\n"; 555 #endif // NDEBUG 556 } 557 558 /// Add the specified physical register as a live-in value and 559 /// create a corresponding virtual register for it. 560 unsigned MachineFunction::addLiveIn(unsigned PReg, 561 const TargetRegisterClass *RC) { 562 MachineRegisterInfo &MRI = getRegInfo(); 563 unsigned VReg = MRI.getLiveInVirtReg(PReg); 564 if (VReg) { 565 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 566 (void)VRegRC; 567 // A physical register can be added several times. 568 // Between two calls, the register class of the related virtual register 569 // may have been constrained to match some operation constraints. 570 // In that case, check that the current register class includes the 571 // physical register and is a sub class of the specified RC. 572 assert((VRegRC == RC || (VRegRC->contains(PReg) && 573 RC->hasSubClassEq(VRegRC))) && 574 "Register class mismatch!"); 575 return VReg; 576 } 577 VReg = MRI.createVirtualRegister(RC); 578 MRI.addLiveIn(PReg, VReg); 579 return VReg; 580 } 581 582 /// Return the MCSymbol for the specified non-empty jump table. 583 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 584 /// normal 'L' label is returned. 585 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 586 bool isLinkerPrivate) const { 587 const DataLayout &DL = getDataLayout(); 588 assert(JumpTableInfo && "No jump tables"); 589 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 590 591 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 592 : DL.getPrivateGlobalPrefix(); 593 SmallString<60> Name; 594 raw_svector_ostream(Name) 595 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 596 return Ctx.getOrCreateSymbol(Name); 597 } 598 599 /// Return a function-local symbol to represent the PIC base. 600 MCSymbol *MachineFunction::getPICBaseSymbol() const { 601 const DataLayout &DL = getDataLayout(); 602 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 603 Twine(getFunctionNumber()) + "$pb"); 604 } 605 606 /// \name Exception Handling 607 /// \{ 608 609 LandingPadInfo & 610 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 611 unsigned N = LandingPads.size(); 612 for (unsigned i = 0; i < N; ++i) { 613 LandingPadInfo &LP = LandingPads[i]; 614 if (LP.LandingPadBlock == LandingPad) 615 return LP; 616 } 617 618 LandingPads.push_back(LandingPadInfo(LandingPad)); 619 return LandingPads[N]; 620 } 621 622 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 623 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 624 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 625 LP.BeginLabels.push_back(BeginLabel); 626 LP.EndLabels.push_back(EndLabel); 627 } 628 629 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 630 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 631 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 632 LP.LandingPadLabel = LandingPadLabel; 633 634 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 635 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 636 if (const auto *PF = 637 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 638 getMMI().addPersonality(PF); 639 640 if (LPI->isCleanup()) 641 addCleanup(LandingPad); 642 643 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 644 // correct, but we need to do it this way because of how the DWARF EH 645 // emitter processes the clauses. 646 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 647 Value *Val = LPI->getClause(I - 1); 648 if (LPI->isCatch(I - 1)) { 649 addCatchTypeInfo(LandingPad, 650 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 651 } else { 652 // Add filters in a list. 653 auto *CVal = cast<Constant>(Val); 654 SmallVector<const GlobalValue *, 4> FilterList; 655 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 656 II != IE; ++II) 657 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 658 659 addFilterTypeInfo(LandingPad, FilterList); 660 } 661 } 662 663 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 664 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 665 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 666 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 667 } 668 669 } else { 670 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 671 } 672 673 return LandingPadLabel; 674 } 675 676 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 677 ArrayRef<const GlobalValue *> TyInfo) { 678 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 679 for (unsigned N = TyInfo.size(); N; --N) 680 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 681 } 682 683 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 684 ArrayRef<const GlobalValue *> TyInfo) { 685 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 686 std::vector<unsigned> IdsInFilter(TyInfo.size()); 687 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 688 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 689 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 690 } 691 692 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 693 bool TidyIfNoBeginLabels) { 694 for (unsigned i = 0; i != LandingPads.size(); ) { 695 LandingPadInfo &LandingPad = LandingPads[i]; 696 if (LandingPad.LandingPadLabel && 697 !LandingPad.LandingPadLabel->isDefined() && 698 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 699 LandingPad.LandingPadLabel = nullptr; 700 701 // Special case: we *should* emit LPs with null LP MBB. This indicates 702 // "nounwind" case. 703 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 704 LandingPads.erase(LandingPads.begin() + i); 705 continue; 706 } 707 708 if (TidyIfNoBeginLabels) { 709 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 710 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 711 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 712 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 713 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 714 continue; 715 716 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 717 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 718 --j; 719 --e; 720 } 721 722 // Remove landing pads with no try-ranges. 723 if (LandingPads[i].BeginLabels.empty()) { 724 LandingPads.erase(LandingPads.begin() + i); 725 continue; 726 } 727 } 728 729 // If there is no landing pad, ensure that the list of typeids is empty. 730 // If the only typeid is a cleanup, this is the same as having no typeids. 731 if (!LandingPad.LandingPadBlock || 732 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 733 LandingPad.TypeIds.clear(); 734 ++i; 735 } 736 } 737 738 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 739 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 740 LP.TypeIds.push_back(0); 741 } 742 743 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 744 const Function *Filter, 745 const BlockAddress *RecoverBA) { 746 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 747 SEHHandler Handler; 748 Handler.FilterOrFinally = Filter; 749 Handler.RecoverBA = RecoverBA; 750 LP.SEHHandlers.push_back(Handler); 751 } 752 753 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 754 const Function *Cleanup) { 755 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 756 SEHHandler Handler; 757 Handler.FilterOrFinally = Cleanup; 758 Handler.RecoverBA = nullptr; 759 LP.SEHHandlers.push_back(Handler); 760 } 761 762 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 763 ArrayRef<unsigned> Sites) { 764 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 765 } 766 767 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 768 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 769 if (TypeInfos[i] == TI) return i + 1; 770 771 TypeInfos.push_back(TI); 772 return TypeInfos.size(); 773 } 774 775 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 776 // If the new filter coincides with the tail of an existing filter, then 777 // re-use the existing filter. Folding filters more than this requires 778 // re-ordering filters and/or their elements - probably not worth it. 779 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 780 E = FilterEnds.end(); I != E; ++I) { 781 unsigned i = *I, j = TyIds.size(); 782 783 while (i && j) 784 if (FilterIds[--i] != TyIds[--j]) 785 goto try_next; 786 787 if (!j) 788 // The new filter coincides with range [i, end) of the existing filter. 789 return -(1 + i); 790 791 try_next:; 792 } 793 794 // Add the new filter. 795 int FilterID = -(1 + FilterIds.size()); 796 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 797 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 798 FilterEnds.push_back(FilterIds.size()); 799 FilterIds.push_back(0); // terminator 800 return FilterID; 801 } 802 803 /// \} 804 805 //===----------------------------------------------------------------------===// 806 // MachineJumpTableInfo implementation 807 //===----------------------------------------------------------------------===// 808 809 /// Return the size of each entry in the jump table. 810 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 811 // The size of a jump table entry is 4 bytes unless the entry is just the 812 // address of a block, in which case it is the pointer size. 813 switch (getEntryKind()) { 814 case MachineJumpTableInfo::EK_BlockAddress: 815 return TD.getPointerSize(); 816 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 817 return 8; 818 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 819 case MachineJumpTableInfo::EK_LabelDifference32: 820 case MachineJumpTableInfo::EK_Custom32: 821 return 4; 822 case MachineJumpTableInfo::EK_Inline: 823 return 0; 824 } 825 llvm_unreachable("Unknown jump table encoding!"); 826 } 827 828 /// Return the alignment of each entry in the jump table. 829 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 830 // The alignment of a jump table entry is the alignment of int32 unless the 831 // entry is just the address of a block, in which case it is the pointer 832 // alignment. 833 switch (getEntryKind()) { 834 case MachineJumpTableInfo::EK_BlockAddress: 835 return TD.getPointerABIAlignment(0); 836 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 837 return TD.getABIIntegerTypeAlignment(64); 838 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 839 case MachineJumpTableInfo::EK_LabelDifference32: 840 case MachineJumpTableInfo::EK_Custom32: 841 return TD.getABIIntegerTypeAlignment(32); 842 case MachineJumpTableInfo::EK_Inline: 843 return 1; 844 } 845 llvm_unreachable("Unknown jump table encoding!"); 846 } 847 848 /// Create a new jump table entry in the jump table info. 849 unsigned MachineJumpTableInfo::createJumpTableIndex( 850 const std::vector<MachineBasicBlock*> &DestBBs) { 851 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 852 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 853 return JumpTables.size()-1; 854 } 855 856 /// If Old is the target of any jump tables, update the jump tables to branch 857 /// to New instead. 858 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 859 MachineBasicBlock *New) { 860 assert(Old != New && "Not making a change?"); 861 bool MadeChange = false; 862 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 863 ReplaceMBBInJumpTable(i, Old, New); 864 return MadeChange; 865 } 866 867 /// If Old is a target of the jump tables, update the jump table to branch to 868 /// New instead. 869 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 870 MachineBasicBlock *Old, 871 MachineBasicBlock *New) { 872 assert(Old != New && "Not making a change?"); 873 bool MadeChange = false; 874 MachineJumpTableEntry &JTE = JumpTables[Idx]; 875 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 876 if (JTE.MBBs[j] == Old) { 877 JTE.MBBs[j] = New; 878 MadeChange = true; 879 } 880 return MadeChange; 881 } 882 883 void MachineJumpTableInfo::print(raw_ostream &OS) const { 884 if (JumpTables.empty()) return; 885 886 OS << "Jump Tables:\n"; 887 888 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 889 OS << printJumpTableEntryReference(i) << ": "; 890 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 891 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 892 } 893 894 OS << '\n'; 895 } 896 897 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 898 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 899 #endif 900 901 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 902 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 903 } 904 905 //===----------------------------------------------------------------------===// 906 // MachineConstantPool implementation 907 //===----------------------------------------------------------------------===// 908 909 void MachineConstantPoolValue::anchor() {} 910 911 Type *MachineConstantPoolEntry::getType() const { 912 if (isMachineConstantPoolEntry()) 913 return Val.MachineCPVal->getType(); 914 return Val.ConstVal->getType(); 915 } 916 917 bool MachineConstantPoolEntry::needsRelocation() const { 918 if (isMachineConstantPoolEntry()) 919 return true; 920 return Val.ConstVal->needsRelocation(); 921 } 922 923 SectionKind 924 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 925 if (needsRelocation()) 926 return SectionKind::getReadOnlyWithRel(); 927 switch (DL->getTypeAllocSize(getType())) { 928 case 4: 929 return SectionKind::getMergeableConst4(); 930 case 8: 931 return SectionKind::getMergeableConst8(); 932 case 16: 933 return SectionKind::getMergeableConst16(); 934 case 32: 935 return SectionKind::getMergeableConst32(); 936 default: 937 return SectionKind::getReadOnly(); 938 } 939 } 940 941 MachineConstantPool::~MachineConstantPool() { 942 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 943 // so keep track of which we've deleted to avoid double deletions. 944 DenseSet<MachineConstantPoolValue*> Deleted; 945 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 946 if (Constants[i].isMachineConstantPoolEntry()) { 947 Deleted.insert(Constants[i].Val.MachineCPVal); 948 delete Constants[i].Val.MachineCPVal; 949 } 950 for (DenseSet<MachineConstantPoolValue*>::iterator I = 951 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 952 I != E; ++I) { 953 if (Deleted.count(*I) == 0) 954 delete *I; 955 } 956 } 957 958 /// Test whether the given two constants can be allocated the same constant pool 959 /// entry. 960 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 961 const DataLayout &DL) { 962 // Handle the trivial case quickly. 963 if (A == B) return true; 964 965 // If they have the same type but weren't the same constant, quickly 966 // reject them. 967 if (A->getType() == B->getType()) return false; 968 969 // We can't handle structs or arrays. 970 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 971 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 972 return false; 973 974 // For now, only support constants with the same size. 975 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 976 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 977 return false; 978 979 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 980 981 // Try constant folding a bitcast of both instructions to an integer. If we 982 // get two identical ConstantInt's, then we are good to share them. We use 983 // the constant folding APIs to do this so that we get the benefit of 984 // DataLayout. 985 if (isa<PointerType>(A->getType())) 986 A = ConstantFoldCastOperand(Instruction::PtrToInt, 987 const_cast<Constant *>(A), IntTy, DL); 988 else if (A->getType() != IntTy) 989 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 990 IntTy, DL); 991 if (isa<PointerType>(B->getType())) 992 B = ConstantFoldCastOperand(Instruction::PtrToInt, 993 const_cast<Constant *>(B), IntTy, DL); 994 else if (B->getType() != IntTy) 995 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 996 IntTy, DL); 997 998 return A == B; 999 } 1000 1001 /// Create a new entry in the constant pool or return an existing one. 1002 /// User must specify the log2 of the minimum required alignment for the object. 1003 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1004 unsigned Alignment) { 1005 assert(Alignment && "Alignment must be specified!"); 1006 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1007 1008 // Check to see if we already have this constant. 1009 // 1010 // FIXME, this could be made much more efficient for large constant pools. 1011 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1012 if (!Constants[i].isMachineConstantPoolEntry() && 1013 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1014 if ((unsigned)Constants[i].getAlignment() < Alignment) 1015 Constants[i].Alignment = Alignment; 1016 return i; 1017 } 1018 1019 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1020 return Constants.size()-1; 1021 } 1022 1023 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1024 unsigned Alignment) { 1025 assert(Alignment && "Alignment must be specified!"); 1026 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1027 1028 // Check to see if we already have this constant. 1029 // 1030 // FIXME, this could be made much more efficient for large constant pools. 1031 int Idx = V->getExistingMachineCPValue(this, Alignment); 1032 if (Idx != -1) { 1033 MachineCPVsSharingEntries.insert(V); 1034 return (unsigned)Idx; 1035 } 1036 1037 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1038 return Constants.size()-1; 1039 } 1040 1041 void MachineConstantPool::print(raw_ostream &OS) const { 1042 if (Constants.empty()) return; 1043 1044 OS << "Constant Pool:\n"; 1045 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1046 OS << " cp#" << i << ": "; 1047 if (Constants[i].isMachineConstantPoolEntry()) 1048 Constants[i].Val.MachineCPVal->print(OS); 1049 else 1050 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1051 OS << ", align=" << Constants[i].getAlignment(); 1052 OS << "\n"; 1053 } 1054 } 1055 1056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1057 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1058 #endif 1059