xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 8db2001d52444e8e24197dde160b8ad82ea1d7c9)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/DOTGraphTraits.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "codegen"
79 
80 static cl::opt<unsigned>
81 AlignAllFunctions("align-all-functions",
82                   cl::desc("Force the alignment of all functions."),
83                   cl::init(0), cl::Hidden);
84 
85 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
86   using P = MachineFunctionProperties::Property;
87 
88   switch(Prop) {
89   case P::FailedISel: return "FailedISel";
90   case P::IsSSA: return "IsSSA";
91   case P::Legalized: return "Legalized";
92   case P::NoPHIs: return "NoPHIs";
93   case P::NoVRegs: return "NoVRegs";
94   case P::RegBankSelected: return "RegBankSelected";
95   case P::Selected: return "Selected";
96   case P::TracksLiveness: return "TracksLiveness";
97   }
98   llvm_unreachable("Invalid machine function property");
99 }
100 
101 // Pin the vtable to this file.
102 void MachineFunction::Delegate::anchor() {}
103 
104 void MachineFunctionProperties::print(raw_ostream &OS) const {
105   const char *Separator = "";
106   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
107     if (!Properties[I])
108       continue;
109     OS << Separator << getPropertyName(static_cast<Property>(I));
110     Separator = ", ";
111   }
112 }
113 
114 //===----------------------------------------------------------------------===//
115 // MachineFunction implementation
116 //===----------------------------------------------------------------------===//
117 
118 // Out-of-line virtual method.
119 MachineFunctionInfo::~MachineFunctionInfo() = default;
120 
121 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
122   MBB->getParent()->DeleteMachineBasicBlock(MBB);
123 }
124 
125 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
126                                            const Function &F) {
127   if (F.hasFnAttribute(Attribute::StackAlignment))
128     return F.getFnStackAlignment();
129   return STI->getFrameLowering()->getStackAlignment();
130 }
131 
132 MachineFunction::MachineFunction(const Function &F,
133                                  const LLVMTargetMachine &Target,
134                                  const TargetSubtargetInfo &STI,
135                                  unsigned FunctionNum, MachineModuleInfo &mmi)
136     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
137   FunctionNumber = FunctionNum;
138   init();
139 }
140 
141 void MachineFunction::handleInsertion(MachineInstr &MI) {
142   if (TheDelegate)
143     TheDelegate->MF_HandleInsertion(MI);
144 }
145 
146 void MachineFunction::handleRemoval(MachineInstr &MI) {
147   if (TheDelegate)
148     TheDelegate->MF_HandleRemoval(MI);
149 }
150 
151 void MachineFunction::init() {
152   // Assume the function starts in SSA form with correct liveness.
153   Properties.set(MachineFunctionProperties::Property::IsSSA);
154   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
155   if (STI->getRegisterInfo())
156     RegInfo = new (Allocator) MachineRegisterInfo(this);
157   else
158     RegInfo = nullptr;
159 
160   MFInfo = nullptr;
161   // We can realign the stack if the target supports it and the user hasn't
162   // explicitly asked us not to.
163   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
164                       !F.hasFnAttribute("no-realign-stack");
165   FrameInfo = new (Allocator) MachineFrameInfo(
166       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
167       /*ForceRealign=*/CanRealignSP &&
168           F.hasFnAttribute(Attribute::StackAlignment));
169 
170   if (F.hasFnAttribute(Attribute::StackAlignment))
171     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
172 
173   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
174   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
175 
176   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
177   // FIXME: Use Function::optForSize().
178   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
179     Alignment = std::max(Alignment,
180                          STI->getTargetLowering()->getPrefFunctionAlignment());
181 
182   if (AlignAllFunctions)
183     Alignment = AlignAllFunctions;
184 
185   JumpTableInfo = nullptr;
186 
187   if (isFuncletEHPersonality(classifyEHPersonality(
188           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
189     WinEHInfo = new (Allocator) WinEHFuncInfo();
190   }
191 
192   if (isScopedEHPersonality(classifyEHPersonality(
193           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
194     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
195   }
196 
197   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
198          "Can't create a MachineFunction using a Module with a "
199          "Target-incompatible DataLayout attached\n");
200 
201   PSVManager =
202     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
203                                                   getInstrInfo()));
204 }
205 
206 MachineFunction::~MachineFunction() {
207   clear();
208 }
209 
210 void MachineFunction::clear() {
211   Properties.reset();
212   // Don't call destructors on MachineInstr and MachineOperand. All of their
213   // memory comes from the BumpPtrAllocator which is about to be purged.
214   //
215   // Do call MachineBasicBlock destructors, it contains std::vectors.
216   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
217     I->Insts.clearAndLeakNodesUnsafely();
218   MBBNumbering.clear();
219 
220   InstructionRecycler.clear(Allocator);
221   OperandRecycler.clear(Allocator);
222   BasicBlockRecycler.clear(Allocator);
223   CodeViewAnnotations.clear();
224   VariableDbgInfos.clear();
225   if (RegInfo) {
226     RegInfo->~MachineRegisterInfo();
227     Allocator.Deallocate(RegInfo);
228   }
229   if (MFInfo) {
230     MFInfo->~MachineFunctionInfo();
231     Allocator.Deallocate(MFInfo);
232   }
233 
234   FrameInfo->~MachineFrameInfo();
235   Allocator.Deallocate(FrameInfo);
236 
237   ConstantPool->~MachineConstantPool();
238   Allocator.Deallocate(ConstantPool);
239 
240   if (JumpTableInfo) {
241     JumpTableInfo->~MachineJumpTableInfo();
242     Allocator.Deallocate(JumpTableInfo);
243   }
244 
245   if (WinEHInfo) {
246     WinEHInfo->~WinEHFuncInfo();
247     Allocator.Deallocate(WinEHInfo);
248   }
249 
250   if (WasmEHInfo) {
251     WasmEHInfo->~WasmEHFuncInfo();
252     Allocator.Deallocate(WasmEHInfo);
253   }
254 }
255 
256 const DataLayout &MachineFunction::getDataLayout() const {
257   return F.getParent()->getDataLayout();
258 }
259 
260 /// Get the JumpTableInfo for this function.
261 /// If it does not already exist, allocate one.
262 MachineJumpTableInfo *MachineFunction::
263 getOrCreateJumpTableInfo(unsigned EntryKind) {
264   if (JumpTableInfo) return JumpTableInfo;
265 
266   JumpTableInfo = new (Allocator)
267     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
268   return JumpTableInfo;
269 }
270 
271 /// Should we be emitting segmented stack stuff for the function
272 bool MachineFunction::shouldSplitStack() const {
273   return getFunction().hasFnAttribute("split-stack");
274 }
275 
276 /// This discards all of the MachineBasicBlock numbers and recomputes them.
277 /// This guarantees that the MBB numbers are sequential, dense, and match the
278 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
279 /// is specified, only that block and those after it are renumbered.
280 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
281   if (empty()) { MBBNumbering.clear(); return; }
282   MachineFunction::iterator MBBI, E = end();
283   if (MBB == nullptr)
284     MBBI = begin();
285   else
286     MBBI = MBB->getIterator();
287 
288   // Figure out the block number this should have.
289   unsigned BlockNo = 0;
290   if (MBBI != begin())
291     BlockNo = std::prev(MBBI)->getNumber() + 1;
292 
293   for (; MBBI != E; ++MBBI, ++BlockNo) {
294     if (MBBI->getNumber() != (int)BlockNo) {
295       // Remove use of the old number.
296       if (MBBI->getNumber() != -1) {
297         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
298                "MBB number mismatch!");
299         MBBNumbering[MBBI->getNumber()] = nullptr;
300       }
301 
302       // If BlockNo is already taken, set that block's number to -1.
303       if (MBBNumbering[BlockNo])
304         MBBNumbering[BlockNo]->setNumber(-1);
305 
306       MBBNumbering[BlockNo] = &*MBBI;
307       MBBI->setNumber(BlockNo);
308     }
309   }
310 
311   // Okay, all the blocks are renumbered.  If we have compactified the block
312   // numbering, shrink MBBNumbering now.
313   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
314   MBBNumbering.resize(BlockNo);
315 }
316 
317 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
318 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
319                                                   const DebugLoc &DL,
320                                                   bool NoImp) {
321   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
322     MachineInstr(*this, MCID, DL, NoImp);
323 }
324 
325 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
326 /// identical in all ways except the instruction has no parent, prev, or next.
327 MachineInstr *
328 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
329   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
330              MachineInstr(*this, *Orig);
331 }
332 
333 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
334     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
335   MachineInstr *FirstClone = nullptr;
336   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
337   while (true) {
338     MachineInstr *Cloned = CloneMachineInstr(&*I);
339     MBB.insert(InsertBefore, Cloned);
340     if (FirstClone == nullptr) {
341       FirstClone = Cloned;
342     } else {
343       Cloned->bundleWithPred();
344     }
345 
346     if (!I->isBundledWithSucc())
347       break;
348     ++I;
349   }
350   return *FirstClone;
351 }
352 
353 /// Delete the given MachineInstr.
354 ///
355 /// This function also serves as the MachineInstr destructor - the real
356 /// ~MachineInstr() destructor must be empty.
357 void
358 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
359   // Strip it for parts. The operand array and the MI object itself are
360   // independently recyclable.
361   if (MI->Operands)
362     deallocateOperandArray(MI->CapOperands, MI->Operands);
363   // Don't call ~MachineInstr() which must be trivial anyway because
364   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
365   // destructors.
366   InstructionRecycler.Deallocate(Allocator, MI);
367 }
368 
369 /// Allocate a new MachineBasicBlock. Use this instead of
370 /// `new MachineBasicBlock'.
371 MachineBasicBlock *
372 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
373   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
374              MachineBasicBlock(*this, bb);
375 }
376 
377 /// Delete the given MachineBasicBlock.
378 void
379 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
380   assert(MBB->getParent() == this && "MBB parent mismatch!");
381   MBB->~MachineBasicBlock();
382   BasicBlockRecycler.Deallocate(Allocator, MBB);
383 }
384 
385 MachineMemOperand *MachineFunction::getMachineMemOperand(
386     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
387     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
388     SyncScope::ID SSID, AtomicOrdering Ordering,
389     AtomicOrdering FailureOrdering) {
390   return new (Allocator)
391       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
392                         SSID, Ordering, FailureOrdering);
393 }
394 
395 MachineMemOperand *
396 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
397                                       int64_t Offset, uint64_t Size) {
398   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
399 
400   // If there is no pointer value, the offset isn't tracked so we need to adjust
401   // the base alignment.
402   unsigned Align = PtrInfo.V.isNull()
403                        ? MinAlign(MMO->getBaseAlignment(), Offset)
404                        : MMO->getBaseAlignment();
405 
406   return new (Allocator)
407       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
408                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
409                         MMO->getOrdering(), MMO->getFailureOrdering());
410 }
411 
412 MachineMemOperand *
413 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
414                                       const AAMDNodes &AAInfo) {
415   MachinePointerInfo MPI = MMO->getValue() ?
416              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
417              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
418 
419   return new (Allocator)
420              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
421                                MMO->getBaseAlignment(), AAInfo,
422                                MMO->getRanges(), MMO->getSyncScopeID(),
423                                MMO->getOrdering(), MMO->getFailureOrdering());
424 }
425 
426 MachineInstr::ExtraInfo *
427 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
428                                    MCSymbol *PreInstrSymbol,
429                                    MCSymbol *PostInstrSymbol) {
430   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
431                                          PostInstrSymbol);
432 }
433 
434 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
435   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
436   llvm::copy(Name, Dest);
437   Dest[Name.size()] = 0;
438   return Dest;
439 }
440 
441 uint32_t *MachineFunction::allocateRegMask() {
442   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
443   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
444   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
445   memset(Mask, 0, Size * sizeof(Mask[0]));
446   return Mask;
447 }
448 
449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
450 LLVM_DUMP_METHOD void MachineFunction::dump() const {
451   print(dbgs());
452 }
453 #endif
454 
455 StringRef MachineFunction::getName() const {
456   return getFunction().getName();
457 }
458 
459 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
460   OS << "# Machine code for function " << getName() << ": ";
461   getProperties().print(OS);
462   OS << '\n';
463 
464   // Print Frame Information
465   FrameInfo->print(*this, OS);
466 
467   // Print JumpTable Information
468   if (JumpTableInfo)
469     JumpTableInfo->print(OS);
470 
471   // Print Constant Pool
472   ConstantPool->print(OS);
473 
474   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
475 
476   if (RegInfo && !RegInfo->livein_empty()) {
477     OS << "Function Live Ins: ";
478     for (MachineRegisterInfo::livein_iterator
479          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
480       OS << printReg(I->first, TRI);
481       if (I->second)
482         OS << " in " << printReg(I->second, TRI);
483       if (std::next(I) != E)
484         OS << ", ";
485     }
486     OS << '\n';
487   }
488 
489   ModuleSlotTracker MST(getFunction().getParent());
490   MST.incorporateFunction(getFunction());
491   for (const auto &BB : *this) {
492     OS << '\n';
493     // If we print the whole function, print it at its most verbose level.
494     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
495   }
496 
497   OS << "\n# End machine code for function " << getName() << ".\n\n";
498 }
499 
500 namespace llvm {
501 
502   template<>
503   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
504     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
505 
506     static std::string getGraphName(const MachineFunction *F) {
507       return ("CFG for '" + F->getName() + "' function").str();
508     }
509 
510     std::string getNodeLabel(const MachineBasicBlock *Node,
511                              const MachineFunction *Graph) {
512       std::string OutStr;
513       {
514         raw_string_ostream OSS(OutStr);
515 
516         if (isSimple()) {
517           OSS << printMBBReference(*Node);
518           if (const BasicBlock *BB = Node->getBasicBlock())
519             OSS << ": " << BB->getName();
520         } else
521           Node->print(OSS);
522       }
523 
524       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
525 
526       // Process string output to make it nicer...
527       for (unsigned i = 0; i != OutStr.length(); ++i)
528         if (OutStr[i] == '\n') {                            // Left justify
529           OutStr[i] = '\\';
530           OutStr.insert(OutStr.begin()+i+1, 'l');
531         }
532       return OutStr;
533     }
534   };
535 
536 } // end namespace llvm
537 
538 void MachineFunction::viewCFG() const
539 {
540 #ifndef NDEBUG
541   ViewGraph(this, "mf" + getName());
542 #else
543   errs() << "MachineFunction::viewCFG is only available in debug builds on "
544          << "systems with Graphviz or gv!\n";
545 #endif // NDEBUG
546 }
547 
548 void MachineFunction::viewCFGOnly() const
549 {
550 #ifndef NDEBUG
551   ViewGraph(this, "mf" + getName(), true);
552 #else
553   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
554          << "systems with Graphviz or gv!\n";
555 #endif // NDEBUG
556 }
557 
558 /// Add the specified physical register as a live-in value and
559 /// create a corresponding virtual register for it.
560 unsigned MachineFunction::addLiveIn(unsigned PReg,
561                                     const TargetRegisterClass *RC) {
562   MachineRegisterInfo &MRI = getRegInfo();
563   unsigned VReg = MRI.getLiveInVirtReg(PReg);
564   if (VReg) {
565     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
566     (void)VRegRC;
567     // A physical register can be added several times.
568     // Between two calls, the register class of the related virtual register
569     // may have been constrained to match some operation constraints.
570     // In that case, check that the current register class includes the
571     // physical register and is a sub class of the specified RC.
572     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
573                              RC->hasSubClassEq(VRegRC))) &&
574             "Register class mismatch!");
575     return VReg;
576   }
577   VReg = MRI.createVirtualRegister(RC);
578   MRI.addLiveIn(PReg, VReg);
579   return VReg;
580 }
581 
582 /// Return the MCSymbol for the specified non-empty jump table.
583 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
584 /// normal 'L' label is returned.
585 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
586                                         bool isLinkerPrivate) const {
587   const DataLayout &DL = getDataLayout();
588   assert(JumpTableInfo && "No jump tables");
589   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
590 
591   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
592                                      : DL.getPrivateGlobalPrefix();
593   SmallString<60> Name;
594   raw_svector_ostream(Name)
595     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
596   return Ctx.getOrCreateSymbol(Name);
597 }
598 
599 /// Return a function-local symbol to represent the PIC base.
600 MCSymbol *MachineFunction::getPICBaseSymbol() const {
601   const DataLayout &DL = getDataLayout();
602   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
603                                Twine(getFunctionNumber()) + "$pb");
604 }
605 
606 /// \name Exception Handling
607 /// \{
608 
609 LandingPadInfo &
610 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
611   unsigned N = LandingPads.size();
612   for (unsigned i = 0; i < N; ++i) {
613     LandingPadInfo &LP = LandingPads[i];
614     if (LP.LandingPadBlock == LandingPad)
615       return LP;
616   }
617 
618   LandingPads.push_back(LandingPadInfo(LandingPad));
619   return LandingPads[N];
620 }
621 
622 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
623                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
624   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
625   LP.BeginLabels.push_back(BeginLabel);
626   LP.EndLabels.push_back(EndLabel);
627 }
628 
629 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
630   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
631   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
632   LP.LandingPadLabel = LandingPadLabel;
633 
634   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
635   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
636     if (const auto *PF =
637             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
638       getMMI().addPersonality(PF);
639 
640     if (LPI->isCleanup())
641       addCleanup(LandingPad);
642 
643     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
644     //        correct, but we need to do it this way because of how the DWARF EH
645     //        emitter processes the clauses.
646     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
647       Value *Val = LPI->getClause(I - 1);
648       if (LPI->isCatch(I - 1)) {
649         addCatchTypeInfo(LandingPad,
650                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
651       } else {
652         // Add filters in a list.
653         auto *CVal = cast<Constant>(Val);
654         SmallVector<const GlobalValue *, 4> FilterList;
655         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
656              II != IE; ++II)
657           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
658 
659         addFilterTypeInfo(LandingPad, FilterList);
660       }
661     }
662 
663   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
664     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
665       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
666       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
667     }
668 
669   } else {
670     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
671   }
672 
673   return LandingPadLabel;
674 }
675 
676 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
677                                        ArrayRef<const GlobalValue *> TyInfo) {
678   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
679   for (unsigned N = TyInfo.size(); N; --N)
680     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
681 }
682 
683 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
684                                         ArrayRef<const GlobalValue *> TyInfo) {
685   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
686   std::vector<unsigned> IdsInFilter(TyInfo.size());
687   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
688     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
689   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
690 }
691 
692 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
693                                       bool TidyIfNoBeginLabels) {
694   for (unsigned i = 0; i != LandingPads.size(); ) {
695     LandingPadInfo &LandingPad = LandingPads[i];
696     if (LandingPad.LandingPadLabel &&
697         !LandingPad.LandingPadLabel->isDefined() &&
698         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
699       LandingPad.LandingPadLabel = nullptr;
700 
701     // Special case: we *should* emit LPs with null LP MBB. This indicates
702     // "nounwind" case.
703     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
704       LandingPads.erase(LandingPads.begin() + i);
705       continue;
706     }
707 
708     if (TidyIfNoBeginLabels) {
709       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
710         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
711         MCSymbol *EndLabel = LandingPad.EndLabels[j];
712         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
713             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
714           continue;
715 
716         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
717         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
718         --j;
719         --e;
720       }
721 
722       // Remove landing pads with no try-ranges.
723       if (LandingPads[i].BeginLabels.empty()) {
724         LandingPads.erase(LandingPads.begin() + i);
725         continue;
726       }
727     }
728 
729     // If there is no landing pad, ensure that the list of typeids is empty.
730     // If the only typeid is a cleanup, this is the same as having no typeids.
731     if (!LandingPad.LandingPadBlock ||
732         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
733       LandingPad.TypeIds.clear();
734     ++i;
735   }
736 }
737 
738 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
739   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
740   LP.TypeIds.push_back(0);
741 }
742 
743 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
744                                          const Function *Filter,
745                                          const BlockAddress *RecoverBA) {
746   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
747   SEHHandler Handler;
748   Handler.FilterOrFinally = Filter;
749   Handler.RecoverBA = RecoverBA;
750   LP.SEHHandlers.push_back(Handler);
751 }
752 
753 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
754                                            const Function *Cleanup) {
755   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
756   SEHHandler Handler;
757   Handler.FilterOrFinally = Cleanup;
758   Handler.RecoverBA = nullptr;
759   LP.SEHHandlers.push_back(Handler);
760 }
761 
762 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
763                                             ArrayRef<unsigned> Sites) {
764   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
765 }
766 
767 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
768   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
769     if (TypeInfos[i] == TI) return i + 1;
770 
771   TypeInfos.push_back(TI);
772   return TypeInfos.size();
773 }
774 
775 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
776   // If the new filter coincides with the tail of an existing filter, then
777   // re-use the existing filter.  Folding filters more than this requires
778   // re-ordering filters and/or their elements - probably not worth it.
779   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
780        E = FilterEnds.end(); I != E; ++I) {
781     unsigned i = *I, j = TyIds.size();
782 
783     while (i && j)
784       if (FilterIds[--i] != TyIds[--j])
785         goto try_next;
786 
787     if (!j)
788       // The new filter coincides with range [i, end) of the existing filter.
789       return -(1 + i);
790 
791 try_next:;
792   }
793 
794   // Add the new filter.
795   int FilterID = -(1 + FilterIds.size());
796   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
797   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
798   FilterEnds.push_back(FilterIds.size());
799   FilterIds.push_back(0); // terminator
800   return FilterID;
801 }
802 
803 /// \}
804 
805 //===----------------------------------------------------------------------===//
806 //  MachineJumpTableInfo implementation
807 //===----------------------------------------------------------------------===//
808 
809 /// Return the size of each entry in the jump table.
810 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
811   // The size of a jump table entry is 4 bytes unless the entry is just the
812   // address of a block, in which case it is the pointer size.
813   switch (getEntryKind()) {
814   case MachineJumpTableInfo::EK_BlockAddress:
815     return TD.getPointerSize();
816   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
817     return 8;
818   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
819   case MachineJumpTableInfo::EK_LabelDifference32:
820   case MachineJumpTableInfo::EK_Custom32:
821     return 4;
822   case MachineJumpTableInfo::EK_Inline:
823     return 0;
824   }
825   llvm_unreachable("Unknown jump table encoding!");
826 }
827 
828 /// Return the alignment of each entry in the jump table.
829 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
830   // The alignment of a jump table entry is the alignment of int32 unless the
831   // entry is just the address of a block, in which case it is the pointer
832   // alignment.
833   switch (getEntryKind()) {
834   case MachineJumpTableInfo::EK_BlockAddress:
835     return TD.getPointerABIAlignment(0);
836   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
837     return TD.getABIIntegerTypeAlignment(64);
838   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
839   case MachineJumpTableInfo::EK_LabelDifference32:
840   case MachineJumpTableInfo::EK_Custom32:
841     return TD.getABIIntegerTypeAlignment(32);
842   case MachineJumpTableInfo::EK_Inline:
843     return 1;
844   }
845   llvm_unreachable("Unknown jump table encoding!");
846 }
847 
848 /// Create a new jump table entry in the jump table info.
849 unsigned MachineJumpTableInfo::createJumpTableIndex(
850                                const std::vector<MachineBasicBlock*> &DestBBs) {
851   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
852   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
853   return JumpTables.size()-1;
854 }
855 
856 /// If Old is the target of any jump tables, update the jump tables to branch
857 /// to New instead.
858 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
859                                                   MachineBasicBlock *New) {
860   assert(Old != New && "Not making a change?");
861   bool MadeChange = false;
862   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
863     ReplaceMBBInJumpTable(i, Old, New);
864   return MadeChange;
865 }
866 
867 /// If Old is a target of the jump tables, update the jump table to branch to
868 /// New instead.
869 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
870                                                  MachineBasicBlock *Old,
871                                                  MachineBasicBlock *New) {
872   assert(Old != New && "Not making a change?");
873   bool MadeChange = false;
874   MachineJumpTableEntry &JTE = JumpTables[Idx];
875   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
876     if (JTE.MBBs[j] == Old) {
877       JTE.MBBs[j] = New;
878       MadeChange = true;
879     }
880   return MadeChange;
881 }
882 
883 void MachineJumpTableInfo::print(raw_ostream &OS) const {
884   if (JumpTables.empty()) return;
885 
886   OS << "Jump Tables:\n";
887 
888   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
889     OS << printJumpTableEntryReference(i) << ": ";
890     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
891       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
892   }
893 
894   OS << '\n';
895 }
896 
897 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
898 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
899 #endif
900 
901 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
902   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
903 }
904 
905 //===----------------------------------------------------------------------===//
906 //  MachineConstantPool implementation
907 //===----------------------------------------------------------------------===//
908 
909 void MachineConstantPoolValue::anchor() {}
910 
911 Type *MachineConstantPoolEntry::getType() const {
912   if (isMachineConstantPoolEntry())
913     return Val.MachineCPVal->getType();
914   return Val.ConstVal->getType();
915 }
916 
917 bool MachineConstantPoolEntry::needsRelocation() const {
918   if (isMachineConstantPoolEntry())
919     return true;
920   return Val.ConstVal->needsRelocation();
921 }
922 
923 SectionKind
924 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
925   if (needsRelocation())
926     return SectionKind::getReadOnlyWithRel();
927   switch (DL->getTypeAllocSize(getType())) {
928   case 4:
929     return SectionKind::getMergeableConst4();
930   case 8:
931     return SectionKind::getMergeableConst8();
932   case 16:
933     return SectionKind::getMergeableConst16();
934   case 32:
935     return SectionKind::getMergeableConst32();
936   default:
937     return SectionKind::getReadOnly();
938   }
939 }
940 
941 MachineConstantPool::~MachineConstantPool() {
942   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
943   // so keep track of which we've deleted to avoid double deletions.
944   DenseSet<MachineConstantPoolValue*> Deleted;
945   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
946     if (Constants[i].isMachineConstantPoolEntry()) {
947       Deleted.insert(Constants[i].Val.MachineCPVal);
948       delete Constants[i].Val.MachineCPVal;
949     }
950   for (DenseSet<MachineConstantPoolValue*>::iterator I =
951        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
952        I != E; ++I) {
953     if (Deleted.count(*I) == 0)
954       delete *I;
955   }
956 }
957 
958 /// Test whether the given two constants can be allocated the same constant pool
959 /// entry.
960 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
961                                       const DataLayout &DL) {
962   // Handle the trivial case quickly.
963   if (A == B) return true;
964 
965   // If they have the same type but weren't the same constant, quickly
966   // reject them.
967   if (A->getType() == B->getType()) return false;
968 
969   // We can't handle structs or arrays.
970   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
971       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
972     return false;
973 
974   // For now, only support constants with the same size.
975   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
976   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
977     return false;
978 
979   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
980 
981   // Try constant folding a bitcast of both instructions to an integer.  If we
982   // get two identical ConstantInt's, then we are good to share them.  We use
983   // the constant folding APIs to do this so that we get the benefit of
984   // DataLayout.
985   if (isa<PointerType>(A->getType()))
986     A = ConstantFoldCastOperand(Instruction::PtrToInt,
987                                 const_cast<Constant *>(A), IntTy, DL);
988   else if (A->getType() != IntTy)
989     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
990                                 IntTy, DL);
991   if (isa<PointerType>(B->getType()))
992     B = ConstantFoldCastOperand(Instruction::PtrToInt,
993                                 const_cast<Constant *>(B), IntTy, DL);
994   else if (B->getType() != IntTy)
995     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
996                                 IntTy, DL);
997 
998   return A == B;
999 }
1000 
1001 /// Create a new entry in the constant pool or return an existing one.
1002 /// User must specify the log2 of the minimum required alignment for the object.
1003 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1004                                                    unsigned Alignment) {
1005   assert(Alignment && "Alignment must be specified!");
1006   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1007 
1008   // Check to see if we already have this constant.
1009   //
1010   // FIXME, this could be made much more efficient for large constant pools.
1011   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1012     if (!Constants[i].isMachineConstantPoolEntry() &&
1013         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1014       if ((unsigned)Constants[i].getAlignment() < Alignment)
1015         Constants[i].Alignment = Alignment;
1016       return i;
1017     }
1018 
1019   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1020   return Constants.size()-1;
1021 }
1022 
1023 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1024                                                    unsigned Alignment) {
1025   assert(Alignment && "Alignment must be specified!");
1026   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1027 
1028   // Check to see if we already have this constant.
1029   //
1030   // FIXME, this could be made much more efficient for large constant pools.
1031   int Idx = V->getExistingMachineCPValue(this, Alignment);
1032   if (Idx != -1) {
1033     MachineCPVsSharingEntries.insert(V);
1034     return (unsigned)Idx;
1035   }
1036 
1037   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1038   return Constants.size()-1;
1039 }
1040 
1041 void MachineConstantPool::print(raw_ostream &OS) const {
1042   if (Constants.empty()) return;
1043 
1044   OS << "Constant Pool:\n";
1045   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1046     OS << "  cp#" << i << ": ";
1047     if (Constants[i].isMachineConstantPoolEntry())
1048       Constants[i].Val.MachineCPVal->print(OS);
1049     else
1050       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1051     OS << ", align=" << Constants[i].getAlignment();
1052     OS << "\n";
1053   }
1054 }
1055 
1056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1057 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1058 #endif
1059