1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DebugInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 62 TM.Options.RealignStack); 63 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 64 Attribute::StackAlignment)) 65 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 66 getStackAlignment(AttributeSet::FunctionIndex)); 67 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 68 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 69 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 70 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 71 Attribute::OptimizeForSize)) 72 Alignment = std::max(Alignment, 73 TM.getTargetLowering()->getPrefFunctionAlignment()); 74 FunctionNumber = FunctionNum; 75 JumpTableInfo = 0; 76 } 77 78 MachineFunction::~MachineFunction() { 79 // Don't call destructors on MachineInstr and MachineOperand. All of their 80 // memory comes from the BumpPtrAllocator which is about to be purged. 81 // 82 // Do call MachineBasicBlock destructors, it contains std::vectors. 83 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 84 I->Insts.clearAndLeakNodesUnsafely(); 85 86 InstructionRecycler.clear(Allocator); 87 OperandRecycler.clear(Allocator); 88 BasicBlockRecycler.clear(Allocator); 89 if (RegInfo) { 90 RegInfo->~MachineRegisterInfo(); 91 Allocator.Deallocate(RegInfo); 92 } 93 if (MFInfo) { 94 MFInfo->~MachineFunctionInfo(); 95 Allocator.Deallocate(MFInfo); 96 } 97 98 FrameInfo->~MachineFrameInfo(); 99 Allocator.Deallocate(FrameInfo); 100 101 ConstantPool->~MachineConstantPool(); 102 Allocator.Deallocate(ConstantPool); 103 104 if (JumpTableInfo) { 105 JumpTableInfo->~MachineJumpTableInfo(); 106 Allocator.Deallocate(JumpTableInfo); 107 } 108 } 109 110 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 111 /// does already exist, allocate one. 112 MachineJumpTableInfo *MachineFunction:: 113 getOrCreateJumpTableInfo(unsigned EntryKind) { 114 if (JumpTableInfo) return JumpTableInfo; 115 116 JumpTableInfo = new (Allocator) 117 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 118 return JumpTableInfo; 119 } 120 121 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 122 /// recomputes them. This guarantees that the MBB numbers are sequential, 123 /// dense, and match the ordering of the blocks within the function. If a 124 /// specific MachineBasicBlock is specified, only that block and those after 125 /// it are renumbered. 126 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 127 if (empty()) { MBBNumbering.clear(); return; } 128 MachineFunction::iterator MBBI, E = end(); 129 if (MBB == 0) 130 MBBI = begin(); 131 else 132 MBBI = MBB; 133 134 // Figure out the block number this should have. 135 unsigned BlockNo = 0; 136 if (MBBI != begin()) 137 BlockNo = prior(MBBI)->getNumber()+1; 138 139 for (; MBBI != E; ++MBBI, ++BlockNo) { 140 if (MBBI->getNumber() != (int)BlockNo) { 141 // Remove use of the old number. 142 if (MBBI->getNumber() != -1) { 143 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 144 "MBB number mismatch!"); 145 MBBNumbering[MBBI->getNumber()] = 0; 146 } 147 148 // If BlockNo is already taken, set that block's number to -1. 149 if (MBBNumbering[BlockNo]) 150 MBBNumbering[BlockNo]->setNumber(-1); 151 152 MBBNumbering[BlockNo] = MBBI; 153 MBBI->setNumber(BlockNo); 154 } 155 } 156 157 // Okay, all the blocks are renumbered. If we have compactified the block 158 // numbering, shrink MBBNumbering now. 159 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 160 MBBNumbering.resize(BlockNo); 161 } 162 163 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 164 /// of `new MachineInstr'. 165 /// 166 MachineInstr * 167 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 168 DebugLoc DL, bool NoImp) { 169 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 170 MachineInstr(*this, MCID, DL, NoImp); 171 } 172 173 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 174 /// 'Orig' instruction, identical in all ways except the instruction 175 /// has no parent, prev, or next. 176 /// 177 MachineInstr * 178 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, *Orig); 181 } 182 183 /// DeleteMachineInstr - Delete the given MachineInstr. 184 /// 185 /// This function also serves as the MachineInstr destructor - the real 186 /// ~MachineInstr() destructor must be empty. 187 void 188 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 189 // Strip it for parts. The operand array and the MI object itself are 190 // independently recyclable. 191 if (MI->Operands) 192 deallocateOperandArray(MI->CapOperands, MI->Operands); 193 // Don't call ~MachineInstr() which must be trivial anyway because 194 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 195 // destructors. 196 InstructionRecycler.Deallocate(Allocator, MI); 197 } 198 199 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 200 /// instead of `new MachineBasicBlock'. 201 /// 202 MachineBasicBlock * 203 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 204 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 205 MachineBasicBlock(*this, bb); 206 } 207 208 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 209 /// 210 void 211 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 212 assert(MBB->getParent() == this && "MBB parent mismatch!"); 213 MBB->~MachineBasicBlock(); 214 BasicBlockRecycler.Deallocate(Allocator, MBB); 215 } 216 217 MachineMemOperand * 218 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 219 uint64_t s, unsigned base_alignment, 220 const MDNode *TBAAInfo, 221 const MDNode *Ranges) { 222 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 223 TBAAInfo, Ranges); 224 } 225 226 MachineMemOperand * 227 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 228 int64_t Offset, uint64_t Size) { 229 return new (Allocator) 230 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 231 MMO->getOffset()+Offset), 232 MMO->getFlags(), Size, 233 MMO->getBaseAlignment(), 0); 234 } 235 236 MachineInstr::mmo_iterator 237 MachineFunction::allocateMemRefsArray(unsigned long Num) { 238 return Allocator.Allocate<MachineMemOperand *>(Num); 239 } 240 241 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 242 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 243 MachineInstr::mmo_iterator End) { 244 // Count the number of load mem refs. 245 unsigned Num = 0; 246 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 247 if ((*I)->isLoad()) 248 ++Num; 249 250 // Allocate a new array and populate it with the load information. 251 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 252 unsigned Index = 0; 253 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 254 if ((*I)->isLoad()) { 255 if (!(*I)->isStore()) 256 // Reuse the MMO. 257 Result[Index] = *I; 258 else { 259 // Clone the MMO and unset the store flag. 260 MachineMemOperand *JustLoad = 261 getMachineMemOperand((*I)->getPointerInfo(), 262 (*I)->getFlags() & ~MachineMemOperand::MOStore, 263 (*I)->getSize(), (*I)->getBaseAlignment(), 264 (*I)->getTBAAInfo()); 265 Result[Index] = JustLoad; 266 } 267 ++Index; 268 } 269 } 270 return std::make_pair(Result, Result + Num); 271 } 272 273 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 274 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 275 MachineInstr::mmo_iterator End) { 276 // Count the number of load mem refs. 277 unsigned Num = 0; 278 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 279 if ((*I)->isStore()) 280 ++Num; 281 282 // Allocate a new array and populate it with the store information. 283 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 284 unsigned Index = 0; 285 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 286 if ((*I)->isStore()) { 287 if (!(*I)->isLoad()) 288 // Reuse the MMO. 289 Result[Index] = *I; 290 else { 291 // Clone the MMO and unset the load flag. 292 MachineMemOperand *JustStore = 293 getMachineMemOperand((*I)->getPointerInfo(), 294 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 295 (*I)->getSize(), (*I)->getBaseAlignment(), 296 (*I)->getTBAAInfo()); 297 Result[Index] = JustStore; 298 } 299 ++Index; 300 } 301 } 302 return std::make_pair(Result, Result + Num); 303 } 304 305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 306 void MachineFunction::dump() const { 307 print(dbgs()); 308 } 309 #endif 310 311 StringRef MachineFunction::getName() const { 312 assert(getFunction() && "No function!"); 313 return getFunction()->getName(); 314 } 315 316 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 317 OS << "# Machine code for function " << getName() << ": "; 318 if (RegInfo) { 319 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 320 if (!RegInfo->tracksLiveness()) 321 OS << ", not tracking liveness"; 322 } 323 OS << '\n'; 324 325 // Print Frame Information 326 FrameInfo->print(*this, OS); 327 328 // Print JumpTable Information 329 if (JumpTableInfo) 330 JumpTableInfo->print(OS); 331 332 // Print Constant Pool 333 ConstantPool->print(OS); 334 335 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 336 337 if (RegInfo && !RegInfo->livein_empty()) { 338 OS << "Function Live Ins: "; 339 for (MachineRegisterInfo::livein_iterator 340 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 341 OS << PrintReg(I->first, TRI); 342 if (I->second) 343 OS << " in " << PrintReg(I->second, TRI); 344 if (llvm::next(I) != E) 345 OS << ", "; 346 } 347 OS << '\n'; 348 } 349 if (RegInfo && !RegInfo->liveout_empty()) { 350 OS << "Function Live Outs:"; 351 for (MachineRegisterInfo::liveout_iterator 352 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I) 353 OS << ' ' << PrintReg(*I, TRI); 354 OS << '\n'; 355 } 356 357 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 358 OS << '\n'; 359 BB->print(OS, Indexes); 360 } 361 362 OS << "\n# End machine code for function " << getName() << ".\n\n"; 363 } 364 365 namespace llvm { 366 template<> 367 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 368 369 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 370 371 static std::string getGraphName(const MachineFunction *F) { 372 return "CFG for '" + F->getName().str() + "' function"; 373 } 374 375 std::string getNodeLabel(const MachineBasicBlock *Node, 376 const MachineFunction *Graph) { 377 std::string OutStr; 378 { 379 raw_string_ostream OSS(OutStr); 380 381 if (isSimple()) { 382 OSS << "BB#" << Node->getNumber(); 383 if (const BasicBlock *BB = Node->getBasicBlock()) 384 OSS << ": " << BB->getName(); 385 } else 386 Node->print(OSS); 387 } 388 389 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 390 391 // Process string output to make it nicer... 392 for (unsigned i = 0; i != OutStr.length(); ++i) 393 if (OutStr[i] == '\n') { // Left justify 394 OutStr[i] = '\\'; 395 OutStr.insert(OutStr.begin()+i+1, 'l'); 396 } 397 return OutStr; 398 } 399 }; 400 } 401 402 void MachineFunction::viewCFG() const 403 { 404 #ifndef NDEBUG 405 ViewGraph(this, "mf" + getName()); 406 #else 407 errs() << "MachineFunction::viewCFG is only available in debug builds on " 408 << "systems with Graphviz or gv!\n"; 409 #endif // NDEBUG 410 } 411 412 void MachineFunction::viewCFGOnly() const 413 { 414 #ifndef NDEBUG 415 ViewGraph(this, "mf" + getName(), true); 416 #else 417 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 418 << "systems with Graphviz or gv!\n"; 419 #endif // NDEBUG 420 } 421 422 /// addLiveIn - Add the specified physical register as a live-in value and 423 /// create a corresponding virtual register for it. 424 unsigned MachineFunction::addLiveIn(unsigned PReg, 425 const TargetRegisterClass *RC) { 426 MachineRegisterInfo &MRI = getRegInfo(); 427 unsigned VReg = MRI.getLiveInVirtReg(PReg); 428 if (VReg) { 429 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 430 return VReg; 431 } 432 VReg = MRI.createVirtualRegister(RC); 433 MRI.addLiveIn(PReg, VReg); 434 return VReg; 435 } 436 437 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 438 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 439 /// normal 'L' label is returned. 440 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 441 bool isLinkerPrivate) const { 442 assert(JumpTableInfo && "No jump tables"); 443 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 444 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 445 446 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 447 MAI.getPrivateGlobalPrefix(); 448 SmallString<60> Name; 449 raw_svector_ostream(Name) 450 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 451 return Ctx.GetOrCreateSymbol(Name.str()); 452 } 453 454 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 455 /// base. 456 MCSymbol *MachineFunction::getPICBaseSymbol() const { 457 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 458 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 459 Twine(getFunctionNumber())+"$pb"); 460 } 461 462 //===----------------------------------------------------------------------===// 463 // MachineFrameInfo implementation 464 //===----------------------------------------------------------------------===// 465 466 /// ensureMaxAlignment - Make sure the function is at least Align bytes 467 /// aligned. 468 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 469 if (!TFI.isStackRealignable() || !RealignOption) 470 assert(Align <= TFI.getStackAlignment() && 471 "For targets without stack realignment, Align is out of limit!"); 472 if (MaxAlignment < Align) MaxAlignment = Align; 473 } 474 475 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 476 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned PrefAlign, 477 unsigned MinAlign, unsigned StackAlign, 478 const AllocaInst *Alloca = 0) { 479 if (!ShouldClamp || PrefAlign <= StackAlign) 480 return PrefAlign; 481 if (Alloca && MinAlign > StackAlign) 482 Alloca->getParent()->getContext().emitWarning(Alloca, 483 "Requested alignment exceeds the stack alignment!"); 484 else 485 assert(MinAlign <= StackAlign && 486 "Requested alignment exceeds the stack alignment!"); 487 return StackAlign; 488 } 489 490 /// CreateStackObjectWithMinAlign - Create a new statically sized stack 491 /// object, returning a nonnegative identifier to represent it. This function 492 /// takes a preferred alignment and a minimal alignment. 493 /// 494 int MachineFrameInfo::CreateStackObjectWithMinAlign(uint64_t Size, 495 unsigned PrefAlignment, unsigned MinAlignment, 496 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 497 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 498 unsigned Alignment = clampStackAlignment( 499 !TFI.isStackRealignable() || !RealignOption, 500 PrefAlignment, MinAlignment, 501 TFI.getStackAlignment(), Alloca); 502 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 503 Alloca)); 504 int Index = (int)Objects.size() - NumFixedObjects - 1; 505 assert(Index >= 0 && "Bad frame index!"); 506 ensureMaxAlignment(Alignment); 507 return Index; 508 } 509 510 /// CreateSpillStackObject - Create a new statically sized stack object that 511 /// represents a spill slot, returning a nonnegative identifier to represent 512 /// it. 513 /// 514 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 515 unsigned Alignment) { 516 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 517 Alignment, 0, 518 TFI.getStackAlignment()); 519 CreateStackObject(Size, Alignment, true, false); 520 int Index = (int)Objects.size() - NumFixedObjects - 1; 521 ensureMaxAlignment(Alignment); 522 return Index; 523 } 524 525 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 526 /// variable sized object has been created. This must be created whenever a 527 /// variable sized object is created, whether or not the index returned is 528 /// actually used. 529 /// 530 int MachineFrameInfo::CreateVariableSizedObject(unsigned PrefAlignment, 531 unsigned MinAlignment, const AllocaInst *Alloca) { 532 HasVarSizedObjects = true; 533 unsigned Alignment = clampStackAlignment( 534 !TFI.isStackRealignable() || !RealignOption, 535 PrefAlignment, MinAlignment, 536 TFI.getStackAlignment(), Alloca); 537 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 538 ensureMaxAlignment(Alignment); 539 return (int)Objects.size()-NumFixedObjects-1; 540 } 541 542 /// CreateFixedObject - Create a new object at a fixed location on the stack. 543 /// All fixed objects should be created before other objects are created for 544 /// efficiency. By default, fixed objects are immutable. This returns an 545 /// index with a negative value. 546 /// 547 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 548 bool Immutable) { 549 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 550 // The alignment of the frame index can be determined from its offset from 551 // the incoming frame position. If the frame object is at offset 32 and 552 // the stack is guaranteed to be 16-byte aligned, then we know that the 553 // object is 16-byte aligned. 554 unsigned StackAlign = TFI.getStackAlignment(); 555 unsigned Align = MinAlign(SPOffset, StackAlign); 556 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 557 Align, 0, TFI.getStackAlignment()); 558 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 559 /*isSS*/ false, 560 /*NeedSP*/ false, 561 /*Alloca*/ 0)); 562 return -++NumFixedObjects; 563 } 564 565 566 BitVector 567 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 568 assert(MBB && "MBB must be valid"); 569 const MachineFunction *MF = MBB->getParent(); 570 assert(MF && "MBB must be part of a MachineFunction"); 571 const TargetMachine &TM = MF->getTarget(); 572 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 573 BitVector BV(TRI->getNumRegs()); 574 575 // Before CSI is calculated, no registers are considered pristine. They can be 576 // freely used and PEI will make sure they are saved. 577 if (!isCalleeSavedInfoValid()) 578 return BV; 579 580 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 581 BV.set(*CSR); 582 583 // The entry MBB always has all CSRs pristine. 584 if (MBB == &MF->front()) 585 return BV; 586 587 // On other MBBs the saved CSRs are not pristine. 588 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 589 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 590 E = CSI.end(); I != E; ++I) 591 BV.reset(I->getReg()); 592 593 return BV; 594 } 595 596 597 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 598 if (Objects.empty()) return; 599 600 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 601 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 602 603 OS << "Frame Objects:\n"; 604 605 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 606 const StackObject &SO = Objects[i]; 607 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 608 if (SO.Size == ~0ULL) { 609 OS << "dead\n"; 610 continue; 611 } 612 if (SO.Size == 0) 613 OS << "variable sized"; 614 else 615 OS << "size=" << SO.Size; 616 OS << ", align=" << SO.Alignment; 617 618 if (i < NumFixedObjects) 619 OS << ", fixed"; 620 if (i < NumFixedObjects || SO.SPOffset != -1) { 621 int64_t Off = SO.SPOffset - ValOffset; 622 OS << ", at location [SP"; 623 if (Off > 0) 624 OS << "+" << Off; 625 else if (Off < 0) 626 OS << Off; 627 OS << "]"; 628 } 629 OS << "\n"; 630 } 631 } 632 633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 634 void MachineFrameInfo::dump(const MachineFunction &MF) const { 635 print(MF, dbgs()); 636 } 637 #endif 638 639 //===----------------------------------------------------------------------===// 640 // MachineJumpTableInfo implementation 641 //===----------------------------------------------------------------------===// 642 643 /// getEntrySize - Return the size of each entry in the jump table. 644 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 645 // The size of a jump table entry is 4 bytes unless the entry is just the 646 // address of a block, in which case it is the pointer size. 647 switch (getEntryKind()) { 648 case MachineJumpTableInfo::EK_BlockAddress: 649 return TD.getPointerSize(); 650 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 651 return 8; 652 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 653 case MachineJumpTableInfo::EK_LabelDifference32: 654 case MachineJumpTableInfo::EK_Custom32: 655 return 4; 656 case MachineJumpTableInfo::EK_Inline: 657 return 0; 658 } 659 llvm_unreachable("Unknown jump table encoding!"); 660 } 661 662 /// getEntryAlignment - Return the alignment of each entry in the jump table. 663 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 664 // The alignment of a jump table entry is the alignment of int32 unless the 665 // entry is just the address of a block, in which case it is the pointer 666 // alignment. 667 switch (getEntryKind()) { 668 case MachineJumpTableInfo::EK_BlockAddress: 669 return TD.getPointerABIAlignment(); 670 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 671 return TD.getABIIntegerTypeAlignment(64); 672 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 673 case MachineJumpTableInfo::EK_LabelDifference32: 674 case MachineJumpTableInfo::EK_Custom32: 675 return TD.getABIIntegerTypeAlignment(32); 676 case MachineJumpTableInfo::EK_Inline: 677 return 1; 678 } 679 llvm_unreachable("Unknown jump table encoding!"); 680 } 681 682 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 683 /// 684 unsigned MachineJumpTableInfo::createJumpTableIndex( 685 const std::vector<MachineBasicBlock*> &DestBBs) { 686 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 687 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 688 return JumpTables.size()-1; 689 } 690 691 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 692 /// the jump tables to branch to New instead. 693 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 694 MachineBasicBlock *New) { 695 assert(Old != New && "Not making a change?"); 696 bool MadeChange = false; 697 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 698 ReplaceMBBInJumpTable(i, Old, New); 699 return MadeChange; 700 } 701 702 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 703 /// the jump table to branch to New instead. 704 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 705 MachineBasicBlock *Old, 706 MachineBasicBlock *New) { 707 assert(Old != New && "Not making a change?"); 708 bool MadeChange = false; 709 MachineJumpTableEntry &JTE = JumpTables[Idx]; 710 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 711 if (JTE.MBBs[j] == Old) { 712 JTE.MBBs[j] = New; 713 MadeChange = true; 714 } 715 return MadeChange; 716 } 717 718 void MachineJumpTableInfo::print(raw_ostream &OS) const { 719 if (JumpTables.empty()) return; 720 721 OS << "Jump Tables:\n"; 722 723 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 724 OS << " jt#" << i << ": "; 725 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 726 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 727 } 728 729 OS << '\n'; 730 } 731 732 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 733 void MachineJumpTableInfo::dump() const { print(dbgs()); } 734 #endif 735 736 737 //===----------------------------------------------------------------------===// 738 // MachineConstantPool implementation 739 //===----------------------------------------------------------------------===// 740 741 void MachineConstantPoolValue::anchor() { } 742 743 Type *MachineConstantPoolEntry::getType() const { 744 if (isMachineConstantPoolEntry()) 745 return Val.MachineCPVal->getType(); 746 return Val.ConstVal->getType(); 747 } 748 749 750 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 751 if (isMachineConstantPoolEntry()) 752 return Val.MachineCPVal->getRelocationInfo(); 753 return Val.ConstVal->getRelocationInfo(); 754 } 755 756 MachineConstantPool::~MachineConstantPool() { 757 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 758 if (Constants[i].isMachineConstantPoolEntry()) 759 delete Constants[i].Val.MachineCPVal; 760 for (DenseSet<MachineConstantPoolValue*>::iterator I = 761 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 762 I != E; ++I) 763 delete *I; 764 } 765 766 /// CanShareConstantPoolEntry - Test whether the given two constants 767 /// can be allocated the same constant pool entry. 768 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 769 const DataLayout *TD) { 770 // Handle the trivial case quickly. 771 if (A == B) return true; 772 773 // If they have the same type but weren't the same constant, quickly 774 // reject them. 775 if (A->getType() == B->getType()) return false; 776 777 // We can't handle structs or arrays. 778 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 779 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 780 return false; 781 782 // For now, only support constants with the same size. 783 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 784 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 785 StoreSize > 128) 786 return false; 787 788 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 789 790 // Try constant folding a bitcast of both instructions to an integer. If we 791 // get two identical ConstantInt's, then we are good to share them. We use 792 // the constant folding APIs to do this so that we get the benefit of 793 // DataLayout. 794 if (isa<PointerType>(A->getType())) 795 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 796 const_cast<Constant*>(A), TD); 797 else if (A->getType() != IntTy) 798 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 799 const_cast<Constant*>(A), TD); 800 if (isa<PointerType>(B->getType())) 801 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 802 const_cast<Constant*>(B), TD); 803 else if (B->getType() != IntTy) 804 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 805 const_cast<Constant*>(B), TD); 806 807 return A == B; 808 } 809 810 /// getConstantPoolIndex - Create a new entry in the constant pool or return 811 /// an existing one. User must specify the log2 of the minimum required 812 /// alignment for the object. 813 /// 814 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 815 unsigned Alignment) { 816 assert(Alignment && "Alignment must be specified!"); 817 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 818 819 // Check to see if we already have this constant. 820 // 821 // FIXME, this could be made much more efficient for large constant pools. 822 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 823 if (!Constants[i].isMachineConstantPoolEntry() && 824 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 825 if ((unsigned)Constants[i].getAlignment() < Alignment) 826 Constants[i].Alignment = Alignment; 827 return i; 828 } 829 830 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 831 return Constants.size()-1; 832 } 833 834 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 835 unsigned Alignment) { 836 assert(Alignment && "Alignment must be specified!"); 837 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 838 839 // Check to see if we already have this constant. 840 // 841 // FIXME, this could be made much more efficient for large constant pools. 842 int Idx = V->getExistingMachineCPValue(this, Alignment); 843 if (Idx != -1) { 844 MachineCPVsSharingEntries.insert(V); 845 return (unsigned)Idx; 846 } 847 848 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 849 return Constants.size()-1; 850 } 851 852 void MachineConstantPool::print(raw_ostream &OS) const { 853 if (Constants.empty()) return; 854 855 OS << "Constant Pool:\n"; 856 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 857 OS << " cp#" << i << ": "; 858 if (Constants[i].isMachineConstantPoolEntry()) 859 Constants[i].Val.MachineCPVal->print(OS); 860 else 861 OS << *(const Value*)Constants[i].Val.ConstVal; 862 OS << ", align=" << Constants[i].getAlignment(); 863 OS << "\n"; 864 } 865 } 866 867 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 868 void MachineConstantPool::dump() const { print(dbgs()); } 869 #endif 870