1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> 82 AlignAllFunctions("align-all-functions", 83 cl::desc("Force the alignment of all functions."), 84 cl::init(0), cl::Hidden); 85 86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 87 using P = MachineFunctionProperties::Property; 88 89 switch(Prop) { 90 case P::FailedISel: return "FailedISel"; 91 case P::IsSSA: return "IsSSA"; 92 case P::Legalized: return "Legalized"; 93 case P::NoPHIs: return "NoPHIs"; 94 case P::NoVRegs: return "NoVRegs"; 95 case P::RegBankSelected: return "RegBankSelected"; 96 case P::Selected: return "Selected"; 97 case P::TracksLiveness: return "TracksLiveness"; 98 } 99 llvm_unreachable("Invalid machine function property"); 100 } 101 102 // Pin the vtable to this file. 103 void MachineFunction::Delegate::anchor() {} 104 105 void MachineFunctionProperties::print(raw_ostream &OS) const { 106 const char *Separator = ""; 107 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 108 if (!Properties[I]) 109 continue; 110 OS << Separator << getPropertyName(static_cast<Property>(I)); 111 Separator = ", "; 112 } 113 } 114 115 //===----------------------------------------------------------------------===// 116 // MachineFunction implementation 117 //===----------------------------------------------------------------------===// 118 119 // Out-of-line virtual method. 120 MachineFunctionInfo::~MachineFunctionInfo() = default; 121 122 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 123 MBB->getParent()->DeleteMachineBasicBlock(MBB); 124 } 125 126 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 127 const Function &F) { 128 if (F.hasFnAttribute(Attribute::StackAlignment)) 129 return F.getFnStackAlignment(); 130 return STI->getFrameLowering()->getStackAlignment(); 131 } 132 133 MachineFunction::MachineFunction(const Function &F, 134 const LLVMTargetMachine &Target, 135 const TargetSubtargetInfo &STI, 136 unsigned FunctionNum, MachineModuleInfo &mmi) 137 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 138 FunctionNumber = FunctionNum; 139 init(); 140 } 141 142 void MachineFunction::handleInsertion(const MachineInstr &MI) { 143 if (TheDelegate) 144 TheDelegate->MF_HandleInsertion(MI); 145 } 146 147 void MachineFunction::handleRemoval(const MachineInstr &MI) { 148 if (TheDelegate) 149 TheDelegate->MF_HandleRemoval(MI); 150 } 151 152 void MachineFunction::init() { 153 // Assume the function starts in SSA form with correct liveness. 154 Properties.set(MachineFunctionProperties::Property::IsSSA); 155 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 156 if (STI->getRegisterInfo()) 157 RegInfo = new (Allocator) MachineRegisterInfo(this); 158 else 159 RegInfo = nullptr; 160 161 MFInfo = nullptr; 162 // We can realign the stack if the target supports it and the user hasn't 163 // explicitly asked us not to. 164 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 165 !F.hasFnAttribute("no-realign-stack"); 166 FrameInfo = new (Allocator) MachineFrameInfo( 167 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 168 /*ForceRealign=*/CanRealignSP && 169 F.hasFnAttribute(Attribute::StackAlignment)); 170 171 if (F.hasFnAttribute(Attribute::StackAlignment)) 172 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 173 174 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 175 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 176 177 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 178 // FIXME: Use Function::optForSize(). 179 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 180 Alignment = std::max(Alignment, 181 STI->getTargetLowering()->getPrefFunctionAlignment()); 182 183 if (AlignAllFunctions) 184 Alignment = AlignAllFunctions; 185 186 JumpTableInfo = nullptr; 187 188 if (isFuncletEHPersonality(classifyEHPersonality( 189 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 190 WinEHInfo = new (Allocator) WinEHFuncInfo(); 191 } 192 193 if (isScopedEHPersonality(classifyEHPersonality( 194 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 195 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 196 } 197 198 assert(Target.isCompatibleDataLayout(getDataLayout()) && 199 "Can't create a MachineFunction using a Module with a " 200 "Target-incompatible DataLayout attached\n"); 201 202 PSVManager = 203 llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 204 getInstrInfo())); 205 } 206 207 MachineFunction::~MachineFunction() { 208 clear(); 209 } 210 211 void MachineFunction::clear() { 212 Properties.reset(); 213 // Don't call destructors on MachineInstr and MachineOperand. All of their 214 // memory comes from the BumpPtrAllocator which is about to be purged. 215 // 216 // Do call MachineBasicBlock destructors, it contains std::vectors. 217 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 218 I->Insts.clearAndLeakNodesUnsafely(); 219 MBBNumbering.clear(); 220 221 InstructionRecycler.clear(Allocator); 222 OperandRecycler.clear(Allocator); 223 BasicBlockRecycler.clear(Allocator); 224 CodeViewAnnotations.clear(); 225 VariableDbgInfos.clear(); 226 if (RegInfo) { 227 RegInfo->~MachineRegisterInfo(); 228 Allocator.Deallocate(RegInfo); 229 } 230 if (MFInfo) { 231 MFInfo->~MachineFunctionInfo(); 232 Allocator.Deallocate(MFInfo); 233 } 234 235 FrameInfo->~MachineFrameInfo(); 236 Allocator.Deallocate(FrameInfo); 237 238 ConstantPool->~MachineConstantPool(); 239 Allocator.Deallocate(ConstantPool); 240 241 if (JumpTableInfo) { 242 JumpTableInfo->~MachineJumpTableInfo(); 243 Allocator.Deallocate(JumpTableInfo); 244 } 245 246 if (WinEHInfo) { 247 WinEHInfo->~WinEHFuncInfo(); 248 Allocator.Deallocate(WinEHInfo); 249 } 250 251 if (WasmEHInfo) { 252 WasmEHInfo->~WasmEHFuncInfo(); 253 Allocator.Deallocate(WasmEHInfo); 254 } 255 } 256 257 const DataLayout &MachineFunction::getDataLayout() const { 258 return F.getParent()->getDataLayout(); 259 } 260 261 /// Get the JumpTableInfo for this function. 262 /// If it does not already exist, allocate one. 263 MachineJumpTableInfo *MachineFunction:: 264 getOrCreateJumpTableInfo(unsigned EntryKind) { 265 if (JumpTableInfo) return JumpTableInfo; 266 267 JumpTableInfo = new (Allocator) 268 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 269 return JumpTableInfo; 270 } 271 272 /// Should we be emitting segmented stack stuff for the function 273 bool MachineFunction::shouldSplitStack() const { 274 return getFunction().hasFnAttribute("split-stack"); 275 } 276 277 /// This discards all of the MachineBasicBlock numbers and recomputes them. 278 /// This guarantees that the MBB numbers are sequential, dense, and match the 279 /// ordering of the blocks within the function. If a specific MachineBasicBlock 280 /// is specified, only that block and those after it are renumbered. 281 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 282 if (empty()) { MBBNumbering.clear(); return; } 283 MachineFunction::iterator MBBI, E = end(); 284 if (MBB == nullptr) 285 MBBI = begin(); 286 else 287 MBBI = MBB->getIterator(); 288 289 // Figure out the block number this should have. 290 unsigned BlockNo = 0; 291 if (MBBI != begin()) 292 BlockNo = std::prev(MBBI)->getNumber() + 1; 293 294 for (; MBBI != E; ++MBBI, ++BlockNo) { 295 if (MBBI->getNumber() != (int)BlockNo) { 296 // Remove use of the old number. 297 if (MBBI->getNumber() != -1) { 298 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 299 "MBB number mismatch!"); 300 MBBNumbering[MBBI->getNumber()] = nullptr; 301 } 302 303 // If BlockNo is already taken, set that block's number to -1. 304 if (MBBNumbering[BlockNo]) 305 MBBNumbering[BlockNo]->setNumber(-1); 306 307 MBBNumbering[BlockNo] = &*MBBI; 308 MBBI->setNumber(BlockNo); 309 } 310 } 311 312 // Okay, all the blocks are renumbered. If we have compactified the block 313 // numbering, shrink MBBNumbering now. 314 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 315 MBBNumbering.resize(BlockNo); 316 } 317 318 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 319 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 320 const DebugLoc &DL, 321 bool NoImp) { 322 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 323 MachineInstr(*this, MCID, DL, NoImp); 324 } 325 326 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 327 /// identical in all ways except the instruction has no parent, prev, or next. 328 MachineInstr * 329 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 330 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 331 MachineInstr(*this, *Orig); 332 } 333 334 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 335 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 336 MachineInstr *FirstClone = nullptr; 337 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 338 while (true) { 339 MachineInstr *Cloned = CloneMachineInstr(&*I); 340 MBB.insert(InsertBefore, Cloned); 341 if (FirstClone == nullptr) { 342 FirstClone = Cloned; 343 } else { 344 Cloned->bundleWithPred(); 345 } 346 347 if (!I->isBundledWithSucc()) 348 break; 349 ++I; 350 } 351 return *FirstClone; 352 } 353 354 /// Delete the given MachineInstr. 355 /// 356 /// This function also serves as the MachineInstr destructor - the real 357 /// ~MachineInstr() destructor must be empty. 358 void 359 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 360 // Strip it for parts. The operand array and the MI object itself are 361 // independently recyclable. 362 if (MI->Operands) 363 deallocateOperandArray(MI->CapOperands, MI->Operands); 364 // Don't call ~MachineInstr() which must be trivial anyway because 365 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 366 // destructors. 367 InstructionRecycler.Deallocate(Allocator, MI); 368 } 369 370 /// Allocate a new MachineBasicBlock. Use this instead of 371 /// `new MachineBasicBlock'. 372 MachineBasicBlock * 373 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 374 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 375 MachineBasicBlock(*this, bb); 376 } 377 378 /// Delete the given MachineBasicBlock. 379 void 380 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 381 assert(MBB->getParent() == this && "MBB parent mismatch!"); 382 MBB->~MachineBasicBlock(); 383 BasicBlockRecycler.Deallocate(Allocator, MBB); 384 } 385 386 MachineMemOperand *MachineFunction::getMachineMemOperand( 387 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 388 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 389 SyncScope::ID SSID, AtomicOrdering Ordering, 390 AtomicOrdering FailureOrdering) { 391 return new (Allocator) 392 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 393 SSID, Ordering, FailureOrdering); 394 } 395 396 MachineMemOperand * 397 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 398 int64_t Offset, uint64_t Size) { 399 if (MMO->getValue()) 400 return new (Allocator) 401 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 402 MMO->getOffset()+Offset), 403 MMO->getFlags(), Size, MMO->getBaseAlignment(), 404 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 405 MMO->getOrdering(), MMO->getFailureOrdering()); 406 return new (Allocator) 407 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 408 MMO->getOffset()+Offset), 409 MMO->getFlags(), Size, MMO->getBaseAlignment(), 410 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 411 MMO->getOrdering(), MMO->getFailureOrdering()); 412 } 413 414 MachineMemOperand * 415 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 416 const AAMDNodes &AAInfo) { 417 MachinePointerInfo MPI = MMO->getValue() ? 418 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 419 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 420 421 return new (Allocator) 422 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 423 MMO->getBaseAlignment(), AAInfo, 424 MMO->getRanges(), MMO->getSyncScopeID(), 425 MMO->getOrdering(), MMO->getFailureOrdering()); 426 } 427 428 MachineInstr::ExtraInfo * 429 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs, 430 MCSymbol *PreInstrSymbol, 431 MCSymbol *PostInstrSymbol) { 432 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 433 PostInstrSymbol); 434 } 435 436 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 437 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 438 llvm::copy(Name, Dest); 439 Dest[Name.size()] = 0; 440 return Dest; 441 } 442 443 uint32_t *MachineFunction::allocateRegMask() { 444 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 445 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 446 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 447 memset(Mask, 0, Size * sizeof(Mask[0])); 448 return Mask; 449 } 450 451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 452 LLVM_DUMP_METHOD void MachineFunction::dump() const { 453 print(dbgs()); 454 } 455 #endif 456 457 StringRef MachineFunction::getName() const { 458 return getFunction().getName(); 459 } 460 461 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 462 OS << "# Machine code for function " << getName() << ": "; 463 getProperties().print(OS); 464 OS << '\n'; 465 466 // Print Frame Information 467 FrameInfo->print(*this, OS); 468 469 // Print JumpTable Information 470 if (JumpTableInfo) 471 JumpTableInfo->print(OS); 472 473 // Print Constant Pool 474 ConstantPool->print(OS); 475 476 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 477 478 if (RegInfo && !RegInfo->livein_empty()) { 479 OS << "Function Live Ins: "; 480 for (MachineRegisterInfo::livein_iterator 481 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 482 OS << printReg(I->first, TRI); 483 if (I->second) 484 OS << " in " << printReg(I->second, TRI); 485 if (std::next(I) != E) 486 OS << ", "; 487 } 488 OS << '\n'; 489 } 490 491 ModuleSlotTracker MST(getFunction().getParent()); 492 MST.incorporateFunction(getFunction()); 493 for (const auto &BB : *this) { 494 OS << '\n'; 495 // If we print the whole function, print it at its most verbose level. 496 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 497 } 498 499 OS << "\n# End machine code for function " << getName() << ".\n\n"; 500 } 501 502 namespace llvm { 503 504 template<> 505 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 506 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 507 508 static std::string getGraphName(const MachineFunction *F) { 509 return ("CFG for '" + F->getName() + "' function").str(); 510 } 511 512 std::string getNodeLabel(const MachineBasicBlock *Node, 513 const MachineFunction *Graph) { 514 std::string OutStr; 515 { 516 raw_string_ostream OSS(OutStr); 517 518 if (isSimple()) { 519 OSS << printMBBReference(*Node); 520 if (const BasicBlock *BB = Node->getBasicBlock()) 521 OSS << ": " << BB->getName(); 522 } else 523 Node->print(OSS); 524 } 525 526 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 527 528 // Process string output to make it nicer... 529 for (unsigned i = 0; i != OutStr.length(); ++i) 530 if (OutStr[i] == '\n') { // Left justify 531 OutStr[i] = '\\'; 532 OutStr.insert(OutStr.begin()+i+1, 'l'); 533 } 534 return OutStr; 535 } 536 }; 537 538 } // end namespace llvm 539 540 void MachineFunction::viewCFG() const 541 { 542 #ifndef NDEBUG 543 ViewGraph(this, "mf" + getName()); 544 #else 545 errs() << "MachineFunction::viewCFG is only available in debug builds on " 546 << "systems with Graphviz or gv!\n"; 547 #endif // NDEBUG 548 } 549 550 void MachineFunction::viewCFGOnly() const 551 { 552 #ifndef NDEBUG 553 ViewGraph(this, "mf" + getName(), true); 554 #else 555 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 556 << "systems with Graphviz or gv!\n"; 557 #endif // NDEBUG 558 } 559 560 /// Add the specified physical register as a live-in value and 561 /// create a corresponding virtual register for it. 562 unsigned MachineFunction::addLiveIn(unsigned PReg, 563 const TargetRegisterClass *RC) { 564 MachineRegisterInfo &MRI = getRegInfo(); 565 unsigned VReg = MRI.getLiveInVirtReg(PReg); 566 if (VReg) { 567 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 568 (void)VRegRC; 569 // A physical register can be added several times. 570 // Between two calls, the register class of the related virtual register 571 // may have been constrained to match some operation constraints. 572 // In that case, check that the current register class includes the 573 // physical register and is a sub class of the specified RC. 574 assert((VRegRC == RC || (VRegRC->contains(PReg) && 575 RC->hasSubClassEq(VRegRC))) && 576 "Register class mismatch!"); 577 return VReg; 578 } 579 VReg = MRI.createVirtualRegister(RC); 580 MRI.addLiveIn(PReg, VReg); 581 return VReg; 582 } 583 584 /// Return the MCSymbol for the specified non-empty jump table. 585 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 586 /// normal 'L' label is returned. 587 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 588 bool isLinkerPrivate) const { 589 const DataLayout &DL = getDataLayout(); 590 assert(JumpTableInfo && "No jump tables"); 591 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 592 593 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 594 : DL.getPrivateGlobalPrefix(); 595 SmallString<60> Name; 596 raw_svector_ostream(Name) 597 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 598 return Ctx.getOrCreateSymbol(Name); 599 } 600 601 /// Return a function-local symbol to represent the PIC base. 602 MCSymbol *MachineFunction::getPICBaseSymbol() const { 603 const DataLayout &DL = getDataLayout(); 604 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 605 Twine(getFunctionNumber()) + "$pb"); 606 } 607 608 /// \name Exception Handling 609 /// \{ 610 611 LandingPadInfo & 612 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 613 unsigned N = LandingPads.size(); 614 for (unsigned i = 0; i < N; ++i) { 615 LandingPadInfo &LP = LandingPads[i]; 616 if (LP.LandingPadBlock == LandingPad) 617 return LP; 618 } 619 620 LandingPads.push_back(LandingPadInfo(LandingPad)); 621 return LandingPads[N]; 622 } 623 624 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 625 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 626 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 627 LP.BeginLabels.push_back(BeginLabel); 628 LP.EndLabels.push_back(EndLabel); 629 } 630 631 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 632 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 633 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 634 LP.LandingPadLabel = LandingPadLabel; 635 636 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 637 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 638 if (const auto *PF = 639 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 640 getMMI().addPersonality(PF); 641 642 if (LPI->isCleanup()) 643 addCleanup(LandingPad); 644 645 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 646 // correct, but we need to do it this way because of how the DWARF EH 647 // emitter processes the clauses. 648 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 649 Value *Val = LPI->getClause(I - 1); 650 if (LPI->isCatch(I - 1)) { 651 addCatchTypeInfo(LandingPad, 652 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 653 } else { 654 // Add filters in a list. 655 auto *CVal = cast<Constant>(Val); 656 SmallVector<const GlobalValue *, 4> FilterList; 657 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 658 II != IE; ++II) 659 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 660 661 addFilterTypeInfo(LandingPad, FilterList); 662 } 663 } 664 665 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 666 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 667 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 668 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 669 } 670 671 } else { 672 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 673 } 674 675 return LandingPadLabel; 676 } 677 678 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 679 ArrayRef<const GlobalValue *> TyInfo) { 680 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 681 for (unsigned N = TyInfo.size(); N; --N) 682 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 683 } 684 685 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 686 ArrayRef<const GlobalValue *> TyInfo) { 687 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 688 std::vector<unsigned> IdsInFilter(TyInfo.size()); 689 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 690 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 691 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 692 } 693 694 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 695 bool TidyIfNoBeginLabels) { 696 for (unsigned i = 0; i != LandingPads.size(); ) { 697 LandingPadInfo &LandingPad = LandingPads[i]; 698 if (LandingPad.LandingPadLabel && 699 !LandingPad.LandingPadLabel->isDefined() && 700 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 701 LandingPad.LandingPadLabel = nullptr; 702 703 // Special case: we *should* emit LPs with null LP MBB. This indicates 704 // "nounwind" case. 705 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 706 LandingPads.erase(LandingPads.begin() + i); 707 continue; 708 } 709 710 if (TidyIfNoBeginLabels) { 711 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 712 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 713 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 714 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 715 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 716 continue; 717 718 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 719 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 720 --j; 721 --e; 722 } 723 724 // Remove landing pads with no try-ranges. 725 if (LandingPads[i].BeginLabels.empty()) { 726 LandingPads.erase(LandingPads.begin() + i); 727 continue; 728 } 729 } 730 731 // If there is no landing pad, ensure that the list of typeids is empty. 732 // If the only typeid is a cleanup, this is the same as having no typeids. 733 if (!LandingPad.LandingPadBlock || 734 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 735 LandingPad.TypeIds.clear(); 736 ++i; 737 } 738 } 739 740 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 741 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 742 LP.TypeIds.push_back(0); 743 } 744 745 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 746 const Function *Filter, 747 const BlockAddress *RecoverBA) { 748 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 749 SEHHandler Handler; 750 Handler.FilterOrFinally = Filter; 751 Handler.RecoverBA = RecoverBA; 752 LP.SEHHandlers.push_back(Handler); 753 } 754 755 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 756 const Function *Cleanup) { 757 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 758 SEHHandler Handler; 759 Handler.FilterOrFinally = Cleanup; 760 Handler.RecoverBA = nullptr; 761 LP.SEHHandlers.push_back(Handler); 762 } 763 764 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 765 ArrayRef<unsigned> Sites) { 766 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 767 } 768 769 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 770 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 771 if (TypeInfos[i] == TI) return i + 1; 772 773 TypeInfos.push_back(TI); 774 return TypeInfos.size(); 775 } 776 777 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 778 // If the new filter coincides with the tail of an existing filter, then 779 // re-use the existing filter. Folding filters more than this requires 780 // re-ordering filters and/or their elements - probably not worth it. 781 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 782 E = FilterEnds.end(); I != E; ++I) { 783 unsigned i = *I, j = TyIds.size(); 784 785 while (i && j) 786 if (FilterIds[--i] != TyIds[--j]) 787 goto try_next; 788 789 if (!j) 790 // The new filter coincides with range [i, end) of the existing filter. 791 return -(1 + i); 792 793 try_next:; 794 } 795 796 // Add the new filter. 797 int FilterID = -(1 + FilterIds.size()); 798 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 799 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 800 FilterEnds.push_back(FilterIds.size()); 801 FilterIds.push_back(0); // terminator 802 return FilterID; 803 } 804 805 /// \} 806 807 //===----------------------------------------------------------------------===// 808 // MachineJumpTableInfo implementation 809 //===----------------------------------------------------------------------===// 810 811 /// Return the size of each entry in the jump table. 812 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 813 // The size of a jump table entry is 4 bytes unless the entry is just the 814 // address of a block, in which case it is the pointer size. 815 switch (getEntryKind()) { 816 case MachineJumpTableInfo::EK_BlockAddress: 817 return TD.getPointerSize(); 818 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 819 return 8; 820 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 821 case MachineJumpTableInfo::EK_LabelDifference32: 822 case MachineJumpTableInfo::EK_Custom32: 823 return 4; 824 case MachineJumpTableInfo::EK_Inline: 825 return 0; 826 } 827 llvm_unreachable("Unknown jump table encoding!"); 828 } 829 830 /// Return the alignment of each entry in the jump table. 831 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 832 // The alignment of a jump table entry is the alignment of int32 unless the 833 // entry is just the address of a block, in which case it is the pointer 834 // alignment. 835 switch (getEntryKind()) { 836 case MachineJumpTableInfo::EK_BlockAddress: 837 return TD.getPointerABIAlignment(0); 838 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 839 return TD.getABIIntegerTypeAlignment(64); 840 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 841 case MachineJumpTableInfo::EK_LabelDifference32: 842 case MachineJumpTableInfo::EK_Custom32: 843 return TD.getABIIntegerTypeAlignment(32); 844 case MachineJumpTableInfo::EK_Inline: 845 return 1; 846 } 847 llvm_unreachable("Unknown jump table encoding!"); 848 } 849 850 /// Create a new jump table entry in the jump table info. 851 unsigned MachineJumpTableInfo::createJumpTableIndex( 852 const std::vector<MachineBasicBlock*> &DestBBs) { 853 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 854 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 855 return JumpTables.size()-1; 856 } 857 858 /// If Old is the target of any jump tables, update the jump tables to branch 859 /// to New instead. 860 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 861 MachineBasicBlock *New) { 862 assert(Old != New && "Not making a change?"); 863 bool MadeChange = false; 864 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 865 ReplaceMBBInJumpTable(i, Old, New); 866 return MadeChange; 867 } 868 869 /// If Old is a target of the jump tables, update the jump table to branch to 870 /// New instead. 871 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 872 MachineBasicBlock *Old, 873 MachineBasicBlock *New) { 874 assert(Old != New && "Not making a change?"); 875 bool MadeChange = false; 876 MachineJumpTableEntry &JTE = JumpTables[Idx]; 877 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 878 if (JTE.MBBs[j] == Old) { 879 JTE.MBBs[j] = New; 880 MadeChange = true; 881 } 882 return MadeChange; 883 } 884 885 void MachineJumpTableInfo::print(raw_ostream &OS) const { 886 if (JumpTables.empty()) return; 887 888 OS << "Jump Tables:\n"; 889 890 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 891 OS << printJumpTableEntryReference(i) << ": "; 892 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 893 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 894 } 895 896 OS << '\n'; 897 } 898 899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 900 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 901 #endif 902 903 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 904 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 905 } 906 907 //===----------------------------------------------------------------------===// 908 // MachineConstantPool implementation 909 //===----------------------------------------------------------------------===// 910 911 void MachineConstantPoolValue::anchor() {} 912 913 Type *MachineConstantPoolEntry::getType() const { 914 if (isMachineConstantPoolEntry()) 915 return Val.MachineCPVal->getType(); 916 return Val.ConstVal->getType(); 917 } 918 919 bool MachineConstantPoolEntry::needsRelocation() const { 920 if (isMachineConstantPoolEntry()) 921 return true; 922 return Val.ConstVal->needsRelocation(); 923 } 924 925 SectionKind 926 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 927 if (needsRelocation()) 928 return SectionKind::getReadOnlyWithRel(); 929 switch (DL->getTypeAllocSize(getType())) { 930 case 4: 931 return SectionKind::getMergeableConst4(); 932 case 8: 933 return SectionKind::getMergeableConst8(); 934 case 16: 935 return SectionKind::getMergeableConst16(); 936 case 32: 937 return SectionKind::getMergeableConst32(); 938 default: 939 return SectionKind::getReadOnly(); 940 } 941 } 942 943 MachineConstantPool::~MachineConstantPool() { 944 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 945 // so keep track of which we've deleted to avoid double deletions. 946 DenseSet<MachineConstantPoolValue*> Deleted; 947 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 948 if (Constants[i].isMachineConstantPoolEntry()) { 949 Deleted.insert(Constants[i].Val.MachineCPVal); 950 delete Constants[i].Val.MachineCPVal; 951 } 952 for (DenseSet<MachineConstantPoolValue*>::iterator I = 953 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 954 I != E; ++I) { 955 if (Deleted.count(*I) == 0) 956 delete *I; 957 } 958 } 959 960 /// Test whether the given two constants can be allocated the same constant pool 961 /// entry. 962 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 963 const DataLayout &DL) { 964 // Handle the trivial case quickly. 965 if (A == B) return true; 966 967 // If they have the same type but weren't the same constant, quickly 968 // reject them. 969 if (A->getType() == B->getType()) return false; 970 971 // We can't handle structs or arrays. 972 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 973 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 974 return false; 975 976 // For now, only support constants with the same size. 977 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 978 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 979 return false; 980 981 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 982 983 // Try constant folding a bitcast of both instructions to an integer. If we 984 // get two identical ConstantInt's, then we are good to share them. We use 985 // the constant folding APIs to do this so that we get the benefit of 986 // DataLayout. 987 if (isa<PointerType>(A->getType())) 988 A = ConstantFoldCastOperand(Instruction::PtrToInt, 989 const_cast<Constant *>(A), IntTy, DL); 990 else if (A->getType() != IntTy) 991 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 992 IntTy, DL); 993 if (isa<PointerType>(B->getType())) 994 B = ConstantFoldCastOperand(Instruction::PtrToInt, 995 const_cast<Constant *>(B), IntTy, DL); 996 else if (B->getType() != IntTy) 997 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 998 IntTy, DL); 999 1000 return A == B; 1001 } 1002 1003 /// Create a new entry in the constant pool or return an existing one. 1004 /// User must specify the log2 of the minimum required alignment for the object. 1005 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1006 unsigned Alignment) { 1007 assert(Alignment && "Alignment must be specified!"); 1008 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1009 1010 // Check to see if we already have this constant. 1011 // 1012 // FIXME, this could be made much more efficient for large constant pools. 1013 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1014 if (!Constants[i].isMachineConstantPoolEntry() && 1015 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1016 if ((unsigned)Constants[i].getAlignment() < Alignment) 1017 Constants[i].Alignment = Alignment; 1018 return i; 1019 } 1020 1021 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1022 return Constants.size()-1; 1023 } 1024 1025 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1026 unsigned Alignment) { 1027 assert(Alignment && "Alignment must be specified!"); 1028 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1029 1030 // Check to see if we already have this constant. 1031 // 1032 // FIXME, this could be made much more efficient for large constant pools. 1033 int Idx = V->getExistingMachineCPValue(this, Alignment); 1034 if (Idx != -1) { 1035 MachineCPVsSharingEntries.insert(V); 1036 return (unsigned)Idx; 1037 } 1038 1039 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1040 return Constants.size()-1; 1041 } 1042 1043 void MachineConstantPool::print(raw_ostream &OS) const { 1044 if (Constants.empty()) return; 1045 1046 OS << "Constant Pool:\n"; 1047 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1048 OS << " cp#" << i << ": "; 1049 if (Constants[i].isMachineConstantPoolEntry()) 1050 Constants[i].Val.MachineCPVal->print(OS); 1051 else 1052 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1053 OS << ", align=" << Constants[i].getAlignment(); 1054 OS << "\n"; 1055 } 1056 } 1057 1058 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1059 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1060 #endif 1061