xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 735ab61ac828bd61398e6847d60e308fdf2b54ec)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #include "LiveDebugValues/LiveDebugValues.h"
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "codegen"
83 
84 static cl::opt<unsigned> AlignAllFunctions(
85     "align-all-functions",
86     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87              "means align on 16B boundaries)."),
88     cl::init(0), cl::Hidden);
89 
90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91   using P = MachineFunctionProperties::Property;
92 
93   // clang-format off
94   switch(Prop) {
95   case P::FailedISel: return "FailedISel";
96   case P::IsSSA: return "IsSSA";
97   case P::Legalized: return "Legalized";
98   case P::NoPHIs: return "NoPHIs";
99   case P::NoVRegs: return "NoVRegs";
100   case P::RegBankSelected: return "RegBankSelected";
101   case P::Selected: return "Selected";
102   case P::TracksLiveness: return "TracksLiveness";
103   case P::TiedOpsRewritten: return "TiedOpsRewritten";
104   case P::FailsVerification: return "FailsVerification";
105   case P::TracksDebugUserValues: return "TracksDebugUserValues";
106   }
107   // clang-format on
108   llvm_unreachable("Invalid machine function property");
109 }
110 
111 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
112   if (!F.hasFnAttribute(Attribute::SafeStack))
113     return;
114 
115   auto *Existing =
116       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
117 
118   if (!Existing || Existing->getNumOperands() != 2)
119     return;
120 
121   auto *MetadataName = "unsafe-stack-size";
122   if (auto &N = Existing->getOperand(0)) {
123     if (N.equalsStr(MetadataName)) {
124       if (auto &Op = Existing->getOperand(1)) {
125         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
126         FrameInfo.setUnsafeStackSize(Val);
127       }
128     }
129   }
130 }
131 
132 // Pin the vtable to this file.
133 void MachineFunction::Delegate::anchor() {}
134 
135 void MachineFunctionProperties::print(raw_ostream &OS) const {
136   const char *Separator = "";
137   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
138     if (!Properties[I])
139       continue;
140     OS << Separator << getPropertyName(static_cast<Property>(I));
141     Separator = ", ";
142   }
143 }
144 
145 //===----------------------------------------------------------------------===//
146 // MachineFunction implementation
147 //===----------------------------------------------------------------------===//
148 
149 // Out-of-line virtual method.
150 MachineFunctionInfo::~MachineFunctionInfo() = default;
151 
152 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
153   MBB->getParent()->deleteMachineBasicBlock(MBB);
154 }
155 
156 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
157                                            const Function &F) {
158   if (auto MA = F.getFnStackAlign())
159     return *MA;
160   return STI->getFrameLowering()->getStackAlign();
161 }
162 
163 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
164                                  const TargetSubtargetInfo &STI, MCContext &Ctx,
165                                  unsigned FunctionNum)
166     : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
167   FunctionNumber = FunctionNum;
168   init();
169 }
170 
171 void MachineFunction::handleInsertion(MachineInstr &MI) {
172   if (TheDelegate)
173     TheDelegate->MF_HandleInsertion(MI);
174 }
175 
176 void MachineFunction::handleRemoval(MachineInstr &MI) {
177   if (TheDelegate)
178     TheDelegate->MF_HandleRemoval(MI);
179 }
180 
181 void MachineFunction::handleChangeDesc(MachineInstr &MI,
182                                        const MCInstrDesc &TID) {
183   if (TheDelegate)
184     TheDelegate->MF_HandleChangeDesc(MI, TID);
185 }
186 
187 void MachineFunction::init() {
188   // Assume the function starts in SSA form with correct liveness.
189   Properties.set(MachineFunctionProperties::Property::IsSSA);
190   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
191   if (STI->getRegisterInfo())
192     RegInfo = new (Allocator) MachineRegisterInfo(this);
193   else
194     RegInfo = nullptr;
195 
196   MFInfo = nullptr;
197 
198   // We can realign the stack if the target supports it and the user hasn't
199   // explicitly asked us not to.
200   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
201                       !F.hasFnAttribute("no-realign-stack");
202   bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) ||
203                         F.hasFnAttribute("stackrealign");
204   FrameInfo = new (Allocator) MachineFrameInfo(
205       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
206       /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
207 
208   setUnsafeStackSize(F, *FrameInfo);
209 
210   if (F.hasFnAttribute(Attribute::StackAlignment))
211     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
212 
213   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
214   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
215 
216   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
217   // FIXME: Use Function::hasOptSize().
218   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
219     Alignment = std::max(Alignment,
220                          STI->getTargetLowering()->getPrefFunctionAlignment());
221 
222   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
223   // to load a type hash before the function label. Ensure functions are aligned
224   // by a least 4 to avoid unaligned access, which is especially important for
225   // -mno-unaligned-access.
226   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
227       F.getMetadata(LLVMContext::MD_kcfi_type))
228     Alignment = std::max(Alignment, Align(4));
229 
230   if (AlignAllFunctions)
231     Alignment = Align(1ULL << AlignAllFunctions);
232 
233   JumpTableInfo = nullptr;
234 
235   if (isFuncletEHPersonality(classifyEHPersonality(
236           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
237     WinEHInfo = new (Allocator) WinEHFuncInfo();
238   }
239 
240   if (isScopedEHPersonality(classifyEHPersonality(
241           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
242     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
243   }
244 
245   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
246          "Can't create a MachineFunction using a Module with a "
247          "Target-incompatible DataLayout attached\n");
248 
249   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
250 }
251 
252 void MachineFunction::initTargetMachineFunctionInfo(
253     const TargetSubtargetInfo &STI) {
254   assert(!MFInfo && "MachineFunctionInfo already set");
255   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
256 }
257 
258 MachineFunction::~MachineFunction() {
259   clear();
260 }
261 
262 void MachineFunction::clear() {
263   Properties.reset();
264   // Don't call destructors on MachineInstr and MachineOperand. All of their
265   // memory comes from the BumpPtrAllocator which is about to be purged.
266   //
267   // Do call MachineBasicBlock destructors, it contains std::vectors.
268   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
269     I->Insts.clearAndLeakNodesUnsafely();
270   MBBNumbering.clear();
271 
272   InstructionRecycler.clear(Allocator);
273   OperandRecycler.clear(Allocator);
274   BasicBlockRecycler.clear(Allocator);
275   CodeViewAnnotations.clear();
276   VariableDbgInfos.clear();
277   if (RegInfo) {
278     RegInfo->~MachineRegisterInfo();
279     Allocator.Deallocate(RegInfo);
280   }
281   if (MFInfo) {
282     MFInfo->~MachineFunctionInfo();
283     Allocator.Deallocate(MFInfo);
284   }
285 
286   FrameInfo->~MachineFrameInfo();
287   Allocator.Deallocate(FrameInfo);
288 
289   ConstantPool->~MachineConstantPool();
290   Allocator.Deallocate(ConstantPool);
291 
292   if (JumpTableInfo) {
293     JumpTableInfo->~MachineJumpTableInfo();
294     Allocator.Deallocate(JumpTableInfo);
295   }
296 
297   if (WinEHInfo) {
298     WinEHInfo->~WinEHFuncInfo();
299     Allocator.Deallocate(WinEHInfo);
300   }
301 
302   if (WasmEHInfo) {
303     WasmEHInfo->~WasmEHFuncInfo();
304     Allocator.Deallocate(WasmEHInfo);
305   }
306 }
307 
308 const DataLayout &MachineFunction::getDataLayout() const {
309   return F.getDataLayout();
310 }
311 
312 /// Get the JumpTableInfo for this function.
313 /// If it does not already exist, allocate one.
314 MachineJumpTableInfo *MachineFunction::
315 getOrCreateJumpTableInfo(unsigned EntryKind) {
316   if (JumpTableInfo) return JumpTableInfo;
317 
318   JumpTableInfo = new (Allocator)
319     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
320   return JumpTableInfo;
321 }
322 
323 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
324   return F.getDenormalMode(FPType);
325 }
326 
327 /// Should we be emitting segmented stack stuff for the function
328 bool MachineFunction::shouldSplitStack() const {
329   return getFunction().hasFnAttribute("split-stack");
330 }
331 
332 [[nodiscard]] unsigned
333 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
334   FrameInstructions.push_back(Inst);
335   return FrameInstructions.size() - 1;
336 }
337 
338 /// This discards all of the MachineBasicBlock numbers and recomputes them.
339 /// This guarantees that the MBB numbers are sequential, dense, and match the
340 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
341 /// is specified, only that block and those after it are renumbered.
342 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
343   if (empty()) { MBBNumbering.clear(); return; }
344   MachineFunction::iterator MBBI, E = end();
345   if (MBB == nullptr)
346     MBBI = begin();
347   else
348     MBBI = MBB->getIterator();
349 
350   // Figure out the block number this should have.
351   unsigned BlockNo = 0;
352   if (MBBI != begin())
353     BlockNo = std::prev(MBBI)->getNumber() + 1;
354 
355   for (; MBBI != E; ++MBBI, ++BlockNo) {
356     if (MBBI->getNumber() != (int)BlockNo) {
357       // Remove use of the old number.
358       if (MBBI->getNumber() != -1) {
359         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
360                "MBB number mismatch!");
361         MBBNumbering[MBBI->getNumber()] = nullptr;
362       }
363 
364       // If BlockNo is already taken, set that block's number to -1.
365       if (MBBNumbering[BlockNo])
366         MBBNumbering[BlockNo]->setNumber(-1);
367 
368       MBBNumbering[BlockNo] = &*MBBI;
369       MBBI->setNumber(BlockNo);
370     }
371   }
372 
373   // Okay, all the blocks are renumbered.  If we have compactified the block
374   // numbering, shrink MBBNumbering now.
375   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
376   MBBNumbering.resize(BlockNo);
377   MBBNumberingEpoch++;
378 }
379 
380 int64_t MachineFunction::estimateFunctionSizeInBytes() {
381   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
382   const Align FunctionAlignment = getAlignment();
383   MachineFunction::iterator MBBI = begin(), E = end();
384   /// Offset - Distance from the beginning of the function to the end
385   /// of the basic block.
386   int64_t Offset = 0;
387 
388   for (; MBBI != E; ++MBBI) {
389     const Align Alignment = MBBI->getAlignment();
390     int64_t BlockSize = 0;
391 
392     for (auto &MI : *MBBI) {
393       BlockSize += TII.getInstSizeInBytes(MI);
394     }
395 
396     int64_t OffsetBB;
397     if (Alignment <= FunctionAlignment) {
398       OffsetBB = alignTo(Offset, Alignment);
399     } else {
400       // The alignment of this MBB is larger than the function's alignment, so
401       // we can't tell whether or not it will insert nops. Assume that it will.
402       OffsetBB = alignTo(Offset, Alignment) + Alignment.value() -
403                  FunctionAlignment.value();
404     }
405     Offset = OffsetBB + BlockSize;
406   }
407 
408   return Offset;
409 }
410 
411 /// This method iterates over the basic blocks and assigns their IsBeginSection
412 /// and IsEndSection fields. This must be called after MBB layout is finalized
413 /// and the SectionID's are assigned to MBBs.
414 void MachineFunction::assignBeginEndSections() {
415   front().setIsBeginSection();
416   auto CurrentSectionID = front().getSectionID();
417   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
418     if (MBBI->getSectionID() == CurrentSectionID)
419       continue;
420     MBBI->setIsBeginSection();
421     std::prev(MBBI)->setIsEndSection();
422     CurrentSectionID = MBBI->getSectionID();
423   }
424   back().setIsEndSection();
425 }
426 
427 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
428 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
429                                                   DebugLoc DL,
430                                                   bool NoImplicit) {
431   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
432       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
433 }
434 
435 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
436 /// identical in all ways except the instruction has no parent, prev, or next.
437 MachineInstr *
438 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
439   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
440              MachineInstr(*this, *Orig);
441 }
442 
443 MachineInstr &MachineFunction::cloneMachineInstrBundle(
444     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
445     const MachineInstr &Orig) {
446   MachineInstr *FirstClone = nullptr;
447   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
448   while (true) {
449     MachineInstr *Cloned = CloneMachineInstr(&*I);
450     MBB.insert(InsertBefore, Cloned);
451     if (FirstClone == nullptr) {
452       FirstClone = Cloned;
453     } else {
454       Cloned->bundleWithPred();
455     }
456 
457     if (!I->isBundledWithSucc())
458       break;
459     ++I;
460   }
461   // Copy over call site info to the cloned instruction if needed. If Orig is in
462   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
463   // the bundle.
464   if (Orig.shouldUpdateCallSiteInfo())
465     copyCallSiteInfo(&Orig, FirstClone);
466   return *FirstClone;
467 }
468 
469 /// Delete the given MachineInstr.
470 ///
471 /// This function also serves as the MachineInstr destructor - the real
472 /// ~MachineInstr() destructor must be empty.
473 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
474   // Verify that a call site info is at valid state. This assertion should
475   // be triggered during the implementation of support for the
476   // call site info of a new architecture. If the assertion is triggered,
477   // back trace will tell where to insert a call to updateCallSiteInfo().
478   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
479          "Call site info was not updated!");
480   // Strip it for parts. The operand array and the MI object itself are
481   // independently recyclable.
482   if (MI->Operands)
483     deallocateOperandArray(MI->CapOperands, MI->Operands);
484   // Don't call ~MachineInstr() which must be trivial anyway because
485   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
486   // destructors.
487   InstructionRecycler.Deallocate(Allocator, MI);
488 }
489 
490 /// Allocate a new MachineBasicBlock. Use this instead of
491 /// `new MachineBasicBlock'.
492 MachineBasicBlock *
493 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
494                                          std::optional<UniqueBBID> BBID) {
495   MachineBasicBlock *MBB =
496       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
497           MachineBasicBlock(*this, BB);
498   // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
499   // allow robust mapping of profiles to basic blocks.
500   if (Target.Options.BBAddrMap ||
501       Target.getBBSectionsType() == BasicBlockSection::List)
502     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
503   return MBB;
504 }
505 
506 /// Delete the given MachineBasicBlock.
507 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
508   assert(MBB->getParent() == this && "MBB parent mismatch!");
509   // Clean up any references to MBB in jump tables before deleting it.
510   if (JumpTableInfo)
511     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
512   MBB->~MachineBasicBlock();
513   BasicBlockRecycler.Deallocate(Allocator, MBB);
514 }
515 
516 MachineMemOperand *MachineFunction::getMachineMemOperand(
517     MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
518     Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
519     SyncScope::ID SSID, AtomicOrdering Ordering,
520     AtomicOrdering FailureOrdering) {
521   assert((!Size.hasValue() ||
522           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
523          "Unexpected an unknown size to be represented using "
524          "LocationSize::beforeOrAfter()");
525   return new (Allocator)
526       MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
527                         Ordering, FailureOrdering);
528 }
529 
530 MachineMemOperand *MachineFunction::getMachineMemOperand(
531     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
532     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
533     SyncScope::ID SSID, AtomicOrdering Ordering,
534     AtomicOrdering FailureOrdering) {
535   return new (Allocator)
536       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
537                         Ordering, FailureOrdering);
538 }
539 
540 MachineMemOperand *
541 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
542                                       const MachinePointerInfo &PtrInfo,
543                                       LocationSize Size) {
544   assert((!Size.hasValue() ||
545           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
546          "Unexpected an unknown size to be represented using "
547          "LocationSize::beforeOrAfter()");
548   return new (Allocator)
549       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
550                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
551                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
552 }
553 
554 MachineMemOperand *MachineFunction::getMachineMemOperand(
555     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
556   return new (Allocator)
557       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
558                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
559                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
560 }
561 
562 MachineMemOperand *
563 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
564                                       int64_t Offset, LLT Ty) {
565   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
566 
567   // If there is no pointer value, the offset isn't tracked so we need to adjust
568   // the base alignment.
569   Align Alignment = PtrInfo.V.isNull()
570                         ? commonAlignment(MMO->getBaseAlign(), Offset)
571                         : MMO->getBaseAlign();
572 
573   // Do not preserve ranges, since we don't necessarily know what the high bits
574   // are anymore.
575   return new (Allocator) MachineMemOperand(
576       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
577       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
578       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
579 }
580 
581 MachineMemOperand *
582 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
583                                       const AAMDNodes &AAInfo) {
584   MachinePointerInfo MPI = MMO->getValue() ?
585              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
586              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
587 
588   return new (Allocator) MachineMemOperand(
589       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
590       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
591       MMO->getFailureOrdering());
592 }
593 
594 MachineMemOperand *
595 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
596                                       MachineMemOperand::Flags Flags) {
597   return new (Allocator) MachineMemOperand(
598       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
599       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
600       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
601 }
602 
603 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
604     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
605     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
606     uint32_t CFIType, MDNode *MMRAs) {
607   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
608                                          PostInstrSymbol, HeapAllocMarker,
609                                          PCSections, CFIType, MMRAs);
610 }
611 
612 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
613   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
614   llvm::copy(Name, Dest);
615   Dest[Name.size()] = 0;
616   return Dest;
617 }
618 
619 uint32_t *MachineFunction::allocateRegMask() {
620   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
621   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
622   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
623   memset(Mask, 0, Size * sizeof(Mask[0]));
624   return Mask;
625 }
626 
627 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
628   int* AllocMask = Allocator.Allocate<int>(Mask.size());
629   copy(Mask, AllocMask);
630   return {AllocMask, Mask.size()};
631 }
632 
633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
634 LLVM_DUMP_METHOD void MachineFunction::dump() const {
635   print(dbgs());
636 }
637 #endif
638 
639 StringRef MachineFunction::getName() const {
640   return getFunction().getName();
641 }
642 
643 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
644   OS << "# Machine code for function " << getName() << ": ";
645   getProperties().print(OS);
646   OS << '\n';
647 
648   // Print Frame Information
649   FrameInfo->print(*this, OS);
650 
651   // Print JumpTable Information
652   if (JumpTableInfo)
653     JumpTableInfo->print(OS);
654 
655   // Print Constant Pool
656   ConstantPool->print(OS);
657 
658   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
659 
660   if (RegInfo && !RegInfo->livein_empty()) {
661     OS << "Function Live Ins: ";
662     for (MachineRegisterInfo::livein_iterator
663          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
664       OS << printReg(I->first, TRI);
665       if (I->second)
666         OS << " in " << printReg(I->second, TRI);
667       if (std::next(I) != E)
668         OS << ", ";
669     }
670     OS << '\n';
671   }
672 
673   ModuleSlotTracker MST(getFunction().getParent());
674   MST.incorporateFunction(getFunction());
675   for (const auto &BB : *this) {
676     OS << '\n';
677     // If we print the whole function, print it at its most verbose level.
678     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
679   }
680 
681   OS << "\n# End machine code for function " << getName() << ".\n\n";
682 }
683 
684 /// True if this function needs frame moves for debug or exceptions.
685 bool MachineFunction::needsFrameMoves() const {
686   // TODO: Ideally, what we'd like is to have a switch that allows emitting
687   // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
688   // under this switch, we'd like .debug_frame to be precise when using -g. At
689   // this moment, there's no way to specify that some CFI directives go into
690   // .eh_frame only, while others go into .debug_frame only.
691   return getTarget().Options.ForceDwarfFrameSection ||
692          F.needsUnwindTableEntry() ||
693          !F.getParent()->debug_compile_units().empty();
694 }
695 
696 namespace llvm {
697 
698   template<>
699   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
700     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
701 
702     static std::string getGraphName(const MachineFunction *F) {
703       return ("CFG for '" + F->getName() + "' function").str();
704     }
705 
706     std::string getNodeLabel(const MachineBasicBlock *Node,
707                              const MachineFunction *Graph) {
708       std::string OutStr;
709       {
710         raw_string_ostream OSS(OutStr);
711 
712         if (isSimple()) {
713           OSS << printMBBReference(*Node);
714           if (const BasicBlock *BB = Node->getBasicBlock())
715             OSS << ": " << BB->getName();
716         } else
717           Node->print(OSS);
718       }
719 
720       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
721 
722       // Process string output to make it nicer...
723       for (unsigned i = 0; i != OutStr.length(); ++i)
724         if (OutStr[i] == '\n') {                            // Left justify
725           OutStr[i] = '\\';
726           OutStr.insert(OutStr.begin()+i+1, 'l');
727         }
728       return OutStr;
729     }
730   };
731 
732 } // end namespace llvm
733 
734 void MachineFunction::viewCFG() const
735 {
736 #ifndef NDEBUG
737   ViewGraph(this, "mf" + getName());
738 #else
739   errs() << "MachineFunction::viewCFG is only available in debug builds on "
740          << "systems with Graphviz or gv!\n";
741 #endif // NDEBUG
742 }
743 
744 void MachineFunction::viewCFGOnly() const
745 {
746 #ifndef NDEBUG
747   ViewGraph(this, "mf" + getName(), true);
748 #else
749   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
750          << "systems with Graphviz or gv!\n";
751 #endif // NDEBUG
752 }
753 
754 /// Add the specified physical register as a live-in value and
755 /// create a corresponding virtual register for it.
756 Register MachineFunction::addLiveIn(MCRegister PReg,
757                                     const TargetRegisterClass *RC) {
758   MachineRegisterInfo &MRI = getRegInfo();
759   Register VReg = MRI.getLiveInVirtReg(PReg);
760   if (VReg) {
761     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
762     (void)VRegRC;
763     // A physical register can be added several times.
764     // Between two calls, the register class of the related virtual register
765     // may have been constrained to match some operation constraints.
766     // In that case, check that the current register class includes the
767     // physical register and is a sub class of the specified RC.
768     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
769                              RC->hasSubClassEq(VRegRC))) &&
770             "Register class mismatch!");
771     return VReg;
772   }
773   VReg = MRI.createVirtualRegister(RC);
774   MRI.addLiveIn(PReg, VReg);
775   return VReg;
776 }
777 
778 /// Return the MCSymbol for the specified non-empty jump table.
779 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
780 /// normal 'L' label is returned.
781 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
782                                         bool isLinkerPrivate) const {
783   const DataLayout &DL = getDataLayout();
784   assert(JumpTableInfo && "No jump tables");
785   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
786 
787   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
788                                      : DL.getPrivateGlobalPrefix();
789   SmallString<60> Name;
790   raw_svector_ostream(Name)
791     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
792   return Ctx.getOrCreateSymbol(Name);
793 }
794 
795 /// Return a function-local symbol to represent the PIC base.
796 MCSymbol *MachineFunction::getPICBaseSymbol() const {
797   const DataLayout &DL = getDataLayout();
798   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
799                                Twine(getFunctionNumber()) + "$pb");
800 }
801 
802 /// \name Exception Handling
803 /// \{
804 
805 LandingPadInfo &
806 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
807   unsigned N = LandingPads.size();
808   for (unsigned i = 0; i < N; ++i) {
809     LandingPadInfo &LP = LandingPads[i];
810     if (LP.LandingPadBlock == LandingPad)
811       return LP;
812   }
813 
814   LandingPads.push_back(LandingPadInfo(LandingPad));
815   return LandingPads[N];
816 }
817 
818 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
819                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
820   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
821   LP.BeginLabels.push_back(BeginLabel);
822   LP.EndLabels.push_back(EndLabel);
823 }
824 
825 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
826   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
827   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
828   LP.LandingPadLabel = LandingPadLabel;
829 
830   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
831   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
832     // If there's no typeid list specified, then "cleanup" is implicit.
833     // Otherwise, id 0 is reserved for the cleanup action.
834     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
835       LP.TypeIds.push_back(0);
836 
837     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
838     //        correct, but we need to do it this way because of how the DWARF EH
839     //        emitter processes the clauses.
840     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
841       Value *Val = LPI->getClause(I - 1);
842       if (LPI->isCatch(I - 1)) {
843         LP.TypeIds.push_back(
844             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
845       } else {
846         // Add filters in a list.
847         auto *CVal = cast<Constant>(Val);
848         SmallVector<unsigned, 4> FilterList;
849         for (const Use &U : CVal->operands())
850           FilterList.push_back(
851               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
852 
853         LP.TypeIds.push_back(getFilterIDFor(FilterList));
854       }
855     }
856 
857   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
858     for (unsigned I = CPI->arg_size(); I != 0; --I) {
859       auto *TypeInfo =
860           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
861       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
862     }
863 
864   } else {
865     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
866   }
867 
868   return LandingPadLabel;
869 }
870 
871 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
872                                             ArrayRef<unsigned> Sites) {
873   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
874 }
875 
876 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
877   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
878     if (TypeInfos[i] == TI) return i + 1;
879 
880   TypeInfos.push_back(TI);
881   return TypeInfos.size();
882 }
883 
884 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
885   // If the new filter coincides with the tail of an existing filter, then
886   // re-use the existing filter.  Folding filters more than this requires
887   // re-ordering filters and/or their elements - probably not worth it.
888   for (unsigned i : FilterEnds) {
889     unsigned j = TyIds.size();
890 
891     while (i && j)
892       if (FilterIds[--i] != TyIds[--j])
893         goto try_next;
894 
895     if (!j)
896       // The new filter coincides with range [i, end) of the existing filter.
897       return -(1 + i);
898 
899 try_next:;
900   }
901 
902   // Add the new filter.
903   int FilterID = -(1 + FilterIds.size());
904   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
905   llvm::append_range(FilterIds, TyIds);
906   FilterEnds.push_back(FilterIds.size());
907   FilterIds.push_back(0); // terminator
908   return FilterID;
909 }
910 
911 MachineFunction::CallSiteInfoMap::iterator
912 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
913   assert(MI->isCandidateForCallSiteEntry() &&
914          "Call site info refers only to call (MI) candidates");
915 
916   if (!Target.Options.EmitCallSiteInfo)
917     return CallSitesInfo.end();
918   return CallSitesInfo.find(MI);
919 }
920 
921 /// Return the call machine instruction or find a call within bundle.
922 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
923   if (!MI->isBundle())
924     return MI;
925 
926   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
927                                     getBundleEnd(MI->getIterator())))
928     if (BMI.isCandidateForCallSiteEntry())
929       return &BMI;
930 
931   llvm_unreachable("Unexpected bundle without a call site candidate");
932 }
933 
934 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
935   assert(MI->shouldUpdateCallSiteInfo() &&
936          "Call site info refers only to call (MI) candidates or "
937          "candidates inside bundles");
938 
939   const MachineInstr *CallMI = getCallInstr(MI);
940   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
941   if (CSIt == CallSitesInfo.end())
942     return;
943   CallSitesInfo.erase(CSIt);
944 }
945 
946 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
947                                        const MachineInstr *New) {
948   assert(Old->shouldUpdateCallSiteInfo() &&
949          "Call site info refers only to call (MI) candidates or "
950          "candidates inside bundles");
951 
952   if (!New->isCandidateForCallSiteEntry())
953     return eraseCallSiteInfo(Old);
954 
955   const MachineInstr *OldCallMI = getCallInstr(Old);
956   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
957   if (CSIt == CallSitesInfo.end())
958     return;
959 
960   CallSiteInfo CSInfo = CSIt->second;
961   CallSitesInfo[New] = CSInfo;
962 }
963 
964 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
965                                        const MachineInstr *New) {
966   assert(Old->shouldUpdateCallSiteInfo() &&
967          "Call site info refers only to call (MI) candidates or "
968          "candidates inside bundles");
969 
970   if (!New->isCandidateForCallSiteEntry())
971     return eraseCallSiteInfo(Old);
972 
973   const MachineInstr *OldCallMI = getCallInstr(Old);
974   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
975   if (CSIt == CallSitesInfo.end())
976     return;
977 
978   CallSiteInfo CSInfo = std::move(CSIt->second);
979   CallSitesInfo.erase(CSIt);
980   CallSitesInfo[New] = CSInfo;
981 }
982 
983 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
984   DebugInstrNumberingCount = Num;
985 }
986 
987 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
988                                                  DebugInstrOperandPair B,
989                                                  unsigned Subreg) {
990   // Catch any accidental self-loops.
991   assert(A.first != B.first);
992   // Don't allow any substitutions _from_ the memory operand number.
993   assert(A.second != DebugOperandMemNumber);
994 
995   DebugValueSubstitutions.push_back({A, B, Subreg});
996 }
997 
998 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
999                                                    MachineInstr &New,
1000                                                    unsigned MaxOperand) {
1001   // If the Old instruction wasn't tracked at all, there is no work to do.
1002   unsigned OldInstrNum = Old.peekDebugInstrNum();
1003   if (!OldInstrNum)
1004     return;
1005 
1006   // Iterate over all operands looking for defs to create substitutions for.
1007   // Avoid creating new instr numbers unless we create a new substitution.
1008   // While this has no functional effect, it risks confusing someone reading
1009   // MIR output.
1010   // Examine all the operands, or the first N specified by the caller.
1011   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
1012   for (unsigned int I = 0; I < MaxOperand; ++I) {
1013     const auto &OldMO = Old.getOperand(I);
1014     auto &NewMO = New.getOperand(I);
1015     (void)NewMO;
1016 
1017     if (!OldMO.isReg() || !OldMO.isDef())
1018       continue;
1019     assert(NewMO.isDef());
1020 
1021     unsigned NewInstrNum = New.getDebugInstrNum();
1022     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1023                                std::make_pair(NewInstrNum, I));
1024   }
1025 }
1026 
1027 auto MachineFunction::salvageCopySSA(
1028     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
1029     -> DebugInstrOperandPair {
1030   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1031 
1032   // Check whether this copy-like instruction has already been salvaged into
1033   // an operand pair.
1034   Register Dest;
1035   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1036     Dest = CopyDstSrc->Destination->getReg();
1037   } else {
1038     assert(MI.isSubregToReg());
1039     Dest = MI.getOperand(0).getReg();
1040   }
1041 
1042   auto CacheIt = DbgPHICache.find(Dest);
1043   if (CacheIt != DbgPHICache.end())
1044     return CacheIt->second;
1045 
1046   // Calculate the instruction number to use, or install a DBG_PHI.
1047   auto OperandPair = salvageCopySSAImpl(MI);
1048   DbgPHICache.insert({Dest, OperandPair});
1049   return OperandPair;
1050 }
1051 
1052 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1053     -> DebugInstrOperandPair {
1054   MachineRegisterInfo &MRI = getRegInfo();
1055   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1056   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1057 
1058   // Chase the value read by a copy-like instruction back to the instruction
1059   // that ultimately _defines_ that value. This may pass:
1060   //  * Through multiple intermediate copies, including subregister moves /
1061   //    copies,
1062   //  * Copies from physical registers that must then be traced back to the
1063   //    defining instruction,
1064   //  * Or, physical registers may be live-in to (only) the entry block, which
1065   //    requires a DBG_PHI to be created.
1066   // We can pursue this problem in that order: trace back through copies,
1067   // optionally through a physical register, to a defining instruction. We
1068   // should never move from physreg to vreg. As we're still in SSA form, no need
1069   // to worry about partial definitions of registers.
1070 
1071   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1072   // returns the register read and any subregister identifying which part is
1073   // read.
1074   auto GetRegAndSubreg =
1075       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1076     Register NewReg, OldReg;
1077     unsigned SubReg;
1078     if (Cpy.isCopy()) {
1079       OldReg = Cpy.getOperand(0).getReg();
1080       NewReg = Cpy.getOperand(1).getReg();
1081       SubReg = Cpy.getOperand(1).getSubReg();
1082     } else if (Cpy.isSubregToReg()) {
1083       OldReg = Cpy.getOperand(0).getReg();
1084       NewReg = Cpy.getOperand(2).getReg();
1085       SubReg = Cpy.getOperand(3).getImm();
1086     } else {
1087       auto CopyDetails = *TII.isCopyInstr(Cpy);
1088       const MachineOperand &Src = *CopyDetails.Source;
1089       const MachineOperand &Dest = *CopyDetails.Destination;
1090       OldReg = Dest.getReg();
1091       NewReg = Src.getReg();
1092       SubReg = Src.getSubReg();
1093     }
1094 
1095     return {NewReg, SubReg};
1096   };
1097 
1098   // First seek either the defining instruction, or a copy from a physreg.
1099   // During search, the current state is the current copy instruction, and which
1100   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1101   // deal with those later.
1102   auto State = GetRegAndSubreg(MI);
1103   auto CurInst = MI.getIterator();
1104   SmallVector<unsigned, 4> SubregsSeen;
1105   while (true) {
1106     // If we've found a copy from a physreg, first portion of search is over.
1107     if (!State.first.isVirtual())
1108       break;
1109 
1110     // Record any subregister qualifier.
1111     if (State.second)
1112       SubregsSeen.push_back(State.second);
1113 
1114     assert(MRI.hasOneDef(State.first));
1115     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1116     CurInst = Inst.getIterator();
1117 
1118     // Any non-copy instruction is the defining instruction we're seeking.
1119     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1120       break;
1121     State = GetRegAndSubreg(Inst);
1122   };
1123 
1124   // Helper lambda to apply additional subregister substitutions to a known
1125   // instruction/operand pair. Adds new (fake) substitutions so that we can
1126   // record the subregister. FIXME: this isn't very space efficient if multiple
1127   // values are tracked back through the same copies; cache something later.
1128   auto ApplySubregisters =
1129       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1130     for (unsigned Subreg : reverse(SubregsSeen)) {
1131       // Fetch a new instruction number, not attached to an actual instruction.
1132       unsigned NewInstrNumber = getNewDebugInstrNum();
1133       // Add a substitution from the "new" number to the known one, with a
1134       // qualifying subreg.
1135       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1136       // Return the new number; to find the underlying value, consumers need to
1137       // deal with the qualifying subreg.
1138       P = {NewInstrNumber, 0};
1139     }
1140     return P;
1141   };
1142 
1143   // If we managed to find the defining instruction after COPYs, return an
1144   // instruction / operand pair after adding subregister qualifiers.
1145   if (State.first.isVirtual()) {
1146     // Virtual register def -- we can just look up where this happens.
1147     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1148     for (auto &MO : Inst->all_defs()) {
1149       if (MO.getReg() != State.first)
1150         continue;
1151       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1152     }
1153 
1154     llvm_unreachable("Vreg def with no corresponding operand?");
1155   }
1156 
1157   // Our search ended in a copy from a physreg: walk back up the function
1158   // looking for whatever defines the physreg.
1159   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1160   State = GetRegAndSubreg(*CurInst);
1161   Register RegToSeek = State.first;
1162 
1163   auto RMII = CurInst->getReverseIterator();
1164   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1165   for (auto &ToExamine : PrevInstrs) {
1166     for (auto &MO : ToExamine.all_defs()) {
1167       // Test for operand that defines something aliasing RegToSeek.
1168       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1169         continue;
1170 
1171       return ApplySubregisters(
1172           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1173     }
1174   }
1175 
1176   MachineBasicBlock &InsertBB = *CurInst->getParent();
1177 
1178   // We reached the start of the block before finding a defining instruction.
1179   // There are numerous scenarios where this can happen:
1180   // * Constant physical registers,
1181   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1182   // * Arguments in the entry block,
1183   // * Exception handling landing pads.
1184   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1185   // the variable value at this position, rather than checking it makes sense.
1186 
1187   // Create DBG_PHI for specified physreg.
1188   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1189                          TII.get(TargetOpcode::DBG_PHI));
1190   Builder.addReg(State.first);
1191   unsigned NewNum = getNewDebugInstrNum();
1192   Builder.addImm(NewNum);
1193   return ApplySubregisters({NewNum, 0u});
1194 }
1195 
1196 void MachineFunction::finalizeDebugInstrRefs() {
1197   auto *TII = getSubtarget().getInstrInfo();
1198 
1199   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1200     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1201     MI.setDesc(RefII);
1202     MI.setDebugValueUndef();
1203   };
1204 
1205   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1206   for (auto &MBB : *this) {
1207     for (auto &MI : MBB) {
1208       if (!MI.isDebugRef())
1209         continue;
1210 
1211       bool IsValidRef = true;
1212 
1213       for (MachineOperand &MO : MI.debug_operands()) {
1214         if (!MO.isReg())
1215           continue;
1216 
1217         Register Reg = MO.getReg();
1218 
1219         // Some vregs can be deleted as redundant in the meantime. Mark those
1220         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1221         // quickly deleted, leaving dangling references to vregs with no def.
1222         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1223           IsValidRef = false;
1224           break;
1225         }
1226 
1227         assert(Reg.isVirtual());
1228         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1229 
1230         // If we've found a copy-like instruction, follow it back to the
1231         // instruction that defines the source value, see salvageCopySSA docs
1232         // for why this is important.
1233         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1234           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1235           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1236         } else {
1237           // Otherwise, identify the operand number that the VReg refers to.
1238           unsigned OperandIdx = 0;
1239           for (const auto &DefMO : DefMI.operands()) {
1240             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1241               break;
1242             ++OperandIdx;
1243           }
1244           assert(OperandIdx < DefMI.getNumOperands());
1245 
1246           // Morph this instr ref to point at the given instruction and operand.
1247           unsigned ID = DefMI.getDebugInstrNum();
1248           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1249         }
1250       }
1251 
1252       if (!IsValidRef)
1253         MakeUndefDbgValue(MI);
1254     }
1255   }
1256 }
1257 
1258 bool MachineFunction::shouldUseDebugInstrRef() const {
1259   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1260   // have optimized code inlined into this unoptimized code, however with
1261   // fewer and less aggressive optimizations happening, coverage and accuracy
1262   // should not suffer.
1263   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1264     return false;
1265 
1266   // Don't use instr-ref if this function is marked optnone.
1267   if (F.hasFnAttribute(Attribute::OptimizeNone))
1268     return false;
1269 
1270   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1271     return true;
1272 
1273   return false;
1274 }
1275 
1276 bool MachineFunction::useDebugInstrRef() const {
1277   return UseDebugInstrRef;
1278 }
1279 
1280 void MachineFunction::setUseDebugInstrRef(bool Use) {
1281   UseDebugInstrRef = Use;
1282 }
1283 
1284 // Use one million as a high / reserved number.
1285 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1286 
1287 /// \}
1288 
1289 //===----------------------------------------------------------------------===//
1290 //  MachineJumpTableInfo implementation
1291 //===----------------------------------------------------------------------===//
1292 
1293 /// Return the size of each entry in the jump table.
1294 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1295   // The size of a jump table entry is 4 bytes unless the entry is just the
1296   // address of a block, in which case it is the pointer size.
1297   switch (getEntryKind()) {
1298   case MachineJumpTableInfo::EK_BlockAddress:
1299     return TD.getPointerSize();
1300   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1301   case MachineJumpTableInfo::EK_LabelDifference64:
1302     return 8;
1303   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1304   case MachineJumpTableInfo::EK_LabelDifference32:
1305   case MachineJumpTableInfo::EK_Custom32:
1306     return 4;
1307   case MachineJumpTableInfo::EK_Inline:
1308     return 0;
1309   }
1310   llvm_unreachable("Unknown jump table encoding!");
1311 }
1312 
1313 /// Return the alignment of each entry in the jump table.
1314 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1315   // The alignment of a jump table entry is the alignment of int32 unless the
1316   // entry is just the address of a block, in which case it is the pointer
1317   // alignment.
1318   switch (getEntryKind()) {
1319   case MachineJumpTableInfo::EK_BlockAddress:
1320     return TD.getPointerABIAlignment(0).value();
1321   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1322   case MachineJumpTableInfo::EK_LabelDifference64:
1323     return TD.getABIIntegerTypeAlignment(64).value();
1324   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1325   case MachineJumpTableInfo::EK_LabelDifference32:
1326   case MachineJumpTableInfo::EK_Custom32:
1327     return TD.getABIIntegerTypeAlignment(32).value();
1328   case MachineJumpTableInfo::EK_Inline:
1329     return 1;
1330   }
1331   llvm_unreachable("Unknown jump table encoding!");
1332 }
1333 
1334 /// Create a new jump table entry in the jump table info.
1335 unsigned MachineJumpTableInfo::createJumpTableIndex(
1336                                const std::vector<MachineBasicBlock*> &DestBBs) {
1337   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1338   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1339   return JumpTables.size()-1;
1340 }
1341 
1342 /// If Old is the target of any jump tables, update the jump tables to branch
1343 /// to New instead.
1344 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1345                                                   MachineBasicBlock *New) {
1346   assert(Old != New && "Not making a change?");
1347   bool MadeChange = false;
1348   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1349     ReplaceMBBInJumpTable(i, Old, New);
1350   return MadeChange;
1351 }
1352 
1353 /// If MBB is present in any jump tables, remove it.
1354 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1355   bool MadeChange = false;
1356   for (MachineJumpTableEntry &JTE : JumpTables) {
1357     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1358     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1359     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1360   }
1361   return MadeChange;
1362 }
1363 
1364 /// If Old is a target of the jump tables, update the jump table to branch to
1365 /// New instead.
1366 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1367                                                  MachineBasicBlock *Old,
1368                                                  MachineBasicBlock *New) {
1369   assert(Old != New && "Not making a change?");
1370   bool MadeChange = false;
1371   MachineJumpTableEntry &JTE = JumpTables[Idx];
1372   for (MachineBasicBlock *&MBB : JTE.MBBs)
1373     if (MBB == Old) {
1374       MBB = New;
1375       MadeChange = true;
1376     }
1377   return MadeChange;
1378 }
1379 
1380 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1381   if (JumpTables.empty()) return;
1382 
1383   OS << "Jump Tables:\n";
1384 
1385   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1386     OS << printJumpTableEntryReference(i) << ':';
1387     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1388       OS << ' ' << printMBBReference(*MBB);
1389     if (i != e)
1390       OS << '\n';
1391   }
1392 
1393   OS << '\n';
1394 }
1395 
1396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1397 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1398 #endif
1399 
1400 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1401   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1402 }
1403 
1404 //===----------------------------------------------------------------------===//
1405 //  MachineConstantPool implementation
1406 //===----------------------------------------------------------------------===//
1407 
1408 void MachineConstantPoolValue::anchor() {}
1409 
1410 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1411   return DL.getTypeAllocSize(Ty);
1412 }
1413 
1414 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1415   if (isMachineConstantPoolEntry())
1416     return Val.MachineCPVal->getSizeInBytes(DL);
1417   return DL.getTypeAllocSize(Val.ConstVal->getType());
1418 }
1419 
1420 bool MachineConstantPoolEntry::needsRelocation() const {
1421   if (isMachineConstantPoolEntry())
1422     return true;
1423   return Val.ConstVal->needsDynamicRelocation();
1424 }
1425 
1426 SectionKind
1427 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1428   if (needsRelocation())
1429     return SectionKind::getReadOnlyWithRel();
1430   switch (getSizeInBytes(*DL)) {
1431   case 4:
1432     return SectionKind::getMergeableConst4();
1433   case 8:
1434     return SectionKind::getMergeableConst8();
1435   case 16:
1436     return SectionKind::getMergeableConst16();
1437   case 32:
1438     return SectionKind::getMergeableConst32();
1439   default:
1440     return SectionKind::getReadOnly();
1441   }
1442 }
1443 
1444 MachineConstantPool::~MachineConstantPool() {
1445   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1446   // so keep track of which we've deleted to avoid double deletions.
1447   DenseSet<MachineConstantPoolValue*> Deleted;
1448   for (const MachineConstantPoolEntry &C : Constants)
1449     if (C.isMachineConstantPoolEntry()) {
1450       Deleted.insert(C.Val.MachineCPVal);
1451       delete C.Val.MachineCPVal;
1452     }
1453   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1454     if (Deleted.count(CPV) == 0)
1455       delete CPV;
1456   }
1457 }
1458 
1459 /// Test whether the given two constants can be allocated the same constant pool
1460 /// entry referenced by \param A.
1461 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1462                                       const DataLayout &DL) {
1463   // Handle the trivial case quickly.
1464   if (A == B) return true;
1465 
1466   // If they have the same type but weren't the same constant, quickly
1467   // reject them.
1468   if (A->getType() == B->getType()) return false;
1469 
1470   // We can't handle structs or arrays.
1471   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1472       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1473     return false;
1474 
1475   // For now, only support constants with the same size.
1476   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1477   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1478     return false;
1479 
1480   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1481 
1482   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1483 
1484   // Try constant folding a bitcast of both instructions to an integer.  If we
1485   // get two identical ConstantInt's, then we are good to share them.  We use
1486   // the constant folding APIs to do this so that we get the benefit of
1487   // DataLayout.
1488   if (isa<PointerType>(A->getType()))
1489     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1490                                 const_cast<Constant *>(A), IntTy, DL);
1491   else if (A->getType() != IntTy)
1492     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1493                                 IntTy, DL);
1494   if (isa<PointerType>(B->getType()))
1495     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1496                                 const_cast<Constant *>(B), IntTy, DL);
1497   else if (B->getType() != IntTy)
1498     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1499                                 IntTy, DL);
1500 
1501   if (A != B)
1502     return false;
1503 
1504   // Constants only safely match if A doesn't contain undef/poison.
1505   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1506   // TODO: Handle cases where A and B have the same undef/poison elements.
1507   // TODO: Merge A and B with mismatching undef/poison elements.
1508   return !ContainsUndefOrPoisonA;
1509 }
1510 
1511 /// Create a new entry in the constant pool or return an existing one.
1512 /// User must specify the log2 of the minimum required alignment for the object.
1513 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1514                                                    Align Alignment) {
1515   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1516 
1517   // Check to see if we already have this constant.
1518   //
1519   // FIXME, this could be made much more efficient for large constant pools.
1520   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1521     if (!Constants[i].isMachineConstantPoolEntry() &&
1522         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1523       if (Constants[i].getAlign() < Alignment)
1524         Constants[i].Alignment = Alignment;
1525       return i;
1526     }
1527 
1528   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1529   return Constants.size()-1;
1530 }
1531 
1532 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1533                                                    Align Alignment) {
1534   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1535 
1536   // Check to see if we already have this constant.
1537   //
1538   // FIXME, this could be made much more efficient for large constant pools.
1539   int Idx = V->getExistingMachineCPValue(this, Alignment);
1540   if (Idx != -1) {
1541     MachineCPVsSharingEntries.insert(V);
1542     return (unsigned)Idx;
1543   }
1544 
1545   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1546   return Constants.size()-1;
1547 }
1548 
1549 void MachineConstantPool::print(raw_ostream &OS) const {
1550   if (Constants.empty()) return;
1551 
1552   OS << "Constant Pool:\n";
1553   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1554     OS << "  cp#" << i << ": ";
1555     if (Constants[i].isMachineConstantPoolEntry())
1556       Constants[i].Val.MachineCPVal->print(OS);
1557     else
1558       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1559     OS << ", align=" << Constants[i].getAlign().value();
1560     OS << "\n";
1561   }
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 // Template specialization for MachineFunction implementation of
1566 // ProfileSummaryInfo::getEntryCount().
1567 //===----------------------------------------------------------------------===//
1568 template <>
1569 std::optional<Function::ProfileCount>
1570 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1571     const llvm::MachineFunction *F) const {
1572   return F->getFunction().getEntryCount();
1573 }
1574 
1575 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1576 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1577 #endif
1578