1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Assembly/Writer.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetFrameLowering.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineFunction implementation 44 //===----------------------------------------------------------------------===// 45 46 // Out of line virtual method. 47 MachineFunctionInfo::~MachineFunctionInfo() {} 48 49 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 50 MBB->getParent()->DeleteMachineBasicBlock(MBB); 51 } 52 53 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 54 unsigned FunctionNum, MachineModuleInfo &mmi, 55 GCModuleInfo* gmi) 56 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 57 if (TM.getRegisterInfo()) 58 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 59 else 60 RegInfo = 0; 61 MFInfo = 0; 62 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 63 TM.Options.RealignStack); 64 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 65 Attribute::StackAlignment)) 66 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 67 getStackAlignment(AttributeSet::FunctionIndex)); 68 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 69 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 70 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 71 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 72 Attribute::OptimizeForSize)) 73 Alignment = std::max(Alignment, 74 TM.getTargetLowering()->getPrefFunctionAlignment()); 75 FunctionNumber = FunctionNum; 76 JumpTableInfo = 0; 77 } 78 79 MachineFunction::~MachineFunction() { 80 // Don't call destructors on MachineInstr and MachineOperand. All of their 81 // memory comes from the BumpPtrAllocator which is about to be purged. 82 // 83 // Do call MachineBasicBlock destructors, it contains std::vectors. 84 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 85 I->Insts.clearAndLeakNodesUnsafely(); 86 87 InstructionRecycler.clear(Allocator); 88 OperandRecycler.clear(Allocator); 89 BasicBlockRecycler.clear(Allocator); 90 if (RegInfo) { 91 RegInfo->~MachineRegisterInfo(); 92 Allocator.Deallocate(RegInfo); 93 } 94 if (MFInfo) { 95 MFInfo->~MachineFunctionInfo(); 96 Allocator.Deallocate(MFInfo); 97 } 98 99 FrameInfo->~MachineFrameInfo(); 100 Allocator.Deallocate(FrameInfo); 101 102 ConstantPool->~MachineConstantPool(); 103 Allocator.Deallocate(ConstantPool); 104 105 if (JumpTableInfo) { 106 JumpTableInfo->~MachineJumpTableInfo(); 107 Allocator.Deallocate(JumpTableInfo); 108 } 109 } 110 111 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 112 /// does already exist, allocate one. 113 MachineJumpTableInfo *MachineFunction:: 114 getOrCreateJumpTableInfo(unsigned EntryKind) { 115 if (JumpTableInfo) return JumpTableInfo; 116 117 JumpTableInfo = new (Allocator) 118 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 119 return JumpTableInfo; 120 } 121 122 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 123 /// recomputes them. This guarantees that the MBB numbers are sequential, 124 /// dense, and match the ordering of the blocks within the function. If a 125 /// specific MachineBasicBlock is specified, only that block and those after 126 /// it are renumbered. 127 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 128 if (empty()) { MBBNumbering.clear(); return; } 129 MachineFunction::iterator MBBI, E = end(); 130 if (MBB == 0) 131 MBBI = begin(); 132 else 133 MBBI = MBB; 134 135 // Figure out the block number this should have. 136 unsigned BlockNo = 0; 137 if (MBBI != begin()) 138 BlockNo = prior(MBBI)->getNumber()+1; 139 140 for (; MBBI != E; ++MBBI, ++BlockNo) { 141 if (MBBI->getNumber() != (int)BlockNo) { 142 // Remove use of the old number. 143 if (MBBI->getNumber() != -1) { 144 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 145 "MBB number mismatch!"); 146 MBBNumbering[MBBI->getNumber()] = 0; 147 } 148 149 // If BlockNo is already taken, set that block's number to -1. 150 if (MBBNumbering[BlockNo]) 151 MBBNumbering[BlockNo]->setNumber(-1); 152 153 MBBNumbering[BlockNo] = MBBI; 154 MBBI->setNumber(BlockNo); 155 } 156 } 157 158 // Okay, all the blocks are renumbered. If we have compactified the block 159 // numbering, shrink MBBNumbering now. 160 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 161 MBBNumbering.resize(BlockNo); 162 } 163 164 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 165 /// of `new MachineInstr'. 166 /// 167 MachineInstr * 168 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 169 DebugLoc DL, bool NoImp) { 170 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 171 MachineInstr(*this, MCID, DL, NoImp); 172 } 173 174 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 175 /// 'Orig' instruction, identical in all ways except the instruction 176 /// has no parent, prev, or next. 177 /// 178 MachineInstr * 179 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 180 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 181 MachineInstr(*this, *Orig); 182 } 183 184 /// DeleteMachineInstr - Delete the given MachineInstr. 185 /// 186 /// This function also serves as the MachineInstr destructor - the real 187 /// ~MachineInstr() destructor must be empty. 188 void 189 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 190 // Strip it for parts. The operand array and the MI object itself are 191 // independently recyclable. 192 if (MI->Operands) 193 deallocateOperandArray(MI->CapOperands, MI->Operands); 194 // Don't call ~MachineInstr() which must be trivial anyway because 195 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 196 // destructors. 197 InstructionRecycler.Deallocate(Allocator, MI); 198 } 199 200 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 201 /// instead of `new MachineBasicBlock'. 202 /// 203 MachineBasicBlock * 204 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 205 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 206 MachineBasicBlock(*this, bb); 207 } 208 209 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 210 /// 211 void 212 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 213 assert(MBB->getParent() == this && "MBB parent mismatch!"); 214 MBB->~MachineBasicBlock(); 215 BasicBlockRecycler.Deallocate(Allocator, MBB); 216 } 217 218 MachineMemOperand * 219 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 220 uint64_t s, unsigned base_alignment, 221 const MDNode *TBAAInfo, 222 const MDNode *Ranges) { 223 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 224 TBAAInfo, Ranges); 225 } 226 227 MachineMemOperand * 228 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 229 int64_t Offset, uint64_t Size) { 230 return new (Allocator) 231 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 232 MMO->getOffset()+Offset), 233 MMO->getFlags(), Size, 234 MMO->getBaseAlignment(), 0); 235 } 236 237 MachineInstr::mmo_iterator 238 MachineFunction::allocateMemRefsArray(unsigned long Num) { 239 return Allocator.Allocate<MachineMemOperand *>(Num); 240 } 241 242 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 243 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 244 MachineInstr::mmo_iterator End) { 245 // Count the number of load mem refs. 246 unsigned Num = 0; 247 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 248 if ((*I)->isLoad()) 249 ++Num; 250 251 // Allocate a new array and populate it with the load information. 252 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 253 unsigned Index = 0; 254 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 255 if ((*I)->isLoad()) { 256 if (!(*I)->isStore()) 257 // Reuse the MMO. 258 Result[Index] = *I; 259 else { 260 // Clone the MMO and unset the store flag. 261 MachineMemOperand *JustLoad = 262 getMachineMemOperand((*I)->getPointerInfo(), 263 (*I)->getFlags() & ~MachineMemOperand::MOStore, 264 (*I)->getSize(), (*I)->getBaseAlignment(), 265 (*I)->getTBAAInfo()); 266 Result[Index] = JustLoad; 267 } 268 ++Index; 269 } 270 } 271 return std::make_pair(Result, Result + Num); 272 } 273 274 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 275 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 276 MachineInstr::mmo_iterator End) { 277 // Count the number of load mem refs. 278 unsigned Num = 0; 279 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 280 if ((*I)->isStore()) 281 ++Num; 282 283 // Allocate a new array and populate it with the store information. 284 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 285 unsigned Index = 0; 286 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 287 if ((*I)->isStore()) { 288 if (!(*I)->isLoad()) 289 // Reuse the MMO. 290 Result[Index] = *I; 291 else { 292 // Clone the MMO and unset the load flag. 293 MachineMemOperand *JustStore = 294 getMachineMemOperand((*I)->getPointerInfo(), 295 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 296 (*I)->getSize(), (*I)->getBaseAlignment(), 297 (*I)->getTBAAInfo()); 298 Result[Index] = JustStore; 299 } 300 ++Index; 301 } 302 } 303 return std::make_pair(Result, Result + Num); 304 } 305 306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 307 void MachineFunction::dump() const { 308 print(dbgs()); 309 } 310 #endif 311 312 StringRef MachineFunction::getName() const { 313 assert(getFunction() && "No function!"); 314 return getFunction()->getName(); 315 } 316 317 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 318 OS << "# Machine code for function " << getName() << ": "; 319 if (RegInfo) { 320 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 321 if (!RegInfo->tracksLiveness()) 322 OS << ", not tracking liveness"; 323 } 324 OS << '\n'; 325 326 // Print Frame Information 327 FrameInfo->print(*this, OS); 328 329 // Print JumpTable Information 330 if (JumpTableInfo) 331 JumpTableInfo->print(OS); 332 333 // Print Constant Pool 334 ConstantPool->print(OS); 335 336 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 337 338 if (RegInfo && !RegInfo->livein_empty()) { 339 OS << "Function Live Ins: "; 340 for (MachineRegisterInfo::livein_iterator 341 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 342 OS << PrintReg(I->first, TRI); 343 if (I->second) 344 OS << " in " << PrintReg(I->second, TRI); 345 if (llvm::next(I) != E) 346 OS << ", "; 347 } 348 OS << '\n'; 349 } 350 351 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 352 OS << '\n'; 353 BB->print(OS, Indexes); 354 } 355 356 OS << "\n# End machine code for function " << getName() << ".\n\n"; 357 } 358 359 namespace llvm { 360 template<> 361 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 362 363 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 364 365 static std::string getGraphName(const MachineFunction *F) { 366 return "CFG for '" + F->getName().str() + "' function"; 367 } 368 369 std::string getNodeLabel(const MachineBasicBlock *Node, 370 const MachineFunction *Graph) { 371 std::string OutStr; 372 { 373 raw_string_ostream OSS(OutStr); 374 375 if (isSimple()) { 376 OSS << "BB#" << Node->getNumber(); 377 if (const BasicBlock *BB = Node->getBasicBlock()) 378 OSS << ": " << BB->getName(); 379 } else 380 Node->print(OSS); 381 } 382 383 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 384 385 // Process string output to make it nicer... 386 for (unsigned i = 0; i != OutStr.length(); ++i) 387 if (OutStr[i] == '\n') { // Left justify 388 OutStr[i] = '\\'; 389 OutStr.insert(OutStr.begin()+i+1, 'l'); 390 } 391 return OutStr; 392 } 393 }; 394 } 395 396 void MachineFunction::viewCFG() const 397 { 398 #ifndef NDEBUG 399 ViewGraph(this, "mf" + getName()); 400 #else 401 errs() << "MachineFunction::viewCFG is only available in debug builds on " 402 << "systems with Graphviz or gv!\n"; 403 #endif // NDEBUG 404 } 405 406 void MachineFunction::viewCFGOnly() const 407 { 408 #ifndef NDEBUG 409 ViewGraph(this, "mf" + getName(), true); 410 #else 411 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 412 << "systems with Graphviz or gv!\n"; 413 #endif // NDEBUG 414 } 415 416 /// addLiveIn - Add the specified physical register as a live-in value and 417 /// create a corresponding virtual register for it. 418 unsigned MachineFunction::addLiveIn(unsigned PReg, 419 const TargetRegisterClass *RC) { 420 MachineRegisterInfo &MRI = getRegInfo(); 421 unsigned VReg = MRI.getLiveInVirtReg(PReg); 422 if (VReg) { 423 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 424 return VReg; 425 } 426 VReg = MRI.createVirtualRegister(RC); 427 MRI.addLiveIn(PReg, VReg); 428 return VReg; 429 } 430 431 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 432 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 433 /// normal 'L' label is returned. 434 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 435 bool isLinkerPrivate) const { 436 assert(JumpTableInfo && "No jump tables"); 437 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 438 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 439 440 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 441 MAI.getPrivateGlobalPrefix(); 442 SmallString<60> Name; 443 raw_svector_ostream(Name) 444 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 445 return Ctx.GetOrCreateSymbol(Name.str()); 446 } 447 448 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 449 /// base. 450 MCSymbol *MachineFunction::getPICBaseSymbol() const { 451 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 452 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 453 Twine(getFunctionNumber())+"$pb"); 454 } 455 456 //===----------------------------------------------------------------------===// 457 // MachineFrameInfo implementation 458 //===----------------------------------------------------------------------===// 459 460 /// ensureMaxAlignment - Make sure the function is at least Align bytes 461 /// aligned. 462 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 463 if (!TFI.isStackRealignable() || !RealignOption) 464 assert(Align <= TFI.getStackAlignment() && 465 "For targets without stack realignment, Align is out of limit!"); 466 if (MaxAlignment < Align) MaxAlignment = Align; 467 } 468 469 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 470 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 471 unsigned StackAlign) { 472 if (!ShouldClamp || Align <= StackAlign) 473 return Align; 474 DEBUG(dbgs() << "Warning: requested alignment " << Align 475 << " exceeds the stack alignment " << StackAlign 476 << " when stack realignment is off" << '\n'); 477 return StackAlign; 478 } 479 480 /// CreateStackObject - Create a new statically sized stack object, returning 481 /// a nonnegative identifier to represent it. 482 /// 483 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 484 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 485 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 486 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 487 Alignment, TFI.getStackAlignment()); 488 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 489 Alloca)); 490 int Index = (int)Objects.size() - NumFixedObjects - 1; 491 assert(Index >= 0 && "Bad frame index!"); 492 ensureMaxAlignment(Alignment); 493 return Index; 494 } 495 496 /// CreateSpillStackObject - Create a new statically sized stack object that 497 /// represents a spill slot, returning a nonnegative identifier to represent 498 /// it. 499 /// 500 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 501 unsigned Alignment) { 502 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 503 Alignment, TFI.getStackAlignment()); 504 CreateStackObject(Size, Alignment, true, false); 505 int Index = (int)Objects.size() - NumFixedObjects - 1; 506 ensureMaxAlignment(Alignment); 507 return Index; 508 } 509 510 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 511 /// variable sized object has been created. This must be created whenever a 512 /// variable sized object is created, whether or not the index returned is 513 /// actually used. 514 /// 515 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) { 516 HasVarSizedObjects = true; 517 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 518 Alignment, TFI.getStackAlignment()); 519 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 520 ensureMaxAlignment(Alignment); 521 return (int)Objects.size()-NumFixedObjects-1; 522 } 523 524 /// CreateFixedObject - Create a new object at a fixed location on the stack. 525 /// All fixed objects should be created before other objects are created for 526 /// efficiency. By default, fixed objects are immutable. This returns an 527 /// index with a negative value. 528 /// 529 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 530 bool Immutable) { 531 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 532 // The alignment of the frame index can be determined from its offset from 533 // the incoming frame position. If the frame object is at offset 32 and 534 // the stack is guaranteed to be 16-byte aligned, then we know that the 535 // object is 16-byte aligned. 536 unsigned StackAlign = TFI.getStackAlignment(); 537 unsigned Align = MinAlign(SPOffset, StackAlign); 538 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 539 Align, TFI.getStackAlignment()); 540 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 541 /*isSS*/ false, 542 /*NeedSP*/ false, 543 /*Alloca*/ 0)); 544 return -++NumFixedObjects; 545 } 546 547 548 BitVector 549 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 550 assert(MBB && "MBB must be valid"); 551 const MachineFunction *MF = MBB->getParent(); 552 assert(MF && "MBB must be part of a MachineFunction"); 553 const TargetMachine &TM = MF->getTarget(); 554 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 555 BitVector BV(TRI->getNumRegs()); 556 557 // Before CSI is calculated, no registers are considered pristine. They can be 558 // freely used and PEI will make sure they are saved. 559 if (!isCalleeSavedInfoValid()) 560 return BV; 561 562 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 563 BV.set(*CSR); 564 565 // The entry MBB always has all CSRs pristine. 566 if (MBB == &MF->front()) 567 return BV; 568 569 // On other MBBs the saved CSRs are not pristine. 570 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 571 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 572 E = CSI.end(); I != E; ++I) 573 BV.reset(I->getReg()); 574 575 return BV; 576 } 577 578 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 579 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 580 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 581 unsigned MaxAlign = getMaxAlignment(); 582 int Offset = 0; 583 584 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 585 // It really should be refactored to share code. Until then, changes 586 // should keep in mind that there's tight coupling between the two. 587 588 for (int i = getObjectIndexBegin(); i != 0; ++i) { 589 int FixedOff = -getObjectOffset(i); 590 if (FixedOff > Offset) Offset = FixedOff; 591 } 592 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 593 if (isDeadObjectIndex(i)) 594 continue; 595 Offset += getObjectSize(i); 596 unsigned Align = getObjectAlignment(i); 597 // Adjust to alignment boundary 598 Offset = (Offset+Align-1)/Align*Align; 599 600 MaxAlign = std::max(Align, MaxAlign); 601 } 602 603 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 604 Offset += getMaxCallFrameSize(); 605 606 // Round up the size to a multiple of the alignment. If the function has 607 // any calls or alloca's, align to the target's StackAlignment value to 608 // ensure that the callee's frame or the alloca data is suitably aligned; 609 // otherwise, for leaf functions, align to the TransientStackAlignment 610 // value. 611 unsigned StackAlign; 612 if (adjustsStack() || hasVarSizedObjects() || 613 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 614 StackAlign = TFI->getStackAlignment(); 615 else 616 StackAlign = TFI->getTransientStackAlignment(); 617 618 // If the frame pointer is eliminated, all frame offsets will be relative to 619 // SP not FP. Align to MaxAlign so this works. 620 StackAlign = std::max(StackAlign, MaxAlign); 621 unsigned AlignMask = StackAlign - 1; 622 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 623 624 return (unsigned)Offset; 625 } 626 627 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 628 if (Objects.empty()) return; 629 630 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 631 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 632 633 OS << "Frame Objects:\n"; 634 635 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 636 const StackObject &SO = Objects[i]; 637 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 638 if (SO.Size == ~0ULL) { 639 OS << "dead\n"; 640 continue; 641 } 642 if (SO.Size == 0) 643 OS << "variable sized"; 644 else 645 OS << "size=" << SO.Size; 646 OS << ", align=" << SO.Alignment; 647 648 if (i < NumFixedObjects) 649 OS << ", fixed"; 650 if (i < NumFixedObjects || SO.SPOffset != -1) { 651 int64_t Off = SO.SPOffset - ValOffset; 652 OS << ", at location [SP"; 653 if (Off > 0) 654 OS << "+" << Off; 655 else if (Off < 0) 656 OS << Off; 657 OS << "]"; 658 } 659 OS << "\n"; 660 } 661 } 662 663 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 664 void MachineFrameInfo::dump(const MachineFunction &MF) const { 665 print(MF, dbgs()); 666 } 667 #endif 668 669 //===----------------------------------------------------------------------===// 670 // MachineJumpTableInfo implementation 671 //===----------------------------------------------------------------------===// 672 673 /// getEntrySize - Return the size of each entry in the jump table. 674 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 675 // The size of a jump table entry is 4 bytes unless the entry is just the 676 // address of a block, in which case it is the pointer size. 677 switch (getEntryKind()) { 678 case MachineJumpTableInfo::EK_BlockAddress: 679 return TD.getPointerSize(); 680 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 681 return 8; 682 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 683 case MachineJumpTableInfo::EK_LabelDifference32: 684 case MachineJumpTableInfo::EK_Custom32: 685 return 4; 686 case MachineJumpTableInfo::EK_Inline: 687 return 0; 688 } 689 llvm_unreachable("Unknown jump table encoding!"); 690 } 691 692 /// getEntryAlignment - Return the alignment of each entry in the jump table. 693 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 694 // The alignment of a jump table entry is the alignment of int32 unless the 695 // entry is just the address of a block, in which case it is the pointer 696 // alignment. 697 switch (getEntryKind()) { 698 case MachineJumpTableInfo::EK_BlockAddress: 699 return TD.getPointerABIAlignment(); 700 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 701 return TD.getABIIntegerTypeAlignment(64); 702 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 703 case MachineJumpTableInfo::EK_LabelDifference32: 704 case MachineJumpTableInfo::EK_Custom32: 705 return TD.getABIIntegerTypeAlignment(32); 706 case MachineJumpTableInfo::EK_Inline: 707 return 1; 708 } 709 llvm_unreachable("Unknown jump table encoding!"); 710 } 711 712 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 713 /// 714 unsigned MachineJumpTableInfo::createJumpTableIndex( 715 const std::vector<MachineBasicBlock*> &DestBBs) { 716 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 717 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 718 return JumpTables.size()-1; 719 } 720 721 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 722 /// the jump tables to branch to New instead. 723 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 724 MachineBasicBlock *New) { 725 assert(Old != New && "Not making a change?"); 726 bool MadeChange = false; 727 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 728 ReplaceMBBInJumpTable(i, Old, New); 729 return MadeChange; 730 } 731 732 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 733 /// the jump table to branch to New instead. 734 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 735 MachineBasicBlock *Old, 736 MachineBasicBlock *New) { 737 assert(Old != New && "Not making a change?"); 738 bool MadeChange = false; 739 MachineJumpTableEntry &JTE = JumpTables[Idx]; 740 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 741 if (JTE.MBBs[j] == Old) { 742 JTE.MBBs[j] = New; 743 MadeChange = true; 744 } 745 return MadeChange; 746 } 747 748 void MachineJumpTableInfo::print(raw_ostream &OS) const { 749 if (JumpTables.empty()) return; 750 751 OS << "Jump Tables:\n"; 752 753 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 754 OS << " jt#" << i << ": "; 755 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 756 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 757 } 758 759 OS << '\n'; 760 } 761 762 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 763 void MachineJumpTableInfo::dump() const { print(dbgs()); } 764 #endif 765 766 767 //===----------------------------------------------------------------------===// 768 // MachineConstantPool implementation 769 //===----------------------------------------------------------------------===// 770 771 void MachineConstantPoolValue::anchor() { } 772 773 Type *MachineConstantPoolEntry::getType() const { 774 if (isMachineConstantPoolEntry()) 775 return Val.MachineCPVal->getType(); 776 return Val.ConstVal->getType(); 777 } 778 779 780 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 781 if (isMachineConstantPoolEntry()) 782 return Val.MachineCPVal->getRelocationInfo(); 783 return Val.ConstVal->getRelocationInfo(); 784 } 785 786 MachineConstantPool::~MachineConstantPool() { 787 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 788 if (Constants[i].isMachineConstantPoolEntry()) 789 delete Constants[i].Val.MachineCPVal; 790 for (DenseSet<MachineConstantPoolValue*>::iterator I = 791 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 792 I != E; ++I) 793 delete *I; 794 } 795 796 /// CanShareConstantPoolEntry - Test whether the given two constants 797 /// can be allocated the same constant pool entry. 798 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 799 const DataLayout *TD) { 800 // Handle the trivial case quickly. 801 if (A == B) return true; 802 803 // If they have the same type but weren't the same constant, quickly 804 // reject them. 805 if (A->getType() == B->getType()) return false; 806 807 // We can't handle structs or arrays. 808 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 809 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 810 return false; 811 812 // For now, only support constants with the same size. 813 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 814 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 815 StoreSize > 128) 816 return false; 817 818 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 819 820 // Try constant folding a bitcast of both instructions to an integer. If we 821 // get two identical ConstantInt's, then we are good to share them. We use 822 // the constant folding APIs to do this so that we get the benefit of 823 // DataLayout. 824 if (isa<PointerType>(A->getType())) 825 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 826 const_cast<Constant*>(A), TD); 827 else if (A->getType() != IntTy) 828 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 829 const_cast<Constant*>(A), TD); 830 if (isa<PointerType>(B->getType())) 831 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 832 const_cast<Constant*>(B), TD); 833 else if (B->getType() != IntTy) 834 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 835 const_cast<Constant*>(B), TD); 836 837 return A == B; 838 } 839 840 /// getConstantPoolIndex - Create a new entry in the constant pool or return 841 /// an existing one. User must specify the log2 of the minimum required 842 /// alignment for the object. 843 /// 844 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 845 unsigned Alignment) { 846 assert(Alignment && "Alignment must be specified!"); 847 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 848 849 // Check to see if we already have this constant. 850 // 851 // FIXME, this could be made much more efficient for large constant pools. 852 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 853 if (!Constants[i].isMachineConstantPoolEntry() && 854 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 855 if ((unsigned)Constants[i].getAlignment() < Alignment) 856 Constants[i].Alignment = Alignment; 857 return i; 858 } 859 860 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 861 return Constants.size()-1; 862 } 863 864 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 865 unsigned Alignment) { 866 assert(Alignment && "Alignment must be specified!"); 867 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 868 869 // Check to see if we already have this constant. 870 // 871 // FIXME, this could be made much more efficient for large constant pools. 872 int Idx = V->getExistingMachineCPValue(this, Alignment); 873 if (Idx != -1) { 874 MachineCPVsSharingEntries.insert(V); 875 return (unsigned)Idx; 876 } 877 878 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 879 return Constants.size()-1; 880 } 881 882 void MachineConstantPool::print(raw_ostream &OS) const { 883 if (Constants.empty()) return; 884 885 OS << "Constant Pool:\n"; 886 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 887 OS << " cp#" << i << ": "; 888 if (Constants[i].isMachineConstantPoolEntry()) 889 Constants[i].Val.MachineCPVal->print(OS); 890 else 891 WriteAsOperand(OS, Constants[i].Val.ConstVal, /*PrintType=*/false); 892 OS << ", align=" << Constants[i].getAlignment(); 893 OS << "\n"; 894 } 895 } 896 897 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 898 void MachineConstantPool::dump() const { print(dbgs()); } 899 #endif 900