xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 68c91994931c29dfc7a09e7d5a5e4515d13b12bd)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned>
82 AlignAllFunctions("align-all-functions",
83                   cl::desc("Force the alignment of all functions."),
84                   cl::init(0), cl::Hidden);
85 
86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
87   using P = MachineFunctionProperties::Property;
88 
89   switch(Prop) {
90   case P::FailedISel: return "FailedISel";
91   case P::IsSSA: return "IsSSA";
92   case P::Legalized: return "Legalized";
93   case P::NoPHIs: return "NoPHIs";
94   case P::NoVRegs: return "NoVRegs";
95   case P::RegBankSelected: return "RegBankSelected";
96   case P::Selected: return "Selected";
97   case P::TracksLiveness: return "TracksLiveness";
98   }
99   llvm_unreachable("Invalid machine function property");
100 }
101 
102 // Pin the vtable to this file.
103 void MachineFunction::Delegate::anchor() {}
104 
105 void MachineFunctionProperties::print(raw_ostream &OS) const {
106   const char *Separator = "";
107   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
108     if (!Properties[I])
109       continue;
110     OS << Separator << getPropertyName(static_cast<Property>(I));
111     Separator = ", ";
112   }
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // MachineFunction implementation
117 //===----------------------------------------------------------------------===//
118 
119 // Out-of-line virtual method.
120 MachineFunctionInfo::~MachineFunctionInfo() = default;
121 
122 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
123   MBB->getParent()->DeleteMachineBasicBlock(MBB);
124 }
125 
126 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
127                                            const Function &F) {
128   if (F.hasFnAttribute(Attribute::StackAlignment))
129     return F.getFnStackAlignment();
130   return STI->getFrameLowering()->getStackAlignment();
131 }
132 
133 MachineFunction::MachineFunction(const Function &F,
134                                  const LLVMTargetMachine &Target,
135                                  const TargetSubtargetInfo &STI,
136                                  unsigned FunctionNum, MachineModuleInfo &mmi)
137     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
138   FunctionNumber = FunctionNum;
139   init();
140 }
141 
142 void MachineFunction::handleInsertion(MachineInstr &MI) {
143   if (TheDelegate)
144     TheDelegate->MF_HandleInsertion(MI);
145 }
146 
147 void MachineFunction::handleRemoval(MachineInstr &MI) {
148   if (TheDelegate)
149     TheDelegate->MF_HandleRemoval(MI);
150 }
151 
152 void MachineFunction::init() {
153   // Assume the function starts in SSA form with correct liveness.
154   Properties.set(MachineFunctionProperties::Property::IsSSA);
155   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
156   if (STI->getRegisterInfo())
157     RegInfo = new (Allocator) MachineRegisterInfo(this);
158   else
159     RegInfo = nullptr;
160 
161   MFInfo = nullptr;
162   // We can realign the stack if the target supports it and the user hasn't
163   // explicitly asked us not to.
164   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
165                       !F.hasFnAttribute("no-realign-stack");
166   FrameInfo = new (Allocator) MachineFrameInfo(
167       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
168       /*ForceRealign=*/CanRealignSP &&
169           F.hasFnAttribute(Attribute::StackAlignment));
170 
171   if (F.hasFnAttribute(Attribute::StackAlignment))
172     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
173 
174   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
175   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
176 
177   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
178   // FIXME: Use Function::hasOptSize().
179   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
180     Alignment = std::max(Alignment,
181                          STI->getTargetLowering()->getPrefFunctionAlignment());
182 
183   if (AlignAllFunctions)
184     Alignment = AlignAllFunctions;
185 
186   JumpTableInfo = nullptr;
187 
188   if (isFuncletEHPersonality(classifyEHPersonality(
189           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
190     WinEHInfo = new (Allocator) WinEHFuncInfo();
191   }
192 
193   if (isScopedEHPersonality(classifyEHPersonality(
194           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
195     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
196   }
197 
198   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
199          "Can't create a MachineFunction using a Module with a "
200          "Target-incompatible DataLayout attached\n");
201 
202   PSVManager =
203     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
204                                                   getInstrInfo()));
205 }
206 
207 MachineFunction::~MachineFunction() {
208   clear();
209 }
210 
211 void MachineFunction::clear() {
212   Properties.reset();
213   // Don't call destructors on MachineInstr and MachineOperand. All of their
214   // memory comes from the BumpPtrAllocator which is about to be purged.
215   //
216   // Do call MachineBasicBlock destructors, it contains std::vectors.
217   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
218     I->Insts.clearAndLeakNodesUnsafely();
219   MBBNumbering.clear();
220 
221   InstructionRecycler.clear(Allocator);
222   OperandRecycler.clear(Allocator);
223   BasicBlockRecycler.clear(Allocator);
224   CodeViewAnnotations.clear();
225   VariableDbgInfos.clear();
226   if (RegInfo) {
227     RegInfo->~MachineRegisterInfo();
228     Allocator.Deallocate(RegInfo);
229   }
230   if (MFInfo) {
231     MFInfo->~MachineFunctionInfo();
232     Allocator.Deallocate(MFInfo);
233   }
234 
235   FrameInfo->~MachineFrameInfo();
236   Allocator.Deallocate(FrameInfo);
237 
238   ConstantPool->~MachineConstantPool();
239   Allocator.Deallocate(ConstantPool);
240 
241   if (JumpTableInfo) {
242     JumpTableInfo->~MachineJumpTableInfo();
243     Allocator.Deallocate(JumpTableInfo);
244   }
245 
246   if (WinEHInfo) {
247     WinEHInfo->~WinEHFuncInfo();
248     Allocator.Deallocate(WinEHInfo);
249   }
250 
251   if (WasmEHInfo) {
252     WasmEHInfo->~WasmEHFuncInfo();
253     Allocator.Deallocate(WasmEHInfo);
254   }
255 }
256 
257 const DataLayout &MachineFunction::getDataLayout() const {
258   return F.getParent()->getDataLayout();
259 }
260 
261 /// Get the JumpTableInfo for this function.
262 /// If it does not already exist, allocate one.
263 MachineJumpTableInfo *MachineFunction::
264 getOrCreateJumpTableInfo(unsigned EntryKind) {
265   if (JumpTableInfo) return JumpTableInfo;
266 
267   JumpTableInfo = new (Allocator)
268     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
269   return JumpTableInfo;
270 }
271 
272 /// Should we be emitting segmented stack stuff for the function
273 bool MachineFunction::shouldSplitStack() const {
274   return getFunction().hasFnAttribute("split-stack");
275 }
276 
277 LLVM_NODISCARD unsigned
278 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
279   FrameInstructions.push_back(Inst);
280   return FrameInstructions.size() - 1;
281 }
282 
283 /// This discards all of the MachineBasicBlock numbers and recomputes them.
284 /// This guarantees that the MBB numbers are sequential, dense, and match the
285 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
286 /// is specified, only that block and those after it are renumbered.
287 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
288   if (empty()) { MBBNumbering.clear(); return; }
289   MachineFunction::iterator MBBI, E = end();
290   if (MBB == nullptr)
291     MBBI = begin();
292   else
293     MBBI = MBB->getIterator();
294 
295   // Figure out the block number this should have.
296   unsigned BlockNo = 0;
297   if (MBBI != begin())
298     BlockNo = std::prev(MBBI)->getNumber() + 1;
299 
300   for (; MBBI != E; ++MBBI, ++BlockNo) {
301     if (MBBI->getNumber() != (int)BlockNo) {
302       // Remove use of the old number.
303       if (MBBI->getNumber() != -1) {
304         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
305                "MBB number mismatch!");
306         MBBNumbering[MBBI->getNumber()] = nullptr;
307       }
308 
309       // If BlockNo is already taken, set that block's number to -1.
310       if (MBBNumbering[BlockNo])
311         MBBNumbering[BlockNo]->setNumber(-1);
312 
313       MBBNumbering[BlockNo] = &*MBBI;
314       MBBI->setNumber(BlockNo);
315     }
316   }
317 
318   // Okay, all the blocks are renumbered.  If we have compactified the block
319   // numbering, shrink MBBNumbering now.
320   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
321   MBBNumbering.resize(BlockNo);
322 }
323 
324 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
325 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
326                                                   const DebugLoc &DL,
327                                                   bool NoImp) {
328   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
329     MachineInstr(*this, MCID, DL, NoImp);
330 }
331 
332 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
333 /// identical in all ways except the instruction has no parent, prev, or next.
334 MachineInstr *
335 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
336   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
337              MachineInstr(*this, *Orig);
338 }
339 
340 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
341     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
342   MachineInstr *FirstClone = nullptr;
343   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
344   while (true) {
345     MachineInstr *Cloned = CloneMachineInstr(&*I);
346     MBB.insert(InsertBefore, Cloned);
347     if (FirstClone == nullptr) {
348       FirstClone = Cloned;
349     } else {
350       Cloned->bundleWithPred();
351     }
352 
353     if (!I->isBundledWithSucc())
354       break;
355     ++I;
356   }
357   return *FirstClone;
358 }
359 
360 /// Delete the given MachineInstr.
361 ///
362 /// This function also serves as the MachineInstr destructor - the real
363 /// ~MachineInstr() destructor must be empty.
364 void
365 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
366   // Strip it for parts. The operand array and the MI object itself are
367   // independently recyclable.
368   if (MI->Operands)
369     deallocateOperandArray(MI->CapOperands, MI->Operands);
370   // Don't call ~MachineInstr() which must be trivial anyway because
371   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
372   // destructors.
373   InstructionRecycler.Deallocate(Allocator, MI);
374 }
375 
376 /// Allocate a new MachineBasicBlock. Use this instead of
377 /// `new MachineBasicBlock'.
378 MachineBasicBlock *
379 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
380   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
381              MachineBasicBlock(*this, bb);
382 }
383 
384 /// Delete the given MachineBasicBlock.
385 void
386 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
387   assert(MBB->getParent() == this && "MBB parent mismatch!");
388   MBB->~MachineBasicBlock();
389   BasicBlockRecycler.Deallocate(Allocator, MBB);
390 }
391 
392 MachineMemOperand *MachineFunction::getMachineMemOperand(
393     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
394     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
395     SyncScope::ID SSID, AtomicOrdering Ordering,
396     AtomicOrdering FailureOrdering) {
397   return new (Allocator)
398       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
399                         SSID, Ordering, FailureOrdering);
400 }
401 
402 MachineMemOperand *
403 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
404                                       int64_t Offset, uint64_t Size) {
405   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
406 
407   // If there is no pointer value, the offset isn't tracked so we need to adjust
408   // the base alignment.
409   unsigned Align = PtrInfo.V.isNull()
410                        ? MinAlign(MMO->getBaseAlignment(), Offset)
411                        : MMO->getBaseAlignment();
412 
413   return new (Allocator)
414       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
415                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
416                         MMO->getOrdering(), MMO->getFailureOrdering());
417 }
418 
419 MachineMemOperand *
420 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
421                                       const AAMDNodes &AAInfo) {
422   MachinePointerInfo MPI = MMO->getValue() ?
423              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
424              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
425 
426   return new (Allocator)
427              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
428                                MMO->getBaseAlignment(), AAInfo,
429                                MMO->getRanges(), MMO->getSyncScopeID(),
430                                MMO->getOrdering(), MMO->getFailureOrdering());
431 }
432 
433 MachineInstr::ExtraInfo *
434 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
435                                    MCSymbol *PreInstrSymbol,
436                                    MCSymbol *PostInstrSymbol) {
437   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
438                                          PostInstrSymbol);
439 }
440 
441 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
442   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
443   llvm::copy(Name, Dest);
444   Dest[Name.size()] = 0;
445   return Dest;
446 }
447 
448 uint32_t *MachineFunction::allocateRegMask() {
449   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
450   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
451   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
452   memset(Mask, 0, Size * sizeof(Mask[0]));
453   return Mask;
454 }
455 
456 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
457 LLVM_DUMP_METHOD void MachineFunction::dump() const {
458   print(dbgs());
459 }
460 #endif
461 
462 StringRef MachineFunction::getName() const {
463   return getFunction().getName();
464 }
465 
466 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
467   OS << "# Machine code for function " << getName() << ": ";
468   getProperties().print(OS);
469   OS << '\n';
470 
471   // Print Frame Information
472   FrameInfo->print(*this, OS);
473 
474   // Print JumpTable Information
475   if (JumpTableInfo)
476     JumpTableInfo->print(OS);
477 
478   // Print Constant Pool
479   ConstantPool->print(OS);
480 
481   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
482 
483   if (RegInfo && !RegInfo->livein_empty()) {
484     OS << "Function Live Ins: ";
485     for (MachineRegisterInfo::livein_iterator
486          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
487       OS << printReg(I->first, TRI);
488       if (I->second)
489         OS << " in " << printReg(I->second, TRI);
490       if (std::next(I) != E)
491         OS << ", ";
492     }
493     OS << '\n';
494   }
495 
496   ModuleSlotTracker MST(getFunction().getParent());
497   MST.incorporateFunction(getFunction());
498   for (const auto &BB : *this) {
499     OS << '\n';
500     // If we print the whole function, print it at its most verbose level.
501     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
502   }
503 
504   OS << "\n# End machine code for function " << getName() << ".\n\n";
505 }
506 
507 namespace llvm {
508 
509   template<>
510   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
511     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
512 
513     static std::string getGraphName(const MachineFunction *F) {
514       return ("CFG for '" + F->getName() + "' function").str();
515     }
516 
517     std::string getNodeLabel(const MachineBasicBlock *Node,
518                              const MachineFunction *Graph) {
519       std::string OutStr;
520       {
521         raw_string_ostream OSS(OutStr);
522 
523         if (isSimple()) {
524           OSS << printMBBReference(*Node);
525           if (const BasicBlock *BB = Node->getBasicBlock())
526             OSS << ": " << BB->getName();
527         } else
528           Node->print(OSS);
529       }
530 
531       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
532 
533       // Process string output to make it nicer...
534       for (unsigned i = 0; i != OutStr.length(); ++i)
535         if (OutStr[i] == '\n') {                            // Left justify
536           OutStr[i] = '\\';
537           OutStr.insert(OutStr.begin()+i+1, 'l');
538         }
539       return OutStr;
540     }
541   };
542 
543 } // end namespace llvm
544 
545 void MachineFunction::viewCFG() const
546 {
547 #ifndef NDEBUG
548   ViewGraph(this, "mf" + getName());
549 #else
550   errs() << "MachineFunction::viewCFG is only available in debug builds on "
551          << "systems with Graphviz or gv!\n";
552 #endif // NDEBUG
553 }
554 
555 void MachineFunction::viewCFGOnly() const
556 {
557 #ifndef NDEBUG
558   ViewGraph(this, "mf" + getName(), true);
559 #else
560   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
561          << "systems with Graphviz or gv!\n";
562 #endif // NDEBUG
563 }
564 
565 /// Add the specified physical register as a live-in value and
566 /// create a corresponding virtual register for it.
567 unsigned MachineFunction::addLiveIn(unsigned PReg,
568                                     const TargetRegisterClass *RC) {
569   MachineRegisterInfo &MRI = getRegInfo();
570   unsigned VReg = MRI.getLiveInVirtReg(PReg);
571   if (VReg) {
572     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
573     (void)VRegRC;
574     // A physical register can be added several times.
575     // Between two calls, the register class of the related virtual register
576     // may have been constrained to match some operation constraints.
577     // In that case, check that the current register class includes the
578     // physical register and is a sub class of the specified RC.
579     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
580                              RC->hasSubClassEq(VRegRC))) &&
581             "Register class mismatch!");
582     return VReg;
583   }
584   VReg = MRI.createVirtualRegister(RC);
585   MRI.addLiveIn(PReg, VReg);
586   return VReg;
587 }
588 
589 /// Return the MCSymbol for the specified non-empty jump table.
590 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
591 /// normal 'L' label is returned.
592 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
593                                         bool isLinkerPrivate) const {
594   const DataLayout &DL = getDataLayout();
595   assert(JumpTableInfo && "No jump tables");
596   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
597 
598   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
599                                      : DL.getPrivateGlobalPrefix();
600   SmallString<60> Name;
601   raw_svector_ostream(Name)
602     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
603   return Ctx.getOrCreateSymbol(Name);
604 }
605 
606 /// Return a function-local symbol to represent the PIC base.
607 MCSymbol *MachineFunction::getPICBaseSymbol() const {
608   const DataLayout &DL = getDataLayout();
609   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
610                                Twine(getFunctionNumber()) + "$pb");
611 }
612 
613 /// \name Exception Handling
614 /// \{
615 
616 LandingPadInfo &
617 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
618   unsigned N = LandingPads.size();
619   for (unsigned i = 0; i < N; ++i) {
620     LandingPadInfo &LP = LandingPads[i];
621     if (LP.LandingPadBlock == LandingPad)
622       return LP;
623   }
624 
625   LandingPads.push_back(LandingPadInfo(LandingPad));
626   return LandingPads[N];
627 }
628 
629 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
630                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
631   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
632   LP.BeginLabels.push_back(BeginLabel);
633   LP.EndLabels.push_back(EndLabel);
634 }
635 
636 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
637   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
638   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
639   LP.LandingPadLabel = LandingPadLabel;
640 
641   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
642   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
643     if (const auto *PF =
644             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
645       getMMI().addPersonality(PF);
646 
647     if (LPI->isCleanup())
648       addCleanup(LandingPad);
649 
650     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
651     //        correct, but we need to do it this way because of how the DWARF EH
652     //        emitter processes the clauses.
653     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
654       Value *Val = LPI->getClause(I - 1);
655       if (LPI->isCatch(I - 1)) {
656         addCatchTypeInfo(LandingPad,
657                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
658       } else {
659         // Add filters in a list.
660         auto *CVal = cast<Constant>(Val);
661         SmallVector<const GlobalValue *, 4> FilterList;
662         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
663              II != IE; ++II)
664           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
665 
666         addFilterTypeInfo(LandingPad, FilterList);
667       }
668     }
669 
670   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
671     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
672       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
673       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
674     }
675 
676   } else {
677     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
678   }
679 
680   return LandingPadLabel;
681 }
682 
683 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
684                                        ArrayRef<const GlobalValue *> TyInfo) {
685   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
686   for (unsigned N = TyInfo.size(); N; --N)
687     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
688 }
689 
690 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
691                                         ArrayRef<const GlobalValue *> TyInfo) {
692   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
693   std::vector<unsigned> IdsInFilter(TyInfo.size());
694   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
695     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
696   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
697 }
698 
699 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
700                                       bool TidyIfNoBeginLabels) {
701   for (unsigned i = 0; i != LandingPads.size(); ) {
702     LandingPadInfo &LandingPad = LandingPads[i];
703     if (LandingPad.LandingPadLabel &&
704         !LandingPad.LandingPadLabel->isDefined() &&
705         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
706       LandingPad.LandingPadLabel = nullptr;
707 
708     // Special case: we *should* emit LPs with null LP MBB. This indicates
709     // "nounwind" case.
710     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
711       LandingPads.erase(LandingPads.begin() + i);
712       continue;
713     }
714 
715     if (TidyIfNoBeginLabels) {
716       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
717         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
718         MCSymbol *EndLabel = LandingPad.EndLabels[j];
719         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
720             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
721           continue;
722 
723         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
724         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
725         --j;
726         --e;
727       }
728 
729       // Remove landing pads with no try-ranges.
730       if (LandingPads[i].BeginLabels.empty()) {
731         LandingPads.erase(LandingPads.begin() + i);
732         continue;
733       }
734     }
735 
736     // If there is no landing pad, ensure that the list of typeids is empty.
737     // If the only typeid is a cleanup, this is the same as having no typeids.
738     if (!LandingPad.LandingPadBlock ||
739         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
740       LandingPad.TypeIds.clear();
741     ++i;
742   }
743 }
744 
745 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
746   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
747   LP.TypeIds.push_back(0);
748 }
749 
750 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
751                                          const Function *Filter,
752                                          const BlockAddress *RecoverBA) {
753   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
754   SEHHandler Handler;
755   Handler.FilterOrFinally = Filter;
756   Handler.RecoverBA = RecoverBA;
757   LP.SEHHandlers.push_back(Handler);
758 }
759 
760 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
761                                            const Function *Cleanup) {
762   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
763   SEHHandler Handler;
764   Handler.FilterOrFinally = Cleanup;
765   Handler.RecoverBA = nullptr;
766   LP.SEHHandlers.push_back(Handler);
767 }
768 
769 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
770                                             ArrayRef<unsigned> Sites) {
771   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
772 }
773 
774 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
775   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
776     if (TypeInfos[i] == TI) return i + 1;
777 
778   TypeInfos.push_back(TI);
779   return TypeInfos.size();
780 }
781 
782 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
783   // If the new filter coincides with the tail of an existing filter, then
784   // re-use the existing filter.  Folding filters more than this requires
785   // re-ordering filters and/or their elements - probably not worth it.
786   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
787        E = FilterEnds.end(); I != E; ++I) {
788     unsigned i = *I, j = TyIds.size();
789 
790     while (i && j)
791       if (FilterIds[--i] != TyIds[--j])
792         goto try_next;
793 
794     if (!j)
795       // The new filter coincides with range [i, end) of the existing filter.
796       return -(1 + i);
797 
798 try_next:;
799   }
800 
801   // Add the new filter.
802   int FilterID = -(1 + FilterIds.size());
803   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
804   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
805   FilterEnds.push_back(FilterIds.size());
806   FilterIds.push_back(0); // terminator
807   return FilterID;
808 }
809 
810 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I, MDNode *MD) {
811   MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
812   MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
813   I->setPreInstrSymbol(*this, BeginLabel);
814   I->setPostInstrSymbol(*this, EndLabel);
815 
816   DIType *DI = dyn_cast<DIType>(MD);
817   CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
818 }
819 
820 /// \}
821 
822 //===----------------------------------------------------------------------===//
823 //  MachineJumpTableInfo implementation
824 //===----------------------------------------------------------------------===//
825 
826 /// Return the size of each entry in the jump table.
827 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
828   // The size of a jump table entry is 4 bytes unless the entry is just the
829   // address of a block, in which case it is the pointer size.
830   switch (getEntryKind()) {
831   case MachineJumpTableInfo::EK_BlockAddress:
832     return TD.getPointerSize();
833   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
834     return 8;
835   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
836   case MachineJumpTableInfo::EK_LabelDifference32:
837   case MachineJumpTableInfo::EK_Custom32:
838     return 4;
839   case MachineJumpTableInfo::EK_Inline:
840     return 0;
841   }
842   llvm_unreachable("Unknown jump table encoding!");
843 }
844 
845 /// Return the alignment of each entry in the jump table.
846 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
847   // The alignment of a jump table entry is the alignment of int32 unless the
848   // entry is just the address of a block, in which case it is the pointer
849   // alignment.
850   switch (getEntryKind()) {
851   case MachineJumpTableInfo::EK_BlockAddress:
852     return TD.getPointerABIAlignment(0);
853   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
854     return TD.getABIIntegerTypeAlignment(64);
855   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
856   case MachineJumpTableInfo::EK_LabelDifference32:
857   case MachineJumpTableInfo::EK_Custom32:
858     return TD.getABIIntegerTypeAlignment(32);
859   case MachineJumpTableInfo::EK_Inline:
860     return 1;
861   }
862   llvm_unreachable("Unknown jump table encoding!");
863 }
864 
865 /// Create a new jump table entry in the jump table info.
866 unsigned MachineJumpTableInfo::createJumpTableIndex(
867                                const std::vector<MachineBasicBlock*> &DestBBs) {
868   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
869   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
870   return JumpTables.size()-1;
871 }
872 
873 /// If Old is the target of any jump tables, update the jump tables to branch
874 /// to New instead.
875 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
876                                                   MachineBasicBlock *New) {
877   assert(Old != New && "Not making a change?");
878   bool MadeChange = false;
879   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
880     ReplaceMBBInJumpTable(i, Old, New);
881   return MadeChange;
882 }
883 
884 /// If Old is a target of the jump tables, update the jump table to branch to
885 /// New instead.
886 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
887                                                  MachineBasicBlock *Old,
888                                                  MachineBasicBlock *New) {
889   assert(Old != New && "Not making a change?");
890   bool MadeChange = false;
891   MachineJumpTableEntry &JTE = JumpTables[Idx];
892   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
893     if (JTE.MBBs[j] == Old) {
894       JTE.MBBs[j] = New;
895       MadeChange = true;
896     }
897   return MadeChange;
898 }
899 
900 void MachineJumpTableInfo::print(raw_ostream &OS) const {
901   if (JumpTables.empty()) return;
902 
903   OS << "Jump Tables:\n";
904 
905   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
906     OS << printJumpTableEntryReference(i) << ": ";
907     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
908       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
909   }
910 
911   OS << '\n';
912 }
913 
914 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
915 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
916 #endif
917 
918 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
919   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
920 }
921 
922 //===----------------------------------------------------------------------===//
923 //  MachineConstantPool implementation
924 //===----------------------------------------------------------------------===//
925 
926 void MachineConstantPoolValue::anchor() {}
927 
928 Type *MachineConstantPoolEntry::getType() const {
929   if (isMachineConstantPoolEntry())
930     return Val.MachineCPVal->getType();
931   return Val.ConstVal->getType();
932 }
933 
934 bool MachineConstantPoolEntry::needsRelocation() const {
935   if (isMachineConstantPoolEntry())
936     return true;
937   return Val.ConstVal->needsRelocation();
938 }
939 
940 SectionKind
941 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
942   if (needsRelocation())
943     return SectionKind::getReadOnlyWithRel();
944   switch (DL->getTypeAllocSize(getType())) {
945   case 4:
946     return SectionKind::getMergeableConst4();
947   case 8:
948     return SectionKind::getMergeableConst8();
949   case 16:
950     return SectionKind::getMergeableConst16();
951   case 32:
952     return SectionKind::getMergeableConst32();
953   default:
954     return SectionKind::getReadOnly();
955   }
956 }
957 
958 MachineConstantPool::~MachineConstantPool() {
959   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
960   // so keep track of which we've deleted to avoid double deletions.
961   DenseSet<MachineConstantPoolValue*> Deleted;
962   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
963     if (Constants[i].isMachineConstantPoolEntry()) {
964       Deleted.insert(Constants[i].Val.MachineCPVal);
965       delete Constants[i].Val.MachineCPVal;
966     }
967   for (DenseSet<MachineConstantPoolValue*>::iterator I =
968        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
969        I != E; ++I) {
970     if (Deleted.count(*I) == 0)
971       delete *I;
972   }
973 }
974 
975 /// Test whether the given two constants can be allocated the same constant pool
976 /// entry.
977 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
978                                       const DataLayout &DL) {
979   // Handle the trivial case quickly.
980   if (A == B) return true;
981 
982   // If they have the same type but weren't the same constant, quickly
983   // reject them.
984   if (A->getType() == B->getType()) return false;
985 
986   // We can't handle structs or arrays.
987   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
988       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
989     return false;
990 
991   // For now, only support constants with the same size.
992   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
993   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
994     return false;
995 
996   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
997 
998   // Try constant folding a bitcast of both instructions to an integer.  If we
999   // get two identical ConstantInt's, then we are good to share them.  We use
1000   // the constant folding APIs to do this so that we get the benefit of
1001   // DataLayout.
1002   if (isa<PointerType>(A->getType()))
1003     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1004                                 const_cast<Constant *>(A), IntTy, DL);
1005   else if (A->getType() != IntTy)
1006     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1007                                 IntTy, DL);
1008   if (isa<PointerType>(B->getType()))
1009     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1010                                 const_cast<Constant *>(B), IntTy, DL);
1011   else if (B->getType() != IntTy)
1012     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1013                                 IntTy, DL);
1014 
1015   return A == B;
1016 }
1017 
1018 /// Create a new entry in the constant pool or return an existing one.
1019 /// User must specify the log2 of the minimum required alignment for the object.
1020 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1021                                                    unsigned Alignment) {
1022   assert(Alignment && "Alignment must be specified!");
1023   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1024 
1025   // Check to see if we already have this constant.
1026   //
1027   // FIXME, this could be made much more efficient for large constant pools.
1028   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1029     if (!Constants[i].isMachineConstantPoolEntry() &&
1030         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1031       if ((unsigned)Constants[i].getAlignment() < Alignment)
1032         Constants[i].Alignment = Alignment;
1033       return i;
1034     }
1035 
1036   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1037   return Constants.size()-1;
1038 }
1039 
1040 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1041                                                    unsigned Alignment) {
1042   assert(Alignment && "Alignment must be specified!");
1043   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1044 
1045   // Check to see if we already have this constant.
1046   //
1047   // FIXME, this could be made much more efficient for large constant pools.
1048   int Idx = V->getExistingMachineCPValue(this, Alignment);
1049   if (Idx != -1) {
1050     MachineCPVsSharingEntries.insert(V);
1051     return (unsigned)Idx;
1052   }
1053 
1054   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1055   return Constants.size()-1;
1056 }
1057 
1058 void MachineConstantPool::print(raw_ostream &OS) const {
1059   if (Constants.empty()) return;
1060 
1061   OS << "Constant Pool:\n";
1062   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1063     OS << "  cp#" << i << ": ";
1064     if (Constants[i].isMachineConstantPoolEntry())
1065       Constants[i].Val.MachineCPVal->print(OS);
1066     else
1067       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1068     OS << ", align=" << Constants[i].getAlignment();
1069     OS << "\n";
1070   }
1071 }
1072 
1073 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1074 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1075 #endif
1076