1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 #include "LiveDebugValues/LiveDebugValues.h" 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "codegen" 84 85 static cl::opt<unsigned> AlignAllFunctions( 86 "align-all-functions", 87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 88 "means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 92 using P = MachineFunctionProperties::Property; 93 94 // clang-format off 95 switch(Prop) { 96 case P::FailedISel: return "FailedISel"; 97 case P::IsSSA: return "IsSSA"; 98 case P::Legalized: return "Legalized"; 99 case P::NoPHIs: return "NoPHIs"; 100 case P::NoVRegs: return "NoVRegs"; 101 case P::RegBankSelected: return "RegBankSelected"; 102 case P::Selected: return "Selected"; 103 case P::TracksLiveness: return "TracksLiveness"; 104 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 105 case P::FailsVerification: return "FailsVerification"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 165 const TargetSubtargetInfo &STI, MCContext &Ctx, 166 unsigned FunctionNum) 167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 } 379 380 /// This method iterates over the basic blocks and assigns their IsBeginSection 381 /// and IsEndSection fields. This must be called after MBB layout is finalized 382 /// and the SectionID's are assigned to MBBs. 383 void MachineFunction::assignBeginEndSections() { 384 front().setIsBeginSection(); 385 auto CurrentSectionID = front().getSectionID(); 386 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 387 if (MBBI->getSectionID() == CurrentSectionID) 388 continue; 389 MBBI->setIsBeginSection(); 390 std::prev(MBBI)->setIsEndSection(); 391 CurrentSectionID = MBBI->getSectionID(); 392 } 393 back().setIsEndSection(); 394 } 395 396 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 397 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 398 DebugLoc DL, 399 bool NoImplicit) { 400 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 401 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 402 } 403 404 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 405 /// identical in all ways except the instruction has no parent, prev, or next. 406 MachineInstr * 407 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 408 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 409 MachineInstr(*this, *Orig); 410 } 411 412 MachineInstr &MachineFunction::cloneMachineInstrBundle( 413 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 414 const MachineInstr &Orig) { 415 MachineInstr *FirstClone = nullptr; 416 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 417 while (true) { 418 MachineInstr *Cloned = CloneMachineInstr(&*I); 419 MBB.insert(InsertBefore, Cloned); 420 if (FirstClone == nullptr) { 421 FirstClone = Cloned; 422 } else { 423 Cloned->bundleWithPred(); 424 } 425 426 if (!I->isBundledWithSucc()) 427 break; 428 ++I; 429 } 430 // Copy over call site info to the cloned instruction if needed. If Orig is in 431 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 432 // the bundle. 433 if (Orig.shouldUpdateCallSiteInfo()) 434 copyCallSiteInfo(&Orig, FirstClone); 435 return *FirstClone; 436 } 437 438 /// Delete the given MachineInstr. 439 /// 440 /// This function also serves as the MachineInstr destructor - the real 441 /// ~MachineInstr() destructor must be empty. 442 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 443 // Verify that a call site info is at valid state. This assertion should 444 // be triggered during the implementation of support for the 445 // call site info of a new architecture. If the assertion is triggered, 446 // back trace will tell where to insert a call to updateCallSiteInfo(). 447 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 448 "Call site info was not updated!"); 449 // Strip it for parts. The operand array and the MI object itself are 450 // independently recyclable. 451 if (MI->Operands) 452 deallocateOperandArray(MI->CapOperands, MI->Operands); 453 // Don't call ~MachineInstr() which must be trivial anyway because 454 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 455 // destructors. 456 InstructionRecycler.Deallocate(Allocator, MI); 457 } 458 459 /// Allocate a new MachineBasicBlock. Use this instead of 460 /// `new MachineBasicBlock'. 461 MachineBasicBlock * 462 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 463 std::optional<UniqueBBID> BBID) { 464 MachineBasicBlock *MBB = 465 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 466 MachineBasicBlock(*this, BB); 467 // Set BBID for `-basic-block=sections=labels` and 468 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 469 // blocks. 470 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 471 Target.Options.BBAddrMap || 472 Target.getBBSectionsType() == BasicBlockSection::List) 473 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 474 return MBB; 475 } 476 477 /// Delete the given MachineBasicBlock. 478 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 479 assert(MBB->getParent() == this && "MBB parent mismatch!"); 480 // Clean up any references to MBB in jump tables before deleting it. 481 if (JumpTableInfo) 482 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 483 MBB->~MachineBasicBlock(); 484 BasicBlockRecycler.Deallocate(Allocator, MBB); 485 } 486 487 MachineMemOperand *MachineFunction::getMachineMemOperand( 488 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 489 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 490 SyncScope::ID SSID, AtomicOrdering Ordering, 491 AtomicOrdering FailureOrdering) { 492 assert((!Size.hasValue() || 493 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 494 "Unexpected an unknown size to be represented using " 495 "LocationSize::beforeOrAfter()"); 496 return new (Allocator) 497 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 498 Ordering, FailureOrdering); 499 } 500 501 MachineMemOperand *MachineFunction::getMachineMemOperand( 502 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 503 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 504 SyncScope::ID SSID, AtomicOrdering Ordering, 505 AtomicOrdering FailureOrdering) { 506 return new (Allocator) 507 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 508 Ordering, FailureOrdering); 509 } 510 511 MachineMemOperand * 512 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 513 const MachinePointerInfo &PtrInfo, 514 LocationSize Size) { 515 assert((!Size.hasValue() || 516 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 517 "Unexpected an unknown size to be represented using " 518 "LocationSize::beforeOrAfter()"); 519 return new (Allocator) 520 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 521 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 522 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 523 } 524 525 MachineMemOperand *MachineFunction::getMachineMemOperand( 526 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 527 return new (Allocator) 528 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 529 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 530 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 531 } 532 533 MachineMemOperand * 534 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 535 int64_t Offset, LLT Ty) { 536 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 537 538 // If there is no pointer value, the offset isn't tracked so we need to adjust 539 // the base alignment. 540 Align Alignment = PtrInfo.V.isNull() 541 ? commonAlignment(MMO->getBaseAlign(), Offset) 542 : MMO->getBaseAlign(); 543 544 // Do not preserve ranges, since we don't necessarily know what the high bits 545 // are anymore. 546 return new (Allocator) MachineMemOperand( 547 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 548 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 549 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 550 } 551 552 MachineMemOperand * 553 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 554 const AAMDNodes &AAInfo) { 555 MachinePointerInfo MPI = MMO->getValue() ? 556 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 557 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 558 559 return new (Allocator) MachineMemOperand( 560 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 561 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 562 MMO->getFailureOrdering()); 563 } 564 565 MachineMemOperand * 566 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 567 MachineMemOperand::Flags Flags) { 568 return new (Allocator) MachineMemOperand( 569 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 570 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 571 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 572 } 573 574 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 575 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 576 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 577 uint32_t CFIType, MDNode *MMRAs) { 578 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 579 PostInstrSymbol, HeapAllocMarker, 580 PCSections, CFIType, MMRAs); 581 } 582 583 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 584 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 585 llvm::copy(Name, Dest); 586 Dest[Name.size()] = 0; 587 return Dest; 588 } 589 590 uint32_t *MachineFunction::allocateRegMask() { 591 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 592 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 593 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 594 memset(Mask, 0, Size * sizeof(Mask[0])); 595 return Mask; 596 } 597 598 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 599 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 600 copy(Mask, AllocMask); 601 return {AllocMask, Mask.size()}; 602 } 603 604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 605 LLVM_DUMP_METHOD void MachineFunction::dump() const { 606 print(dbgs()); 607 } 608 #endif 609 610 StringRef MachineFunction::getName() const { 611 return getFunction().getName(); 612 } 613 614 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 615 OS << "# Machine code for function " << getName() << ": "; 616 getProperties().print(OS); 617 OS << '\n'; 618 619 // Print Frame Information 620 FrameInfo->print(*this, OS); 621 622 // Print JumpTable Information 623 if (JumpTableInfo) 624 JumpTableInfo->print(OS); 625 626 // Print Constant Pool 627 ConstantPool->print(OS); 628 629 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 630 631 if (RegInfo && !RegInfo->livein_empty()) { 632 OS << "Function Live Ins: "; 633 for (MachineRegisterInfo::livein_iterator 634 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 635 OS << printReg(I->first, TRI); 636 if (I->second) 637 OS << " in " << printReg(I->second, TRI); 638 if (std::next(I) != E) 639 OS << ", "; 640 } 641 OS << '\n'; 642 } 643 644 ModuleSlotTracker MST(getFunction().getParent()); 645 MST.incorporateFunction(getFunction()); 646 for (const auto &BB : *this) { 647 OS << '\n'; 648 // If we print the whole function, print it at its most verbose level. 649 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 650 } 651 652 OS << "\n# End machine code for function " << getName() << ".\n\n"; 653 } 654 655 /// True if this function needs frame moves for debug or exceptions. 656 bool MachineFunction::needsFrameMoves() const { 657 // TODO: Ideally, what we'd like is to have a switch that allows emitting 658 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even 659 // under this switch, we'd like .debug_frame to be precise when using -g. At 660 // this moment, there's no way to specify that some CFI directives go into 661 // .eh_frame only, while others go into .debug_frame only. 662 return getTarget().Options.ForceDwarfFrameSection || 663 F.needsUnwindTableEntry() || 664 !F.getParent()->debug_compile_units().empty(); 665 } 666 667 namespace llvm { 668 669 template<> 670 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 671 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 672 673 static std::string getGraphName(const MachineFunction *F) { 674 return ("CFG for '" + F->getName() + "' function").str(); 675 } 676 677 std::string getNodeLabel(const MachineBasicBlock *Node, 678 const MachineFunction *Graph) { 679 std::string OutStr; 680 { 681 raw_string_ostream OSS(OutStr); 682 683 if (isSimple()) { 684 OSS << printMBBReference(*Node); 685 if (const BasicBlock *BB = Node->getBasicBlock()) 686 OSS << ": " << BB->getName(); 687 } else 688 Node->print(OSS); 689 } 690 691 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 692 693 // Process string output to make it nicer... 694 for (unsigned i = 0; i != OutStr.length(); ++i) 695 if (OutStr[i] == '\n') { // Left justify 696 OutStr[i] = '\\'; 697 OutStr.insert(OutStr.begin()+i+1, 'l'); 698 } 699 return OutStr; 700 } 701 }; 702 703 } // end namespace llvm 704 705 void MachineFunction::viewCFG() const 706 { 707 #ifndef NDEBUG 708 ViewGraph(this, "mf" + getName()); 709 #else 710 errs() << "MachineFunction::viewCFG is only available in debug builds on " 711 << "systems with Graphviz or gv!\n"; 712 #endif // NDEBUG 713 } 714 715 void MachineFunction::viewCFGOnly() const 716 { 717 #ifndef NDEBUG 718 ViewGraph(this, "mf" + getName(), true); 719 #else 720 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 721 << "systems with Graphviz or gv!\n"; 722 #endif // NDEBUG 723 } 724 725 /// Add the specified physical register as a live-in value and 726 /// create a corresponding virtual register for it. 727 Register MachineFunction::addLiveIn(MCRegister PReg, 728 const TargetRegisterClass *RC) { 729 MachineRegisterInfo &MRI = getRegInfo(); 730 Register VReg = MRI.getLiveInVirtReg(PReg); 731 if (VReg) { 732 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 733 (void)VRegRC; 734 // A physical register can be added several times. 735 // Between two calls, the register class of the related virtual register 736 // may have been constrained to match some operation constraints. 737 // In that case, check that the current register class includes the 738 // physical register and is a sub class of the specified RC. 739 assert((VRegRC == RC || (VRegRC->contains(PReg) && 740 RC->hasSubClassEq(VRegRC))) && 741 "Register class mismatch!"); 742 return VReg; 743 } 744 VReg = MRI.createVirtualRegister(RC); 745 MRI.addLiveIn(PReg, VReg); 746 return VReg; 747 } 748 749 /// Return the MCSymbol for the specified non-empty jump table. 750 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 751 /// normal 'L' label is returned. 752 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 753 bool isLinkerPrivate) const { 754 const DataLayout &DL = getDataLayout(); 755 assert(JumpTableInfo && "No jump tables"); 756 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 757 758 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 759 : DL.getPrivateGlobalPrefix(); 760 SmallString<60> Name; 761 raw_svector_ostream(Name) 762 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 763 return Ctx.getOrCreateSymbol(Name); 764 } 765 766 /// Return a function-local symbol to represent the PIC base. 767 MCSymbol *MachineFunction::getPICBaseSymbol() const { 768 const DataLayout &DL = getDataLayout(); 769 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 770 Twine(getFunctionNumber()) + "$pb"); 771 } 772 773 /// \name Exception Handling 774 /// \{ 775 776 LandingPadInfo & 777 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 778 unsigned N = LandingPads.size(); 779 for (unsigned i = 0; i < N; ++i) { 780 LandingPadInfo &LP = LandingPads[i]; 781 if (LP.LandingPadBlock == LandingPad) 782 return LP; 783 } 784 785 LandingPads.push_back(LandingPadInfo(LandingPad)); 786 return LandingPads[N]; 787 } 788 789 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 790 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 791 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 792 LP.BeginLabels.push_back(BeginLabel); 793 LP.EndLabels.push_back(EndLabel); 794 } 795 796 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 797 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 798 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 799 LP.LandingPadLabel = LandingPadLabel; 800 801 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 802 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 803 // If there's no typeid list specified, then "cleanup" is implicit. 804 // Otherwise, id 0 is reserved for the cleanup action. 805 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 806 LP.TypeIds.push_back(0); 807 808 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 809 // correct, but we need to do it this way because of how the DWARF EH 810 // emitter processes the clauses. 811 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 812 Value *Val = LPI->getClause(I - 1); 813 if (LPI->isCatch(I - 1)) { 814 LP.TypeIds.push_back( 815 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 816 } else { 817 // Add filters in a list. 818 auto *CVal = cast<Constant>(Val); 819 SmallVector<unsigned, 4> FilterList; 820 for (const Use &U : CVal->operands()) 821 FilterList.push_back( 822 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 823 824 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 825 } 826 } 827 828 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 829 for (unsigned I = CPI->arg_size(); I != 0; --I) { 830 auto *TypeInfo = 831 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 832 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 833 } 834 835 } else { 836 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 837 } 838 839 return LandingPadLabel; 840 } 841 842 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 843 ArrayRef<unsigned> Sites) { 844 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 845 } 846 847 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 848 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 849 if (TypeInfos[i] == TI) return i + 1; 850 851 TypeInfos.push_back(TI); 852 return TypeInfos.size(); 853 } 854 855 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 856 // If the new filter coincides with the tail of an existing filter, then 857 // re-use the existing filter. Folding filters more than this requires 858 // re-ordering filters and/or their elements - probably not worth it. 859 for (unsigned i : FilterEnds) { 860 unsigned j = TyIds.size(); 861 862 while (i && j) 863 if (FilterIds[--i] != TyIds[--j]) 864 goto try_next; 865 866 if (!j) 867 // The new filter coincides with range [i, end) of the existing filter. 868 return -(1 + i); 869 870 try_next:; 871 } 872 873 // Add the new filter. 874 int FilterID = -(1 + FilterIds.size()); 875 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 876 llvm::append_range(FilterIds, TyIds); 877 FilterEnds.push_back(FilterIds.size()); 878 FilterIds.push_back(0); // terminator 879 return FilterID; 880 } 881 882 MachineFunction::CallSiteInfoMap::iterator 883 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 884 assert(MI->isCandidateForCallSiteEntry() && 885 "Call site info refers only to call (MI) candidates"); 886 887 if (!Target.Options.EmitCallSiteInfo) 888 return CallSitesInfo.end(); 889 return CallSitesInfo.find(MI); 890 } 891 892 /// Return the call machine instruction or find a call within bundle. 893 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 894 if (!MI->isBundle()) 895 return MI; 896 897 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 898 getBundleEnd(MI->getIterator()))) 899 if (BMI.isCandidateForCallSiteEntry()) 900 return &BMI; 901 902 llvm_unreachable("Unexpected bundle without a call site candidate"); 903 } 904 905 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 906 assert(MI->shouldUpdateCallSiteInfo() && 907 "Call site info refers only to call (MI) candidates or " 908 "candidates inside bundles"); 909 910 const MachineInstr *CallMI = getCallInstr(MI); 911 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 912 if (CSIt == CallSitesInfo.end()) 913 return; 914 CallSitesInfo.erase(CSIt); 915 } 916 917 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 918 const MachineInstr *New) { 919 assert(Old->shouldUpdateCallSiteInfo() && 920 "Call site info refers only to call (MI) candidates or " 921 "candidates inside bundles"); 922 923 if (!New->isCandidateForCallSiteEntry()) 924 return eraseCallSiteInfo(Old); 925 926 const MachineInstr *OldCallMI = getCallInstr(Old); 927 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 928 if (CSIt == CallSitesInfo.end()) 929 return; 930 931 CallSiteInfo CSInfo = CSIt->second; 932 CallSitesInfo[New] = CSInfo; 933 } 934 935 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 936 const MachineInstr *New) { 937 assert(Old->shouldUpdateCallSiteInfo() && 938 "Call site info refers only to call (MI) candidates or " 939 "candidates inside bundles"); 940 941 if (!New->isCandidateForCallSiteEntry()) 942 return eraseCallSiteInfo(Old); 943 944 const MachineInstr *OldCallMI = getCallInstr(Old); 945 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 946 if (CSIt == CallSitesInfo.end()) 947 return; 948 949 CallSiteInfo CSInfo = std::move(CSIt->second); 950 CallSitesInfo.erase(CSIt); 951 CallSitesInfo[New] = CSInfo; 952 } 953 954 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 955 DebugInstrNumberingCount = Num; 956 } 957 958 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 959 DebugInstrOperandPair B, 960 unsigned Subreg) { 961 // Catch any accidental self-loops. 962 assert(A.first != B.first); 963 // Don't allow any substitutions _from_ the memory operand number. 964 assert(A.second != DebugOperandMemNumber); 965 966 DebugValueSubstitutions.push_back({A, B, Subreg}); 967 } 968 969 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 970 MachineInstr &New, 971 unsigned MaxOperand) { 972 // If the Old instruction wasn't tracked at all, there is no work to do. 973 unsigned OldInstrNum = Old.peekDebugInstrNum(); 974 if (!OldInstrNum) 975 return; 976 977 // Iterate over all operands looking for defs to create substitutions for. 978 // Avoid creating new instr numbers unless we create a new substitution. 979 // While this has no functional effect, it risks confusing someone reading 980 // MIR output. 981 // Examine all the operands, or the first N specified by the caller. 982 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 983 for (unsigned int I = 0; I < MaxOperand; ++I) { 984 const auto &OldMO = Old.getOperand(I); 985 auto &NewMO = New.getOperand(I); 986 (void)NewMO; 987 988 if (!OldMO.isReg() || !OldMO.isDef()) 989 continue; 990 assert(NewMO.isDef()); 991 992 unsigned NewInstrNum = New.getDebugInstrNum(); 993 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 994 std::make_pair(NewInstrNum, I)); 995 } 996 } 997 998 auto MachineFunction::salvageCopySSA( 999 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1000 -> DebugInstrOperandPair { 1001 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1002 1003 // Check whether this copy-like instruction has already been salvaged into 1004 // an operand pair. 1005 Register Dest; 1006 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1007 Dest = CopyDstSrc->Destination->getReg(); 1008 } else { 1009 assert(MI.isSubregToReg()); 1010 Dest = MI.getOperand(0).getReg(); 1011 } 1012 1013 auto CacheIt = DbgPHICache.find(Dest); 1014 if (CacheIt != DbgPHICache.end()) 1015 return CacheIt->second; 1016 1017 // Calculate the instruction number to use, or install a DBG_PHI. 1018 auto OperandPair = salvageCopySSAImpl(MI); 1019 DbgPHICache.insert({Dest, OperandPair}); 1020 return OperandPair; 1021 } 1022 1023 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1024 -> DebugInstrOperandPair { 1025 MachineRegisterInfo &MRI = getRegInfo(); 1026 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1027 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1028 1029 // Chase the value read by a copy-like instruction back to the instruction 1030 // that ultimately _defines_ that value. This may pass: 1031 // * Through multiple intermediate copies, including subregister moves / 1032 // copies, 1033 // * Copies from physical registers that must then be traced back to the 1034 // defining instruction, 1035 // * Or, physical registers may be live-in to (only) the entry block, which 1036 // requires a DBG_PHI to be created. 1037 // We can pursue this problem in that order: trace back through copies, 1038 // optionally through a physical register, to a defining instruction. We 1039 // should never move from physreg to vreg. As we're still in SSA form, no need 1040 // to worry about partial definitions of registers. 1041 1042 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1043 // returns the register read and any subregister identifying which part is 1044 // read. 1045 auto GetRegAndSubreg = 1046 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1047 Register NewReg, OldReg; 1048 unsigned SubReg; 1049 if (Cpy.isCopy()) { 1050 OldReg = Cpy.getOperand(0).getReg(); 1051 NewReg = Cpy.getOperand(1).getReg(); 1052 SubReg = Cpy.getOperand(1).getSubReg(); 1053 } else if (Cpy.isSubregToReg()) { 1054 OldReg = Cpy.getOperand(0).getReg(); 1055 NewReg = Cpy.getOperand(2).getReg(); 1056 SubReg = Cpy.getOperand(3).getImm(); 1057 } else { 1058 auto CopyDetails = *TII.isCopyInstr(Cpy); 1059 const MachineOperand &Src = *CopyDetails.Source; 1060 const MachineOperand &Dest = *CopyDetails.Destination; 1061 OldReg = Dest.getReg(); 1062 NewReg = Src.getReg(); 1063 SubReg = Src.getSubReg(); 1064 } 1065 1066 return {NewReg, SubReg}; 1067 }; 1068 1069 // First seek either the defining instruction, or a copy from a physreg. 1070 // During search, the current state is the current copy instruction, and which 1071 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1072 // deal with those later. 1073 auto State = GetRegAndSubreg(MI); 1074 auto CurInst = MI.getIterator(); 1075 SmallVector<unsigned, 4> SubregsSeen; 1076 while (true) { 1077 // If we've found a copy from a physreg, first portion of search is over. 1078 if (!State.first.isVirtual()) 1079 break; 1080 1081 // Record any subregister qualifier. 1082 if (State.second) 1083 SubregsSeen.push_back(State.second); 1084 1085 assert(MRI.hasOneDef(State.first)); 1086 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1087 CurInst = Inst.getIterator(); 1088 1089 // Any non-copy instruction is the defining instruction we're seeking. 1090 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1091 break; 1092 State = GetRegAndSubreg(Inst); 1093 }; 1094 1095 // Helper lambda to apply additional subregister substitutions to a known 1096 // instruction/operand pair. Adds new (fake) substitutions so that we can 1097 // record the subregister. FIXME: this isn't very space efficient if multiple 1098 // values are tracked back through the same copies; cache something later. 1099 auto ApplySubregisters = 1100 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1101 for (unsigned Subreg : reverse(SubregsSeen)) { 1102 // Fetch a new instruction number, not attached to an actual instruction. 1103 unsigned NewInstrNumber = getNewDebugInstrNum(); 1104 // Add a substitution from the "new" number to the known one, with a 1105 // qualifying subreg. 1106 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1107 // Return the new number; to find the underlying value, consumers need to 1108 // deal with the qualifying subreg. 1109 P = {NewInstrNumber, 0}; 1110 } 1111 return P; 1112 }; 1113 1114 // If we managed to find the defining instruction after COPYs, return an 1115 // instruction / operand pair after adding subregister qualifiers. 1116 if (State.first.isVirtual()) { 1117 // Virtual register def -- we can just look up where this happens. 1118 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1119 for (auto &MO : Inst->all_defs()) { 1120 if (MO.getReg() != State.first) 1121 continue; 1122 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1123 } 1124 1125 llvm_unreachable("Vreg def with no corresponding operand?"); 1126 } 1127 1128 // Our search ended in a copy from a physreg: walk back up the function 1129 // looking for whatever defines the physreg. 1130 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1131 State = GetRegAndSubreg(*CurInst); 1132 Register RegToSeek = State.first; 1133 1134 auto RMII = CurInst->getReverseIterator(); 1135 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1136 for (auto &ToExamine : PrevInstrs) { 1137 for (auto &MO : ToExamine.all_defs()) { 1138 // Test for operand that defines something aliasing RegToSeek. 1139 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1140 continue; 1141 1142 return ApplySubregisters( 1143 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1144 } 1145 } 1146 1147 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1148 1149 // We reached the start of the block before finding a defining instruction. 1150 // There are numerous scenarios where this can happen: 1151 // * Constant physical registers, 1152 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1153 // * Arguments in the entry block, 1154 // * Exception handling landing pads. 1155 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1156 // the variable value at this position, rather than checking it makes sense. 1157 1158 // Create DBG_PHI for specified physreg. 1159 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1160 TII.get(TargetOpcode::DBG_PHI)); 1161 Builder.addReg(State.first); 1162 unsigned NewNum = getNewDebugInstrNum(); 1163 Builder.addImm(NewNum); 1164 return ApplySubregisters({NewNum, 0u}); 1165 } 1166 1167 void MachineFunction::finalizeDebugInstrRefs() { 1168 auto *TII = getSubtarget().getInstrInfo(); 1169 1170 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1171 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1172 MI.setDesc(RefII); 1173 MI.setDebugValueUndef(); 1174 }; 1175 1176 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1177 for (auto &MBB : *this) { 1178 for (auto &MI : MBB) { 1179 if (!MI.isDebugRef()) 1180 continue; 1181 1182 bool IsValidRef = true; 1183 1184 for (MachineOperand &MO : MI.debug_operands()) { 1185 if (!MO.isReg()) 1186 continue; 1187 1188 Register Reg = MO.getReg(); 1189 1190 // Some vregs can be deleted as redundant in the meantime. Mark those 1191 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1192 // quickly deleted, leaving dangling references to vregs with no def. 1193 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1194 IsValidRef = false; 1195 break; 1196 } 1197 1198 assert(Reg.isVirtual()); 1199 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1200 1201 // If we've found a copy-like instruction, follow it back to the 1202 // instruction that defines the source value, see salvageCopySSA docs 1203 // for why this is important. 1204 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1205 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1206 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1207 } else { 1208 // Otherwise, identify the operand number that the VReg refers to. 1209 unsigned OperandIdx = 0; 1210 for (const auto &DefMO : DefMI.operands()) { 1211 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1212 break; 1213 ++OperandIdx; 1214 } 1215 assert(OperandIdx < DefMI.getNumOperands()); 1216 1217 // Morph this instr ref to point at the given instruction and operand. 1218 unsigned ID = DefMI.getDebugInstrNum(); 1219 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1220 } 1221 } 1222 1223 if (!IsValidRef) 1224 MakeUndefDbgValue(MI); 1225 } 1226 } 1227 } 1228 1229 bool MachineFunction::shouldUseDebugInstrRef() const { 1230 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1231 // have optimized code inlined into this unoptimized code, however with 1232 // fewer and less aggressive optimizations happening, coverage and accuracy 1233 // should not suffer. 1234 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1235 return false; 1236 1237 // Don't use instr-ref if this function is marked optnone. 1238 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1239 return false; 1240 1241 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1242 return true; 1243 1244 return false; 1245 } 1246 1247 bool MachineFunction::useDebugInstrRef() const { 1248 return UseDebugInstrRef; 1249 } 1250 1251 void MachineFunction::setUseDebugInstrRef(bool Use) { 1252 UseDebugInstrRef = Use; 1253 } 1254 1255 // Use one million as a high / reserved number. 1256 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1257 1258 /// \} 1259 1260 //===----------------------------------------------------------------------===// 1261 // MachineJumpTableInfo implementation 1262 //===----------------------------------------------------------------------===// 1263 1264 /// Return the size of each entry in the jump table. 1265 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1266 // The size of a jump table entry is 4 bytes unless the entry is just the 1267 // address of a block, in which case it is the pointer size. 1268 switch (getEntryKind()) { 1269 case MachineJumpTableInfo::EK_BlockAddress: 1270 return TD.getPointerSize(); 1271 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1272 case MachineJumpTableInfo::EK_LabelDifference64: 1273 return 8; 1274 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1275 case MachineJumpTableInfo::EK_LabelDifference32: 1276 case MachineJumpTableInfo::EK_Custom32: 1277 return 4; 1278 case MachineJumpTableInfo::EK_Inline: 1279 return 0; 1280 } 1281 llvm_unreachable("Unknown jump table encoding!"); 1282 } 1283 1284 /// Return the alignment of each entry in the jump table. 1285 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1286 // The alignment of a jump table entry is the alignment of int32 unless the 1287 // entry is just the address of a block, in which case it is the pointer 1288 // alignment. 1289 switch (getEntryKind()) { 1290 case MachineJumpTableInfo::EK_BlockAddress: 1291 return TD.getPointerABIAlignment(0).value(); 1292 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1293 case MachineJumpTableInfo::EK_LabelDifference64: 1294 return TD.getABIIntegerTypeAlignment(64).value(); 1295 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1296 case MachineJumpTableInfo::EK_LabelDifference32: 1297 case MachineJumpTableInfo::EK_Custom32: 1298 return TD.getABIIntegerTypeAlignment(32).value(); 1299 case MachineJumpTableInfo::EK_Inline: 1300 return 1; 1301 } 1302 llvm_unreachable("Unknown jump table encoding!"); 1303 } 1304 1305 /// Create a new jump table entry in the jump table info. 1306 unsigned MachineJumpTableInfo::createJumpTableIndex( 1307 const std::vector<MachineBasicBlock*> &DestBBs) { 1308 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1309 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1310 return JumpTables.size()-1; 1311 } 1312 1313 /// If Old is the target of any jump tables, update the jump tables to branch 1314 /// to New instead. 1315 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1316 MachineBasicBlock *New) { 1317 assert(Old != New && "Not making a change?"); 1318 bool MadeChange = false; 1319 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1320 ReplaceMBBInJumpTable(i, Old, New); 1321 return MadeChange; 1322 } 1323 1324 /// If MBB is present in any jump tables, remove it. 1325 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1326 bool MadeChange = false; 1327 for (MachineJumpTableEntry &JTE : JumpTables) { 1328 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1329 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1330 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1331 } 1332 return MadeChange; 1333 } 1334 1335 /// If Old is a target of the jump tables, update the jump table to branch to 1336 /// New instead. 1337 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1338 MachineBasicBlock *Old, 1339 MachineBasicBlock *New) { 1340 assert(Old != New && "Not making a change?"); 1341 bool MadeChange = false; 1342 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1343 for (MachineBasicBlock *&MBB : JTE.MBBs) 1344 if (MBB == Old) { 1345 MBB = New; 1346 MadeChange = true; 1347 } 1348 return MadeChange; 1349 } 1350 1351 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1352 if (JumpTables.empty()) return; 1353 1354 OS << "Jump Tables:\n"; 1355 1356 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1357 OS << printJumpTableEntryReference(i) << ':'; 1358 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1359 OS << ' ' << printMBBReference(*MBB); 1360 if (i != e) 1361 OS << '\n'; 1362 } 1363 1364 OS << '\n'; 1365 } 1366 1367 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1368 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1369 #endif 1370 1371 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1372 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1373 } 1374 1375 //===----------------------------------------------------------------------===// 1376 // MachineConstantPool implementation 1377 //===----------------------------------------------------------------------===// 1378 1379 void MachineConstantPoolValue::anchor() {} 1380 1381 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1382 return DL.getTypeAllocSize(Ty); 1383 } 1384 1385 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1386 if (isMachineConstantPoolEntry()) 1387 return Val.MachineCPVal->getSizeInBytes(DL); 1388 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1389 } 1390 1391 bool MachineConstantPoolEntry::needsRelocation() const { 1392 if (isMachineConstantPoolEntry()) 1393 return true; 1394 return Val.ConstVal->needsDynamicRelocation(); 1395 } 1396 1397 SectionKind 1398 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1399 if (needsRelocation()) 1400 return SectionKind::getReadOnlyWithRel(); 1401 switch (getSizeInBytes(*DL)) { 1402 case 4: 1403 return SectionKind::getMergeableConst4(); 1404 case 8: 1405 return SectionKind::getMergeableConst8(); 1406 case 16: 1407 return SectionKind::getMergeableConst16(); 1408 case 32: 1409 return SectionKind::getMergeableConst32(); 1410 default: 1411 return SectionKind::getReadOnly(); 1412 } 1413 } 1414 1415 MachineConstantPool::~MachineConstantPool() { 1416 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1417 // so keep track of which we've deleted to avoid double deletions. 1418 DenseSet<MachineConstantPoolValue*> Deleted; 1419 for (const MachineConstantPoolEntry &C : Constants) 1420 if (C.isMachineConstantPoolEntry()) { 1421 Deleted.insert(C.Val.MachineCPVal); 1422 delete C.Val.MachineCPVal; 1423 } 1424 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1425 if (Deleted.count(CPV) == 0) 1426 delete CPV; 1427 } 1428 } 1429 1430 /// Test whether the given two constants can be allocated the same constant pool 1431 /// entry referenced by \param A. 1432 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1433 const DataLayout &DL) { 1434 // Handle the trivial case quickly. 1435 if (A == B) return true; 1436 1437 // If they have the same type but weren't the same constant, quickly 1438 // reject them. 1439 if (A->getType() == B->getType()) return false; 1440 1441 // We can't handle structs or arrays. 1442 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1443 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1444 return false; 1445 1446 // For now, only support constants with the same size. 1447 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1448 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1449 return false; 1450 1451 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1452 1453 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1454 1455 // Try constant folding a bitcast of both instructions to an integer. If we 1456 // get two identical ConstantInt's, then we are good to share them. We use 1457 // the constant folding APIs to do this so that we get the benefit of 1458 // DataLayout. 1459 if (isa<PointerType>(A->getType())) 1460 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1461 const_cast<Constant *>(A), IntTy, DL); 1462 else if (A->getType() != IntTy) 1463 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1464 IntTy, DL); 1465 if (isa<PointerType>(B->getType())) 1466 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1467 const_cast<Constant *>(B), IntTy, DL); 1468 else if (B->getType() != IntTy) 1469 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1470 IntTy, DL); 1471 1472 if (A != B) 1473 return false; 1474 1475 // Constants only safely match if A doesn't contain undef/poison. 1476 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1477 // TODO: Handle cases where A and B have the same undef/poison elements. 1478 // TODO: Merge A and B with mismatching undef/poison elements. 1479 return !ContainsUndefOrPoisonA; 1480 } 1481 1482 /// Create a new entry in the constant pool or return an existing one. 1483 /// User must specify the log2 of the minimum required alignment for the object. 1484 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1485 Align Alignment) { 1486 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1487 1488 // Check to see if we already have this constant. 1489 // 1490 // FIXME, this could be made much more efficient for large constant pools. 1491 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1492 if (!Constants[i].isMachineConstantPoolEntry() && 1493 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1494 if (Constants[i].getAlign() < Alignment) 1495 Constants[i].Alignment = Alignment; 1496 return i; 1497 } 1498 1499 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1500 return Constants.size()-1; 1501 } 1502 1503 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1504 Align Alignment) { 1505 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1506 1507 // Check to see if we already have this constant. 1508 // 1509 // FIXME, this could be made much more efficient for large constant pools. 1510 int Idx = V->getExistingMachineCPValue(this, Alignment); 1511 if (Idx != -1) { 1512 MachineCPVsSharingEntries.insert(V); 1513 return (unsigned)Idx; 1514 } 1515 1516 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1517 return Constants.size()-1; 1518 } 1519 1520 void MachineConstantPool::print(raw_ostream &OS) const { 1521 if (Constants.empty()) return; 1522 1523 OS << "Constant Pool:\n"; 1524 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1525 OS << " cp#" << i << ": "; 1526 if (Constants[i].isMachineConstantPoolEntry()) 1527 Constants[i].Val.MachineCPVal->print(OS); 1528 else 1529 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1530 OS << ", align=" << Constants[i].getAlign().value(); 1531 OS << "\n"; 1532 } 1533 } 1534 1535 //===----------------------------------------------------------------------===// 1536 // Template specialization for MachineFunction implementation of 1537 // ProfileSummaryInfo::getEntryCount(). 1538 //===----------------------------------------------------------------------===// 1539 template <> 1540 std::optional<Function::ProfileCount> 1541 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1542 const llvm::MachineFunction *F) const { 1543 return F->getFunction().getEntryCount(); 1544 } 1545 1546 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1547 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1548 #endif 1549