1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Assembly/Writer.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetFrameLowering.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // MachineFunction implementation 44 //===----------------------------------------------------------------------===// 45 46 // Out of line virtual method. 47 MachineFunctionInfo::~MachineFunctionInfo() {} 48 49 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 50 MBB->getParent()->DeleteMachineBasicBlock(MBB); 51 } 52 53 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 54 unsigned FunctionNum, MachineModuleInfo &mmi, 55 GCModuleInfo* gmi) 56 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 57 if (TM.getRegisterInfo()) 58 RegInfo = new (Allocator) MachineRegisterInfo(TM); 59 else 60 RegInfo = 0; 61 62 MFInfo = 0; 63 FrameInfo = new (Allocator) MachineFrameInfo(TM, TM.Options.RealignStack); 64 65 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 66 Attribute::StackAlignment)) 67 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 68 getStackAlignment(AttributeSet::FunctionIndex)); 69 70 ConstantPool = new (Allocator) MachineConstantPool(TM); 71 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 72 73 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 74 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 75 Attribute::OptimizeForSize)) 76 Alignment = std::max(Alignment, 77 TM.getTargetLowering()->getPrefFunctionAlignment()); 78 79 FunctionNumber = FunctionNum; 80 JumpTableInfo = 0; 81 } 82 83 MachineFunction::~MachineFunction() { 84 // Don't call destructors on MachineInstr and MachineOperand. All of their 85 // memory comes from the BumpPtrAllocator which is about to be purged. 86 // 87 // Do call MachineBasicBlock destructors, it contains std::vectors. 88 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 89 I->Insts.clearAndLeakNodesUnsafely(); 90 91 InstructionRecycler.clear(Allocator); 92 OperandRecycler.clear(Allocator); 93 BasicBlockRecycler.clear(Allocator); 94 if (RegInfo) { 95 RegInfo->~MachineRegisterInfo(); 96 Allocator.Deallocate(RegInfo); 97 } 98 if (MFInfo) { 99 MFInfo->~MachineFunctionInfo(); 100 Allocator.Deallocate(MFInfo); 101 } 102 103 FrameInfo->~MachineFrameInfo(); 104 Allocator.Deallocate(FrameInfo); 105 106 ConstantPool->~MachineConstantPool(); 107 Allocator.Deallocate(ConstantPool); 108 109 if (JumpTableInfo) { 110 JumpTableInfo->~MachineJumpTableInfo(); 111 Allocator.Deallocate(JumpTableInfo); 112 } 113 } 114 115 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 116 /// does already exist, allocate one. 117 MachineJumpTableInfo *MachineFunction:: 118 getOrCreateJumpTableInfo(unsigned EntryKind) { 119 if (JumpTableInfo) return JumpTableInfo; 120 121 JumpTableInfo = new (Allocator) 122 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 123 return JumpTableInfo; 124 } 125 126 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 127 /// recomputes them. This guarantees that the MBB numbers are sequential, 128 /// dense, and match the ordering of the blocks within the function. If a 129 /// specific MachineBasicBlock is specified, only that block and those after 130 /// it are renumbered. 131 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 132 if (empty()) { MBBNumbering.clear(); return; } 133 MachineFunction::iterator MBBI, E = end(); 134 if (MBB == 0) 135 MBBI = begin(); 136 else 137 MBBI = MBB; 138 139 // Figure out the block number this should have. 140 unsigned BlockNo = 0; 141 if (MBBI != begin()) 142 BlockNo = prior(MBBI)->getNumber()+1; 143 144 for (; MBBI != E; ++MBBI, ++BlockNo) { 145 if (MBBI->getNumber() != (int)BlockNo) { 146 // Remove use of the old number. 147 if (MBBI->getNumber() != -1) { 148 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 149 "MBB number mismatch!"); 150 MBBNumbering[MBBI->getNumber()] = 0; 151 } 152 153 // If BlockNo is already taken, set that block's number to -1. 154 if (MBBNumbering[BlockNo]) 155 MBBNumbering[BlockNo]->setNumber(-1); 156 157 MBBNumbering[BlockNo] = MBBI; 158 MBBI->setNumber(BlockNo); 159 } 160 } 161 162 // Okay, all the blocks are renumbered. If we have compactified the block 163 // numbering, shrink MBBNumbering now. 164 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 165 MBBNumbering.resize(BlockNo); 166 } 167 168 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 169 /// of `new MachineInstr'. 170 /// 171 MachineInstr * 172 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 173 DebugLoc DL, bool NoImp) { 174 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 175 MachineInstr(*this, MCID, DL, NoImp); 176 } 177 178 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 179 /// 'Orig' instruction, identical in all ways except the instruction 180 /// has no parent, prev, or next. 181 /// 182 MachineInstr * 183 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 184 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 185 MachineInstr(*this, *Orig); 186 } 187 188 /// DeleteMachineInstr - Delete the given MachineInstr. 189 /// 190 /// This function also serves as the MachineInstr destructor - the real 191 /// ~MachineInstr() destructor must be empty. 192 void 193 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 194 // Strip it for parts. The operand array and the MI object itself are 195 // independently recyclable. 196 if (MI->Operands) 197 deallocateOperandArray(MI->CapOperands, MI->Operands); 198 // Don't call ~MachineInstr() which must be trivial anyway because 199 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 200 // destructors. 201 InstructionRecycler.Deallocate(Allocator, MI); 202 } 203 204 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 205 /// instead of `new MachineBasicBlock'. 206 /// 207 MachineBasicBlock * 208 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 209 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 210 MachineBasicBlock(*this, bb); 211 } 212 213 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 214 /// 215 void 216 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 217 assert(MBB->getParent() == this && "MBB parent mismatch!"); 218 MBB->~MachineBasicBlock(); 219 BasicBlockRecycler.Deallocate(Allocator, MBB); 220 } 221 222 MachineMemOperand * 223 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 224 uint64_t s, unsigned base_alignment, 225 const MDNode *TBAAInfo, 226 const MDNode *Ranges) { 227 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 228 TBAAInfo, Ranges); 229 } 230 231 MachineMemOperand * 232 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 233 int64_t Offset, uint64_t Size) { 234 return new (Allocator) 235 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 236 MMO->getOffset()+Offset), 237 MMO->getFlags(), Size, 238 MMO->getBaseAlignment(), 0); 239 } 240 241 MachineInstr::mmo_iterator 242 MachineFunction::allocateMemRefsArray(unsigned long Num) { 243 return Allocator.Allocate<MachineMemOperand *>(Num); 244 } 245 246 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 247 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 248 MachineInstr::mmo_iterator End) { 249 // Count the number of load mem refs. 250 unsigned Num = 0; 251 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 252 if ((*I)->isLoad()) 253 ++Num; 254 255 // Allocate a new array and populate it with the load information. 256 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 257 unsigned Index = 0; 258 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 259 if ((*I)->isLoad()) { 260 if (!(*I)->isStore()) 261 // Reuse the MMO. 262 Result[Index] = *I; 263 else { 264 // Clone the MMO and unset the store flag. 265 MachineMemOperand *JustLoad = 266 getMachineMemOperand((*I)->getPointerInfo(), 267 (*I)->getFlags() & ~MachineMemOperand::MOStore, 268 (*I)->getSize(), (*I)->getBaseAlignment(), 269 (*I)->getTBAAInfo()); 270 Result[Index] = JustLoad; 271 } 272 ++Index; 273 } 274 } 275 return std::make_pair(Result, Result + Num); 276 } 277 278 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 279 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 280 MachineInstr::mmo_iterator End) { 281 // Count the number of load mem refs. 282 unsigned Num = 0; 283 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 284 if ((*I)->isStore()) 285 ++Num; 286 287 // Allocate a new array and populate it with the store information. 288 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 289 unsigned Index = 0; 290 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 291 if ((*I)->isStore()) { 292 if (!(*I)->isLoad()) 293 // Reuse the MMO. 294 Result[Index] = *I; 295 else { 296 // Clone the MMO and unset the load flag. 297 MachineMemOperand *JustStore = 298 getMachineMemOperand((*I)->getPointerInfo(), 299 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 300 (*I)->getSize(), (*I)->getBaseAlignment(), 301 (*I)->getTBAAInfo()); 302 Result[Index] = JustStore; 303 } 304 ++Index; 305 } 306 } 307 return std::make_pair(Result, Result + Num); 308 } 309 310 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 311 void MachineFunction::dump() const { 312 print(dbgs()); 313 } 314 #endif 315 316 StringRef MachineFunction::getName() const { 317 assert(getFunction() && "No function!"); 318 return getFunction()->getName(); 319 } 320 321 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 322 OS << "# Machine code for function " << getName() << ": "; 323 if (RegInfo) { 324 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 325 if (!RegInfo->tracksLiveness()) 326 OS << ", not tracking liveness"; 327 } 328 OS << '\n'; 329 330 // Print Frame Information 331 FrameInfo->print(*this, OS); 332 333 // Print JumpTable Information 334 if (JumpTableInfo) 335 JumpTableInfo->print(OS); 336 337 // Print Constant Pool 338 ConstantPool->print(OS); 339 340 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 341 342 if (RegInfo && !RegInfo->livein_empty()) { 343 OS << "Function Live Ins: "; 344 for (MachineRegisterInfo::livein_iterator 345 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 346 OS << PrintReg(I->first, TRI); 347 if (I->second) 348 OS << " in " << PrintReg(I->second, TRI); 349 if (llvm::next(I) != E) 350 OS << ", "; 351 } 352 OS << '\n'; 353 } 354 355 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 356 OS << '\n'; 357 BB->print(OS, Indexes); 358 } 359 360 OS << "\n# End machine code for function " << getName() << ".\n\n"; 361 } 362 363 namespace llvm { 364 template<> 365 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 366 367 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 368 369 static std::string getGraphName(const MachineFunction *F) { 370 return "CFG for '" + F->getName().str() + "' function"; 371 } 372 373 std::string getNodeLabel(const MachineBasicBlock *Node, 374 const MachineFunction *Graph) { 375 std::string OutStr; 376 { 377 raw_string_ostream OSS(OutStr); 378 379 if (isSimple()) { 380 OSS << "BB#" << Node->getNumber(); 381 if (const BasicBlock *BB = Node->getBasicBlock()) 382 OSS << ": " << BB->getName(); 383 } else 384 Node->print(OSS); 385 } 386 387 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 388 389 // Process string output to make it nicer... 390 for (unsigned i = 0; i != OutStr.length(); ++i) 391 if (OutStr[i] == '\n') { // Left justify 392 OutStr[i] = '\\'; 393 OutStr.insert(OutStr.begin()+i+1, 'l'); 394 } 395 return OutStr; 396 } 397 }; 398 } 399 400 void MachineFunction::viewCFG() const 401 { 402 #ifndef NDEBUG 403 ViewGraph(this, "mf" + getName()); 404 #else 405 errs() << "MachineFunction::viewCFG is only available in debug builds on " 406 << "systems with Graphviz or gv!\n"; 407 #endif // NDEBUG 408 } 409 410 void MachineFunction::viewCFGOnly() const 411 { 412 #ifndef NDEBUG 413 ViewGraph(this, "mf" + getName(), true); 414 #else 415 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 416 << "systems with Graphviz or gv!\n"; 417 #endif // NDEBUG 418 } 419 420 /// addLiveIn - Add the specified physical register as a live-in value and 421 /// create a corresponding virtual register for it. 422 unsigned MachineFunction::addLiveIn(unsigned PReg, 423 const TargetRegisterClass *RC) { 424 MachineRegisterInfo &MRI = getRegInfo(); 425 unsigned VReg = MRI.getLiveInVirtReg(PReg); 426 if (VReg) { 427 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 428 return VReg; 429 } 430 VReg = MRI.createVirtualRegister(RC); 431 MRI.addLiveIn(PReg, VReg); 432 return VReg; 433 } 434 435 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 436 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 437 /// normal 'L' label is returned. 438 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 439 bool isLinkerPrivate) const { 440 assert(JumpTableInfo && "No jump tables"); 441 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 442 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 443 444 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 445 MAI.getPrivateGlobalPrefix(); 446 SmallString<60> Name; 447 raw_svector_ostream(Name) 448 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 449 return Ctx.GetOrCreateSymbol(Name.str()); 450 } 451 452 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 453 /// base. 454 MCSymbol *MachineFunction::getPICBaseSymbol() const { 455 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 456 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 457 Twine(getFunctionNumber())+"$pb"); 458 } 459 460 //===----------------------------------------------------------------------===// 461 // MachineFrameInfo implementation 462 //===----------------------------------------------------------------------===// 463 464 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 465 return TM.getFrameLowering(); 466 } 467 468 /// ensureMaxAlignment - Make sure the function is at least Align bytes 469 /// aligned. 470 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 471 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 472 assert(Align <= getFrameLowering()->getStackAlignment() && 473 "For targets without stack realignment, Align is out of limit!"); 474 if (MaxAlignment < Align) MaxAlignment = Align; 475 } 476 477 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 478 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 479 unsigned StackAlign) { 480 if (!ShouldClamp || Align <= StackAlign) 481 return Align; 482 DEBUG(dbgs() << "Warning: requested alignment " << Align 483 << " exceeds the stack alignment " << StackAlign 484 << " when stack realignment is off" << '\n'); 485 return StackAlign; 486 } 487 488 /// CreateStackObject - Create a new statically sized stack object, returning 489 /// a nonnegative identifier to represent it. 490 /// 491 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 492 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 493 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 494 Alignment = 495 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 496 !RealignOption, 497 Alignment, getFrameLowering()->getStackAlignment()); 498 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 499 Alloca)); 500 int Index = (int)Objects.size() - NumFixedObjects - 1; 501 assert(Index >= 0 && "Bad frame index!"); 502 ensureMaxAlignment(Alignment); 503 return Index; 504 } 505 506 /// CreateSpillStackObject - Create a new statically sized stack object that 507 /// represents a spill slot, returning a nonnegative identifier to represent 508 /// it. 509 /// 510 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 511 unsigned Alignment) { 512 Alignment = 513 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 514 !RealignOption, 515 Alignment, getFrameLowering()->getStackAlignment()); 516 CreateStackObject(Size, Alignment, true, false); 517 int Index = (int)Objects.size() - NumFixedObjects - 1; 518 ensureMaxAlignment(Alignment); 519 return Index; 520 } 521 522 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 523 /// variable sized object has been created. This must be created whenever a 524 /// variable sized object is created, whether or not the index returned is 525 /// actually used. 526 /// 527 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) { 528 HasVarSizedObjects = true; 529 Alignment = 530 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 531 !RealignOption, 532 Alignment, getFrameLowering()->getStackAlignment()); 533 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 534 ensureMaxAlignment(Alignment); 535 return (int)Objects.size()-NumFixedObjects-1; 536 } 537 538 /// CreateFixedObject - Create a new object at a fixed location on the stack. 539 /// All fixed objects should be created before other objects are created for 540 /// efficiency. By default, fixed objects are immutable. This returns an 541 /// index with a negative value. 542 /// 543 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 544 bool Immutable) { 545 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 546 // The alignment of the frame index can be determined from its offset from 547 // the incoming frame position. If the frame object is at offset 32 and 548 // the stack is guaranteed to be 16-byte aligned, then we know that the 549 // object is 16-byte aligned. 550 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 551 unsigned Align = MinAlign(SPOffset, StackAlign); 552 Align = 553 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 554 !RealignOption, 555 Align, getFrameLowering()->getStackAlignment()); 556 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 557 /*isSS*/ false, 558 /*NeedSP*/ false, 559 /*Alloca*/ 0)); 560 return -++NumFixedObjects; 561 } 562 563 564 BitVector 565 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 566 assert(MBB && "MBB must be valid"); 567 const MachineFunction *MF = MBB->getParent(); 568 assert(MF && "MBB must be part of a MachineFunction"); 569 const TargetMachine &TM = MF->getTarget(); 570 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 571 BitVector BV(TRI->getNumRegs()); 572 573 // Before CSI is calculated, no registers are considered pristine. They can be 574 // freely used and PEI will make sure they are saved. 575 if (!isCalleeSavedInfoValid()) 576 return BV; 577 578 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 579 BV.set(*CSR); 580 581 // The entry MBB always has all CSRs pristine. 582 if (MBB == &MF->front()) 583 return BV; 584 585 // On other MBBs the saved CSRs are not pristine. 586 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 587 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 588 E = CSI.end(); I != E; ++I) 589 BV.reset(I->getReg()); 590 591 return BV; 592 } 593 594 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 595 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 596 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 597 unsigned MaxAlign = getMaxAlignment(); 598 int Offset = 0; 599 600 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 601 // It really should be refactored to share code. Until then, changes 602 // should keep in mind that there's tight coupling between the two. 603 604 for (int i = getObjectIndexBegin(); i != 0; ++i) { 605 int FixedOff = -getObjectOffset(i); 606 if (FixedOff > Offset) Offset = FixedOff; 607 } 608 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 609 if (isDeadObjectIndex(i)) 610 continue; 611 Offset += getObjectSize(i); 612 unsigned Align = getObjectAlignment(i); 613 // Adjust to alignment boundary 614 Offset = (Offset+Align-1)/Align*Align; 615 616 MaxAlign = std::max(Align, MaxAlign); 617 } 618 619 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 620 Offset += getMaxCallFrameSize(); 621 622 // Round up the size to a multiple of the alignment. If the function has 623 // any calls or alloca's, align to the target's StackAlignment value to 624 // ensure that the callee's frame or the alloca data is suitably aligned; 625 // otherwise, for leaf functions, align to the TransientStackAlignment 626 // value. 627 unsigned StackAlign; 628 if (adjustsStack() || hasVarSizedObjects() || 629 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 630 StackAlign = TFI->getStackAlignment(); 631 else 632 StackAlign = TFI->getTransientStackAlignment(); 633 634 // If the frame pointer is eliminated, all frame offsets will be relative to 635 // SP not FP. Align to MaxAlign so this works. 636 StackAlign = std::max(StackAlign, MaxAlign); 637 unsigned AlignMask = StackAlign - 1; 638 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 639 640 return (unsigned)Offset; 641 } 642 643 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 644 if (Objects.empty()) return; 645 646 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 647 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 648 649 OS << "Frame Objects:\n"; 650 651 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 652 const StackObject &SO = Objects[i]; 653 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 654 if (SO.Size == ~0ULL) { 655 OS << "dead\n"; 656 continue; 657 } 658 if (SO.Size == 0) 659 OS << "variable sized"; 660 else 661 OS << "size=" << SO.Size; 662 OS << ", align=" << SO.Alignment; 663 664 if (i < NumFixedObjects) 665 OS << ", fixed"; 666 if (i < NumFixedObjects || SO.SPOffset != -1) { 667 int64_t Off = SO.SPOffset - ValOffset; 668 OS << ", at location [SP"; 669 if (Off > 0) 670 OS << "+" << Off; 671 else if (Off < 0) 672 OS << Off; 673 OS << "]"; 674 } 675 OS << "\n"; 676 } 677 } 678 679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 680 void MachineFrameInfo::dump(const MachineFunction &MF) const { 681 print(MF, dbgs()); 682 } 683 #endif 684 685 //===----------------------------------------------------------------------===// 686 // MachineJumpTableInfo implementation 687 //===----------------------------------------------------------------------===// 688 689 /// getEntrySize - Return the size of each entry in the jump table. 690 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 691 // The size of a jump table entry is 4 bytes unless the entry is just the 692 // address of a block, in which case it is the pointer size. 693 switch (getEntryKind()) { 694 case MachineJumpTableInfo::EK_BlockAddress: 695 return TD.getPointerSize(); 696 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 697 return 8; 698 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 699 case MachineJumpTableInfo::EK_LabelDifference32: 700 case MachineJumpTableInfo::EK_Custom32: 701 return 4; 702 case MachineJumpTableInfo::EK_Inline: 703 return 0; 704 } 705 llvm_unreachable("Unknown jump table encoding!"); 706 } 707 708 /// getEntryAlignment - Return the alignment of each entry in the jump table. 709 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 710 // The alignment of a jump table entry is the alignment of int32 unless the 711 // entry is just the address of a block, in which case it is the pointer 712 // alignment. 713 switch (getEntryKind()) { 714 case MachineJumpTableInfo::EK_BlockAddress: 715 return TD.getPointerABIAlignment(); 716 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 717 return TD.getABIIntegerTypeAlignment(64); 718 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 719 case MachineJumpTableInfo::EK_LabelDifference32: 720 case MachineJumpTableInfo::EK_Custom32: 721 return TD.getABIIntegerTypeAlignment(32); 722 case MachineJumpTableInfo::EK_Inline: 723 return 1; 724 } 725 llvm_unreachable("Unknown jump table encoding!"); 726 } 727 728 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 729 /// 730 unsigned MachineJumpTableInfo::createJumpTableIndex( 731 const std::vector<MachineBasicBlock*> &DestBBs) { 732 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 733 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 734 return JumpTables.size()-1; 735 } 736 737 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 738 /// the jump tables to branch to New instead. 739 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 740 MachineBasicBlock *New) { 741 assert(Old != New && "Not making a change?"); 742 bool MadeChange = false; 743 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 744 ReplaceMBBInJumpTable(i, Old, New); 745 return MadeChange; 746 } 747 748 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 749 /// the jump table to branch to New instead. 750 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 751 MachineBasicBlock *Old, 752 MachineBasicBlock *New) { 753 assert(Old != New && "Not making a change?"); 754 bool MadeChange = false; 755 MachineJumpTableEntry &JTE = JumpTables[Idx]; 756 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 757 if (JTE.MBBs[j] == Old) { 758 JTE.MBBs[j] = New; 759 MadeChange = true; 760 } 761 return MadeChange; 762 } 763 764 void MachineJumpTableInfo::print(raw_ostream &OS) const { 765 if (JumpTables.empty()) return; 766 767 OS << "Jump Tables:\n"; 768 769 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 770 OS << " jt#" << i << ": "; 771 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 772 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 773 } 774 775 OS << '\n'; 776 } 777 778 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 779 void MachineJumpTableInfo::dump() const { print(dbgs()); } 780 #endif 781 782 783 //===----------------------------------------------------------------------===// 784 // MachineConstantPool implementation 785 //===----------------------------------------------------------------------===// 786 787 void MachineConstantPoolValue::anchor() { } 788 789 const DataLayout *MachineConstantPool::getDataLayout() const { 790 return TM.getDataLayout(); 791 } 792 793 Type *MachineConstantPoolEntry::getType() const { 794 if (isMachineConstantPoolEntry()) 795 return Val.MachineCPVal->getType(); 796 return Val.ConstVal->getType(); 797 } 798 799 800 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 801 if (isMachineConstantPoolEntry()) 802 return Val.MachineCPVal->getRelocationInfo(); 803 return Val.ConstVal->getRelocationInfo(); 804 } 805 806 MachineConstantPool::~MachineConstantPool() { 807 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 808 if (Constants[i].isMachineConstantPoolEntry()) 809 delete Constants[i].Val.MachineCPVal; 810 for (DenseSet<MachineConstantPoolValue*>::iterator I = 811 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 812 I != E; ++I) 813 delete *I; 814 } 815 816 /// CanShareConstantPoolEntry - Test whether the given two constants 817 /// can be allocated the same constant pool entry. 818 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 819 const DataLayout *TD) { 820 // Handle the trivial case quickly. 821 if (A == B) return true; 822 823 // If they have the same type but weren't the same constant, quickly 824 // reject them. 825 if (A->getType() == B->getType()) return false; 826 827 // We can't handle structs or arrays. 828 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 829 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 830 return false; 831 832 // For now, only support constants with the same size. 833 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 834 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 835 StoreSize > 128) 836 return false; 837 838 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 839 840 // Try constant folding a bitcast of both instructions to an integer. If we 841 // get two identical ConstantInt's, then we are good to share them. We use 842 // the constant folding APIs to do this so that we get the benefit of 843 // DataLayout. 844 if (isa<PointerType>(A->getType())) 845 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 846 const_cast<Constant*>(A), TD); 847 else if (A->getType() != IntTy) 848 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 849 const_cast<Constant*>(A), TD); 850 if (isa<PointerType>(B->getType())) 851 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 852 const_cast<Constant*>(B), TD); 853 else if (B->getType() != IntTy) 854 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 855 const_cast<Constant*>(B), TD); 856 857 return A == B; 858 } 859 860 /// getConstantPoolIndex - Create a new entry in the constant pool or return 861 /// an existing one. User must specify the log2 of the minimum required 862 /// alignment for the object. 863 /// 864 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 865 unsigned Alignment) { 866 assert(Alignment && "Alignment must be specified!"); 867 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 868 869 // Check to see if we already have this constant. 870 // 871 // FIXME, this could be made much more efficient for large constant pools. 872 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 873 if (!Constants[i].isMachineConstantPoolEntry() && 874 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 875 getDataLayout())) { 876 if ((unsigned)Constants[i].getAlignment() < Alignment) 877 Constants[i].Alignment = Alignment; 878 return i; 879 } 880 881 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 882 return Constants.size()-1; 883 } 884 885 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 886 unsigned Alignment) { 887 assert(Alignment && "Alignment must be specified!"); 888 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 889 890 // Check to see if we already have this constant. 891 // 892 // FIXME, this could be made much more efficient for large constant pools. 893 int Idx = V->getExistingMachineCPValue(this, Alignment); 894 if (Idx != -1) { 895 MachineCPVsSharingEntries.insert(V); 896 return (unsigned)Idx; 897 } 898 899 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 900 return Constants.size()-1; 901 } 902 903 void MachineConstantPool::print(raw_ostream &OS) const { 904 if (Constants.empty()) return; 905 906 OS << "Constant Pool:\n"; 907 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 908 OS << " cp#" << i << ": "; 909 if (Constants[i].isMachineConstantPoolEntry()) 910 Constants[i].Val.MachineCPVal->print(OS); 911 else 912 WriteAsOperand(OS, Constants[i].Val.ConstVal, /*PrintType=*/false); 913 OS << ", align=" << Constants[i].getAlignment(); 914 OS << "\n"; 915 } 916 } 917 918 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 919 void MachineConstantPool::dump() const { print(dbgs()); } 920 #endif 921