1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #include "LiveDebugValues/LiveDebugValues.h" 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "codegen" 83 84 static cl::opt<unsigned> AlignAllFunctions( 85 "align-all-functions", 86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 87 "means align on 16B boundaries)."), 88 cl::init(0), cl::Hidden); 89 90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 91 using P = MachineFunctionProperties::Property; 92 93 // clang-format off 94 switch(Prop) { 95 case P::FailedISel: return "FailedISel"; 96 case P::IsSSA: return "IsSSA"; 97 case P::Legalized: return "Legalized"; 98 case P::NoPHIs: return "NoPHIs"; 99 case P::NoVRegs: return "NoVRegs"; 100 case P::RegBankSelected: return "RegBankSelected"; 101 case P::Selected: return "Selected"; 102 case P::TracksLiveness: return "TracksLiveness"; 103 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 104 case P::FailsVerification: return "FailsVerification"; 105 case P::FailedRegAlloc: return "FailedRegAlloc"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const TargetMachine &Target, 165 const TargetSubtargetInfo &STI, MCContext &Ctx, 166 unsigned FunctionNum) 167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 MBBNumberingEpoch++; 379 } 380 381 int64_t MachineFunction::estimateFunctionSizeInBytes() { 382 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 383 const Align FunctionAlignment = getAlignment(); 384 MachineFunction::iterator MBBI = begin(), E = end(); 385 /// Offset - Distance from the beginning of the function to the end 386 /// of the basic block. 387 int64_t Offset = 0; 388 389 for (; MBBI != E; ++MBBI) { 390 const Align Alignment = MBBI->getAlignment(); 391 int64_t BlockSize = 0; 392 393 for (auto &MI : *MBBI) { 394 BlockSize += TII.getInstSizeInBytes(MI); 395 } 396 397 int64_t OffsetBB; 398 if (Alignment <= FunctionAlignment) { 399 OffsetBB = alignTo(Offset, Alignment); 400 } else { 401 // The alignment of this MBB is larger than the function's alignment, so 402 // we can't tell whether or not it will insert nops. Assume that it will. 403 OffsetBB = alignTo(Offset, Alignment) + Alignment.value() - 404 FunctionAlignment.value(); 405 } 406 Offset = OffsetBB + BlockSize; 407 } 408 409 return Offset; 410 } 411 412 /// This method iterates over the basic blocks and assigns their IsBeginSection 413 /// and IsEndSection fields. This must be called after MBB layout is finalized 414 /// and the SectionID's are assigned to MBBs. 415 void MachineFunction::assignBeginEndSections() { 416 front().setIsBeginSection(); 417 auto CurrentSectionID = front().getSectionID(); 418 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 419 if (MBBI->getSectionID() == CurrentSectionID) 420 continue; 421 MBBI->setIsBeginSection(); 422 std::prev(MBBI)->setIsEndSection(); 423 CurrentSectionID = MBBI->getSectionID(); 424 } 425 back().setIsEndSection(); 426 } 427 428 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 429 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 430 DebugLoc DL, 431 bool NoImplicit) { 432 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 433 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 434 } 435 436 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 437 /// identical in all ways except the instruction has no parent, prev, or next. 438 MachineInstr * 439 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 440 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 441 MachineInstr(*this, *Orig); 442 } 443 444 MachineInstr &MachineFunction::cloneMachineInstrBundle( 445 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 446 const MachineInstr &Orig) { 447 MachineInstr *FirstClone = nullptr; 448 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 449 while (true) { 450 MachineInstr *Cloned = CloneMachineInstr(&*I); 451 MBB.insert(InsertBefore, Cloned); 452 if (FirstClone == nullptr) { 453 FirstClone = Cloned; 454 } else { 455 Cloned->bundleWithPred(); 456 } 457 458 if (!I->isBundledWithSucc()) 459 break; 460 ++I; 461 } 462 // Copy over call site info to the cloned instruction if needed. If Orig is in 463 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 464 // the bundle. 465 if (Orig.shouldUpdateCallSiteInfo()) 466 copyCallSiteInfo(&Orig, FirstClone); 467 return *FirstClone; 468 } 469 470 /// Delete the given MachineInstr. 471 /// 472 /// This function also serves as the MachineInstr destructor - the real 473 /// ~MachineInstr() destructor must be empty. 474 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 475 // Verify that a call site info is at valid state. This assertion should 476 // be triggered during the implementation of support for the 477 // call site info of a new architecture. If the assertion is triggered, 478 // back trace will tell where to insert a call to updateCallSiteInfo(). 479 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 480 "Call site info was not updated!"); 481 // Strip it for parts. The operand array and the MI object itself are 482 // independently recyclable. 483 if (MI->Operands) 484 deallocateOperandArray(MI->CapOperands, MI->Operands); 485 // Don't call ~MachineInstr() which must be trivial anyway because 486 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 487 // destructors. 488 InstructionRecycler.Deallocate(Allocator, MI); 489 } 490 491 /// Allocate a new MachineBasicBlock. Use this instead of 492 /// `new MachineBasicBlock'. 493 MachineBasicBlock * 494 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 495 std::optional<UniqueBBID> BBID) { 496 MachineBasicBlock *MBB = 497 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 498 MachineBasicBlock(*this, BB); 499 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to 500 // allow robust mapping of profiles to basic blocks. 501 if (Target.Options.BBAddrMap || 502 Target.getBBSectionsType() == BasicBlockSection::List) 503 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 504 return MBB; 505 } 506 507 /// Delete the given MachineBasicBlock. 508 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 509 assert(MBB->getParent() == this && "MBB parent mismatch!"); 510 // Clean up any references to MBB in jump tables before deleting it. 511 if (JumpTableInfo) 512 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 513 MBB->~MachineBasicBlock(); 514 BasicBlockRecycler.Deallocate(Allocator, MBB); 515 } 516 517 MachineMemOperand *MachineFunction::getMachineMemOperand( 518 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 519 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 520 SyncScope::ID SSID, AtomicOrdering Ordering, 521 AtomicOrdering FailureOrdering) { 522 assert((!Size.hasValue() || 523 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 524 "Unexpected an unknown size to be represented using " 525 "LocationSize::beforeOrAfter()"); 526 return new (Allocator) 527 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 528 Ordering, FailureOrdering); 529 } 530 531 MachineMemOperand *MachineFunction::getMachineMemOperand( 532 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 533 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 534 SyncScope::ID SSID, AtomicOrdering Ordering, 535 AtomicOrdering FailureOrdering) { 536 return new (Allocator) 537 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 538 Ordering, FailureOrdering); 539 } 540 541 MachineMemOperand * 542 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 543 const MachinePointerInfo &PtrInfo, 544 LocationSize Size) { 545 assert((!Size.hasValue() || 546 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 547 "Unexpected an unknown size to be represented using " 548 "LocationSize::beforeOrAfter()"); 549 return new (Allocator) 550 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 551 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 552 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 553 } 554 555 MachineMemOperand *MachineFunction::getMachineMemOperand( 556 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 557 return new (Allocator) 558 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 559 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 560 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 561 } 562 563 MachineMemOperand * 564 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 565 int64_t Offset, LLT Ty) { 566 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 567 568 // If there is no pointer value, the offset isn't tracked so we need to adjust 569 // the base alignment. 570 Align Alignment = PtrInfo.V.isNull() 571 ? commonAlignment(MMO->getBaseAlign(), Offset) 572 : MMO->getBaseAlign(); 573 574 // Do not preserve ranges, since we don't necessarily know what the high bits 575 // are anymore. 576 return new (Allocator) MachineMemOperand( 577 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 578 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 579 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 580 } 581 582 MachineMemOperand * 583 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 584 const AAMDNodes &AAInfo) { 585 MachinePointerInfo MPI = MMO->getValue() ? 586 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 587 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 588 589 return new (Allocator) MachineMemOperand( 590 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 591 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 592 MMO->getFailureOrdering()); 593 } 594 595 MachineMemOperand * 596 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 597 MachineMemOperand::Flags Flags) { 598 return new (Allocator) MachineMemOperand( 599 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 600 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 601 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 602 } 603 604 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 605 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 606 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 607 uint32_t CFIType, MDNode *MMRAs) { 608 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 609 PostInstrSymbol, HeapAllocMarker, 610 PCSections, CFIType, MMRAs); 611 } 612 613 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 614 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 615 llvm::copy(Name, Dest); 616 Dest[Name.size()] = 0; 617 return Dest; 618 } 619 620 uint32_t *MachineFunction::allocateRegMask() { 621 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 622 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 623 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 624 memset(Mask, 0, Size * sizeof(Mask[0])); 625 return Mask; 626 } 627 628 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 629 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 630 copy(Mask, AllocMask); 631 return {AllocMask, Mask.size()}; 632 } 633 634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 635 LLVM_DUMP_METHOD void MachineFunction::dump() const { 636 print(dbgs()); 637 } 638 #endif 639 640 StringRef MachineFunction::getName() const { 641 return getFunction().getName(); 642 } 643 644 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 645 OS << "# Machine code for function " << getName() << ": "; 646 getProperties().print(OS); 647 OS << '\n'; 648 649 // Print Frame Information 650 FrameInfo->print(*this, OS); 651 652 // Print JumpTable Information 653 if (JumpTableInfo) 654 JumpTableInfo->print(OS); 655 656 // Print Constant Pool 657 ConstantPool->print(OS); 658 659 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 660 661 if (RegInfo && !RegInfo->livein_empty()) { 662 OS << "Function Live Ins: "; 663 for (MachineRegisterInfo::livein_iterator 664 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 665 OS << printReg(I->first, TRI); 666 if (I->second) 667 OS << " in " << printReg(I->second, TRI); 668 if (std::next(I) != E) 669 OS << ", "; 670 } 671 OS << '\n'; 672 } 673 674 ModuleSlotTracker MST(getFunction().getParent()); 675 MST.incorporateFunction(getFunction()); 676 for (const auto &BB : *this) { 677 OS << '\n'; 678 // If we print the whole function, print it at its most verbose level. 679 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 680 } 681 682 OS << "\n# End machine code for function " << getName() << ".\n\n"; 683 } 684 685 /// True if this function needs frame moves for debug or exceptions. 686 bool MachineFunction::needsFrameMoves() const { 687 // TODO: Ideally, what we'd like is to have a switch that allows emitting 688 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even 689 // under this switch, we'd like .debug_frame to be precise when using -g. At 690 // this moment, there's no way to specify that some CFI directives go into 691 // .eh_frame only, while others go into .debug_frame only. 692 return getTarget().Options.ForceDwarfFrameSection || 693 F.needsUnwindTableEntry() || 694 !F.getParent()->debug_compile_units().empty(); 695 } 696 697 namespace llvm { 698 699 template<> 700 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 701 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 702 703 static std::string getGraphName(const MachineFunction *F) { 704 return ("CFG for '" + F->getName() + "' function").str(); 705 } 706 707 std::string getNodeLabel(const MachineBasicBlock *Node, 708 const MachineFunction *Graph) { 709 std::string OutStr; 710 { 711 raw_string_ostream OSS(OutStr); 712 713 if (isSimple()) { 714 OSS << printMBBReference(*Node); 715 if (const BasicBlock *BB = Node->getBasicBlock()) 716 OSS << ": " << BB->getName(); 717 } else 718 Node->print(OSS); 719 } 720 721 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 722 723 // Process string output to make it nicer... 724 for (unsigned i = 0; i != OutStr.length(); ++i) 725 if (OutStr[i] == '\n') { // Left justify 726 OutStr[i] = '\\'; 727 OutStr.insert(OutStr.begin()+i+1, 'l'); 728 } 729 return OutStr; 730 } 731 }; 732 733 } // end namespace llvm 734 735 void MachineFunction::viewCFG() const 736 { 737 #ifndef NDEBUG 738 ViewGraph(this, "mf" + getName()); 739 #else 740 errs() << "MachineFunction::viewCFG is only available in debug builds on " 741 << "systems with Graphviz or gv!\n"; 742 #endif // NDEBUG 743 } 744 745 void MachineFunction::viewCFGOnly() const 746 { 747 #ifndef NDEBUG 748 ViewGraph(this, "mf" + getName(), true); 749 #else 750 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 751 << "systems with Graphviz or gv!\n"; 752 #endif // NDEBUG 753 } 754 755 /// Add the specified physical register as a live-in value and 756 /// create a corresponding virtual register for it. 757 Register MachineFunction::addLiveIn(MCRegister PReg, 758 const TargetRegisterClass *RC) { 759 MachineRegisterInfo &MRI = getRegInfo(); 760 Register VReg = MRI.getLiveInVirtReg(PReg); 761 if (VReg) { 762 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 763 (void)VRegRC; 764 // A physical register can be added several times. 765 // Between two calls, the register class of the related virtual register 766 // may have been constrained to match some operation constraints. 767 // In that case, check that the current register class includes the 768 // physical register and is a sub class of the specified RC. 769 assert((VRegRC == RC || (VRegRC->contains(PReg) && 770 RC->hasSubClassEq(VRegRC))) && 771 "Register class mismatch!"); 772 return VReg; 773 } 774 VReg = MRI.createVirtualRegister(RC); 775 MRI.addLiveIn(PReg, VReg); 776 return VReg; 777 } 778 779 /// Return the MCSymbol for the specified non-empty jump table. 780 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 781 /// normal 'L' label is returned. 782 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 783 bool isLinkerPrivate) const { 784 const DataLayout &DL = getDataLayout(); 785 assert(JumpTableInfo && "No jump tables"); 786 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 787 788 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 789 : DL.getPrivateGlobalPrefix(); 790 SmallString<60> Name; 791 raw_svector_ostream(Name) 792 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 793 return Ctx.getOrCreateSymbol(Name); 794 } 795 796 /// Return a function-local symbol to represent the PIC base. 797 MCSymbol *MachineFunction::getPICBaseSymbol() const { 798 const DataLayout &DL = getDataLayout(); 799 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 800 Twine(getFunctionNumber()) + "$pb"); 801 } 802 803 /// \name Exception Handling 804 /// \{ 805 806 LandingPadInfo & 807 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 808 unsigned N = LandingPads.size(); 809 for (unsigned i = 0; i < N; ++i) { 810 LandingPadInfo &LP = LandingPads[i]; 811 if (LP.LandingPadBlock == LandingPad) 812 return LP; 813 } 814 815 LandingPads.push_back(LandingPadInfo(LandingPad)); 816 return LandingPads[N]; 817 } 818 819 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 820 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 821 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 822 LP.BeginLabels.push_back(BeginLabel); 823 LP.EndLabels.push_back(EndLabel); 824 } 825 826 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 827 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 828 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 829 LP.LandingPadLabel = LandingPadLabel; 830 831 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 832 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 833 // If there's no typeid list specified, then "cleanup" is implicit. 834 // Otherwise, id 0 is reserved for the cleanup action. 835 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 836 LP.TypeIds.push_back(0); 837 838 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 839 // correct, but we need to do it this way because of how the DWARF EH 840 // emitter processes the clauses. 841 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 842 Value *Val = LPI->getClause(I - 1); 843 if (LPI->isCatch(I - 1)) { 844 LP.TypeIds.push_back( 845 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 846 } else { 847 // Add filters in a list. 848 auto *CVal = cast<Constant>(Val); 849 SmallVector<unsigned, 4> FilterList; 850 for (const Use &U : CVal->operands()) 851 FilterList.push_back( 852 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 853 854 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 855 } 856 } 857 858 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 859 for (unsigned I = CPI->arg_size(); I != 0; --I) { 860 auto *TypeInfo = 861 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 862 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 863 } 864 865 } else { 866 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 867 } 868 869 return LandingPadLabel; 870 } 871 872 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 873 ArrayRef<unsigned> Sites) { 874 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 875 } 876 877 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 878 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 879 if (TypeInfos[i] == TI) return i + 1; 880 881 TypeInfos.push_back(TI); 882 return TypeInfos.size(); 883 } 884 885 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 886 // If the new filter coincides with the tail of an existing filter, then 887 // re-use the existing filter. Folding filters more than this requires 888 // re-ordering filters and/or their elements - probably not worth it. 889 for (unsigned i : FilterEnds) { 890 unsigned j = TyIds.size(); 891 892 while (i && j) 893 if (FilterIds[--i] != TyIds[--j]) 894 goto try_next; 895 896 if (!j) 897 // The new filter coincides with range [i, end) of the existing filter. 898 return -(1 + i); 899 900 try_next:; 901 } 902 903 // Add the new filter. 904 int FilterID = -(1 + FilterIds.size()); 905 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 906 llvm::append_range(FilterIds, TyIds); 907 FilterEnds.push_back(FilterIds.size()); 908 FilterIds.push_back(0); // terminator 909 return FilterID; 910 } 911 912 MachineFunction::CallSiteInfoMap::iterator 913 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 914 assert(MI->isCandidateForCallSiteEntry() && 915 "Call site info refers only to call (MI) candidates"); 916 917 if (!Target.Options.EmitCallSiteInfo) 918 return CallSitesInfo.end(); 919 return CallSitesInfo.find(MI); 920 } 921 922 /// Return the call machine instruction or find a call within bundle. 923 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 924 if (!MI->isBundle()) 925 return MI; 926 927 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 928 getBundleEnd(MI->getIterator()))) 929 if (BMI.isCandidateForCallSiteEntry()) 930 return &BMI; 931 932 llvm_unreachable("Unexpected bundle without a call site candidate"); 933 } 934 935 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 936 assert(MI->shouldUpdateCallSiteInfo() && 937 "Call site info refers only to call (MI) candidates or " 938 "candidates inside bundles"); 939 940 const MachineInstr *CallMI = getCallInstr(MI); 941 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 942 if (CSIt == CallSitesInfo.end()) 943 return; 944 CallSitesInfo.erase(CSIt); 945 } 946 947 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 948 const MachineInstr *New) { 949 assert(Old->shouldUpdateCallSiteInfo() && 950 "Call site info refers only to call (MI) candidates or " 951 "candidates inside bundles"); 952 953 if (!New->isCandidateForCallSiteEntry()) 954 return eraseCallSiteInfo(Old); 955 956 const MachineInstr *OldCallMI = getCallInstr(Old); 957 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 958 if (CSIt == CallSitesInfo.end()) 959 return; 960 961 CallSiteInfo CSInfo = CSIt->second; 962 CallSitesInfo[New] = CSInfo; 963 } 964 965 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 966 const MachineInstr *New) { 967 assert(Old->shouldUpdateCallSiteInfo() && 968 "Call site info refers only to call (MI) candidates or " 969 "candidates inside bundles"); 970 971 if (!New->isCandidateForCallSiteEntry()) 972 return eraseCallSiteInfo(Old); 973 974 const MachineInstr *OldCallMI = getCallInstr(Old); 975 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 976 if (CSIt == CallSitesInfo.end()) 977 return; 978 979 CallSiteInfo CSInfo = std::move(CSIt->second); 980 CallSitesInfo.erase(CSIt); 981 CallSitesInfo[New] = CSInfo; 982 } 983 984 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 985 DebugInstrNumberingCount = Num; 986 } 987 988 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 989 DebugInstrOperandPair B, 990 unsigned Subreg) { 991 // Catch any accidental self-loops. 992 assert(A.first != B.first); 993 // Don't allow any substitutions _from_ the memory operand number. 994 assert(A.second != DebugOperandMemNumber); 995 996 DebugValueSubstitutions.push_back({A, B, Subreg}); 997 } 998 999 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 1000 MachineInstr &New, 1001 unsigned MaxOperand) { 1002 // If the Old instruction wasn't tracked at all, there is no work to do. 1003 unsigned OldInstrNum = Old.peekDebugInstrNum(); 1004 if (!OldInstrNum) 1005 return; 1006 1007 // Iterate over all operands looking for defs to create substitutions for. 1008 // Avoid creating new instr numbers unless we create a new substitution. 1009 // While this has no functional effect, it risks confusing someone reading 1010 // MIR output. 1011 // Examine all the operands, or the first N specified by the caller. 1012 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 1013 for (unsigned int I = 0; I < MaxOperand; ++I) { 1014 const auto &OldMO = Old.getOperand(I); 1015 auto &NewMO = New.getOperand(I); 1016 (void)NewMO; 1017 1018 if (!OldMO.isReg() || !OldMO.isDef()) 1019 continue; 1020 assert(NewMO.isDef()); 1021 1022 unsigned NewInstrNum = New.getDebugInstrNum(); 1023 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1024 std::make_pair(NewInstrNum, I)); 1025 } 1026 } 1027 1028 auto MachineFunction::salvageCopySSA( 1029 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1030 -> DebugInstrOperandPair { 1031 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1032 1033 // Check whether this copy-like instruction has already been salvaged into 1034 // an operand pair. 1035 Register Dest; 1036 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1037 Dest = CopyDstSrc->Destination->getReg(); 1038 } else { 1039 assert(MI.isSubregToReg()); 1040 Dest = MI.getOperand(0).getReg(); 1041 } 1042 1043 auto CacheIt = DbgPHICache.find(Dest); 1044 if (CacheIt != DbgPHICache.end()) 1045 return CacheIt->second; 1046 1047 // Calculate the instruction number to use, or install a DBG_PHI. 1048 auto OperandPair = salvageCopySSAImpl(MI); 1049 DbgPHICache.insert({Dest, OperandPair}); 1050 return OperandPair; 1051 } 1052 1053 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1054 -> DebugInstrOperandPair { 1055 MachineRegisterInfo &MRI = getRegInfo(); 1056 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1057 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1058 1059 // Chase the value read by a copy-like instruction back to the instruction 1060 // that ultimately _defines_ that value. This may pass: 1061 // * Through multiple intermediate copies, including subregister moves / 1062 // copies, 1063 // * Copies from physical registers that must then be traced back to the 1064 // defining instruction, 1065 // * Or, physical registers may be live-in to (only) the entry block, which 1066 // requires a DBG_PHI to be created. 1067 // We can pursue this problem in that order: trace back through copies, 1068 // optionally through a physical register, to a defining instruction. We 1069 // should never move from physreg to vreg. As we're still in SSA form, no need 1070 // to worry about partial definitions of registers. 1071 1072 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1073 // returns the register read and any subregister identifying which part is 1074 // read. 1075 auto GetRegAndSubreg = 1076 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1077 Register NewReg, OldReg; 1078 unsigned SubReg; 1079 if (Cpy.isCopy()) { 1080 OldReg = Cpy.getOperand(0).getReg(); 1081 NewReg = Cpy.getOperand(1).getReg(); 1082 SubReg = Cpy.getOperand(1).getSubReg(); 1083 } else if (Cpy.isSubregToReg()) { 1084 OldReg = Cpy.getOperand(0).getReg(); 1085 NewReg = Cpy.getOperand(2).getReg(); 1086 SubReg = Cpy.getOperand(3).getImm(); 1087 } else { 1088 auto CopyDetails = *TII.isCopyInstr(Cpy); 1089 const MachineOperand &Src = *CopyDetails.Source; 1090 const MachineOperand &Dest = *CopyDetails.Destination; 1091 OldReg = Dest.getReg(); 1092 NewReg = Src.getReg(); 1093 SubReg = Src.getSubReg(); 1094 } 1095 1096 return {NewReg, SubReg}; 1097 }; 1098 1099 // First seek either the defining instruction, or a copy from a physreg. 1100 // During search, the current state is the current copy instruction, and which 1101 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1102 // deal with those later. 1103 auto State = GetRegAndSubreg(MI); 1104 auto CurInst = MI.getIterator(); 1105 SmallVector<unsigned, 4> SubregsSeen; 1106 while (true) { 1107 // If we've found a copy from a physreg, first portion of search is over. 1108 if (!State.first.isVirtual()) 1109 break; 1110 1111 // Record any subregister qualifier. 1112 if (State.second) 1113 SubregsSeen.push_back(State.second); 1114 1115 assert(MRI.hasOneDef(State.first)); 1116 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1117 CurInst = Inst.getIterator(); 1118 1119 // Any non-copy instruction is the defining instruction we're seeking. 1120 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1121 break; 1122 State = GetRegAndSubreg(Inst); 1123 }; 1124 1125 // Helper lambda to apply additional subregister substitutions to a known 1126 // instruction/operand pair. Adds new (fake) substitutions so that we can 1127 // record the subregister. FIXME: this isn't very space efficient if multiple 1128 // values are tracked back through the same copies; cache something later. 1129 auto ApplySubregisters = 1130 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1131 for (unsigned Subreg : reverse(SubregsSeen)) { 1132 // Fetch a new instruction number, not attached to an actual instruction. 1133 unsigned NewInstrNumber = getNewDebugInstrNum(); 1134 // Add a substitution from the "new" number to the known one, with a 1135 // qualifying subreg. 1136 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1137 // Return the new number; to find the underlying value, consumers need to 1138 // deal with the qualifying subreg. 1139 P = {NewInstrNumber, 0}; 1140 } 1141 return P; 1142 }; 1143 1144 // If we managed to find the defining instruction after COPYs, return an 1145 // instruction / operand pair after adding subregister qualifiers. 1146 if (State.first.isVirtual()) { 1147 // Virtual register def -- we can just look up where this happens. 1148 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1149 for (auto &MO : Inst->all_defs()) { 1150 if (MO.getReg() != State.first) 1151 continue; 1152 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1153 } 1154 1155 llvm_unreachable("Vreg def with no corresponding operand?"); 1156 } 1157 1158 // Our search ended in a copy from a physreg: walk back up the function 1159 // looking for whatever defines the physreg. 1160 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1161 State = GetRegAndSubreg(*CurInst); 1162 Register RegToSeek = State.first; 1163 1164 auto RMII = CurInst->getReverseIterator(); 1165 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1166 for (auto &ToExamine : PrevInstrs) { 1167 for (auto &MO : ToExamine.all_defs()) { 1168 // Test for operand that defines something aliasing RegToSeek. 1169 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1170 continue; 1171 1172 return ApplySubregisters( 1173 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1174 } 1175 } 1176 1177 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1178 1179 // We reached the start of the block before finding a defining instruction. 1180 // There are numerous scenarios where this can happen: 1181 // * Constant physical registers, 1182 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1183 // * Arguments in the entry block, 1184 // * Exception handling landing pads. 1185 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1186 // the variable value at this position, rather than checking it makes sense. 1187 1188 // Create DBG_PHI for specified physreg. 1189 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1190 TII.get(TargetOpcode::DBG_PHI)); 1191 Builder.addReg(State.first); 1192 unsigned NewNum = getNewDebugInstrNum(); 1193 Builder.addImm(NewNum); 1194 return ApplySubregisters({NewNum, 0u}); 1195 } 1196 1197 void MachineFunction::finalizeDebugInstrRefs() { 1198 auto *TII = getSubtarget().getInstrInfo(); 1199 1200 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1201 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1202 MI.setDesc(RefII); 1203 MI.setDebugValueUndef(); 1204 }; 1205 1206 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1207 for (auto &MBB : *this) { 1208 for (auto &MI : MBB) { 1209 if (!MI.isDebugRef()) 1210 continue; 1211 1212 bool IsValidRef = true; 1213 1214 for (MachineOperand &MO : MI.debug_operands()) { 1215 if (!MO.isReg()) 1216 continue; 1217 1218 Register Reg = MO.getReg(); 1219 1220 // Some vregs can be deleted as redundant in the meantime. Mark those 1221 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1222 // quickly deleted, leaving dangling references to vregs with no def. 1223 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1224 IsValidRef = false; 1225 break; 1226 } 1227 1228 assert(Reg.isVirtual()); 1229 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1230 1231 // If we've found a copy-like instruction, follow it back to the 1232 // instruction that defines the source value, see salvageCopySSA docs 1233 // for why this is important. 1234 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1235 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1236 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1237 } else { 1238 // Otherwise, identify the operand number that the VReg refers to. 1239 unsigned OperandIdx = 0; 1240 for (const auto &DefMO : DefMI.operands()) { 1241 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1242 break; 1243 ++OperandIdx; 1244 } 1245 assert(OperandIdx < DefMI.getNumOperands()); 1246 1247 // Morph this instr ref to point at the given instruction and operand. 1248 unsigned ID = DefMI.getDebugInstrNum(); 1249 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1250 } 1251 } 1252 1253 if (!IsValidRef) 1254 MakeUndefDbgValue(MI); 1255 } 1256 } 1257 } 1258 1259 bool MachineFunction::shouldUseDebugInstrRef() const { 1260 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1261 // have optimized code inlined into this unoptimized code, however with 1262 // fewer and less aggressive optimizations happening, coverage and accuracy 1263 // should not suffer. 1264 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1265 return false; 1266 1267 // Don't use instr-ref if this function is marked optnone. 1268 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1269 return false; 1270 1271 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1272 return true; 1273 1274 return false; 1275 } 1276 1277 bool MachineFunction::useDebugInstrRef() const { 1278 return UseDebugInstrRef; 1279 } 1280 1281 void MachineFunction::setUseDebugInstrRef(bool Use) { 1282 UseDebugInstrRef = Use; 1283 } 1284 1285 // Use one million as a high / reserved number. 1286 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1287 1288 /// \} 1289 1290 //===----------------------------------------------------------------------===// 1291 // MachineJumpTableInfo implementation 1292 //===----------------------------------------------------------------------===// 1293 1294 /// Return the size of each entry in the jump table. 1295 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1296 // The size of a jump table entry is 4 bytes unless the entry is just the 1297 // address of a block, in which case it is the pointer size. 1298 switch (getEntryKind()) { 1299 case MachineJumpTableInfo::EK_BlockAddress: 1300 return TD.getPointerSize(); 1301 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1302 case MachineJumpTableInfo::EK_LabelDifference64: 1303 return 8; 1304 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1305 case MachineJumpTableInfo::EK_LabelDifference32: 1306 case MachineJumpTableInfo::EK_Custom32: 1307 return 4; 1308 case MachineJumpTableInfo::EK_Inline: 1309 return 0; 1310 } 1311 llvm_unreachable("Unknown jump table encoding!"); 1312 } 1313 1314 /// Return the alignment of each entry in the jump table. 1315 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1316 // The alignment of a jump table entry is the alignment of int32 unless the 1317 // entry is just the address of a block, in which case it is the pointer 1318 // alignment. 1319 switch (getEntryKind()) { 1320 case MachineJumpTableInfo::EK_BlockAddress: 1321 return TD.getPointerABIAlignment(0).value(); 1322 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1323 case MachineJumpTableInfo::EK_LabelDifference64: 1324 return TD.getABIIntegerTypeAlignment(64).value(); 1325 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1326 case MachineJumpTableInfo::EK_LabelDifference32: 1327 case MachineJumpTableInfo::EK_Custom32: 1328 return TD.getABIIntegerTypeAlignment(32).value(); 1329 case MachineJumpTableInfo::EK_Inline: 1330 return 1; 1331 } 1332 llvm_unreachable("Unknown jump table encoding!"); 1333 } 1334 1335 /// Create a new jump table entry in the jump table info. 1336 unsigned MachineJumpTableInfo::createJumpTableIndex( 1337 const std::vector<MachineBasicBlock*> &DestBBs) { 1338 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1339 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1340 return JumpTables.size()-1; 1341 } 1342 1343 /// If Old is the target of any jump tables, update the jump tables to branch 1344 /// to New instead. 1345 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1346 MachineBasicBlock *New) { 1347 assert(Old != New && "Not making a change?"); 1348 bool MadeChange = false; 1349 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1350 ReplaceMBBInJumpTable(i, Old, New); 1351 return MadeChange; 1352 } 1353 1354 /// If MBB is present in any jump tables, remove it. 1355 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1356 bool MadeChange = false; 1357 for (MachineJumpTableEntry &JTE : JumpTables) { 1358 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1359 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1360 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1361 } 1362 return MadeChange; 1363 } 1364 1365 /// If Old is a target of the jump tables, update the jump table to branch to 1366 /// New instead. 1367 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1368 MachineBasicBlock *Old, 1369 MachineBasicBlock *New) { 1370 assert(Old != New && "Not making a change?"); 1371 bool MadeChange = false; 1372 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1373 for (MachineBasicBlock *&MBB : JTE.MBBs) 1374 if (MBB == Old) { 1375 MBB = New; 1376 MadeChange = true; 1377 } 1378 return MadeChange; 1379 } 1380 1381 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1382 if (JumpTables.empty()) return; 1383 1384 OS << "Jump Tables:\n"; 1385 1386 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1387 OS << printJumpTableEntryReference(i) << ':'; 1388 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1389 OS << ' ' << printMBBReference(*MBB); 1390 if (i != e) 1391 OS << '\n'; 1392 } 1393 1394 OS << '\n'; 1395 } 1396 1397 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1398 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1399 #endif 1400 1401 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1402 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1403 } 1404 1405 //===----------------------------------------------------------------------===// 1406 // MachineConstantPool implementation 1407 //===----------------------------------------------------------------------===// 1408 1409 void MachineConstantPoolValue::anchor() {} 1410 1411 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1412 return DL.getTypeAllocSize(Ty); 1413 } 1414 1415 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1416 if (isMachineConstantPoolEntry()) 1417 return Val.MachineCPVal->getSizeInBytes(DL); 1418 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1419 } 1420 1421 bool MachineConstantPoolEntry::needsRelocation() const { 1422 if (isMachineConstantPoolEntry()) 1423 return true; 1424 return Val.ConstVal->needsDynamicRelocation(); 1425 } 1426 1427 SectionKind 1428 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1429 if (needsRelocation()) 1430 return SectionKind::getReadOnlyWithRel(); 1431 switch (getSizeInBytes(*DL)) { 1432 case 4: 1433 return SectionKind::getMergeableConst4(); 1434 case 8: 1435 return SectionKind::getMergeableConst8(); 1436 case 16: 1437 return SectionKind::getMergeableConst16(); 1438 case 32: 1439 return SectionKind::getMergeableConst32(); 1440 default: 1441 return SectionKind::getReadOnly(); 1442 } 1443 } 1444 1445 MachineConstantPool::~MachineConstantPool() { 1446 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1447 // so keep track of which we've deleted to avoid double deletions. 1448 DenseSet<MachineConstantPoolValue*> Deleted; 1449 for (const MachineConstantPoolEntry &C : Constants) 1450 if (C.isMachineConstantPoolEntry()) { 1451 Deleted.insert(C.Val.MachineCPVal); 1452 delete C.Val.MachineCPVal; 1453 } 1454 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1455 if (Deleted.count(CPV) == 0) 1456 delete CPV; 1457 } 1458 } 1459 1460 /// Test whether the given two constants can be allocated the same constant pool 1461 /// entry referenced by \param A. 1462 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1463 const DataLayout &DL) { 1464 // Handle the trivial case quickly. 1465 if (A == B) return true; 1466 1467 // If they have the same type but weren't the same constant, quickly 1468 // reject them. 1469 if (A->getType() == B->getType()) return false; 1470 1471 // We can't handle structs or arrays. 1472 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1473 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1474 return false; 1475 1476 // For now, only support constants with the same size. 1477 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1478 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1479 return false; 1480 1481 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1482 1483 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1484 1485 // Try constant folding a bitcast of both instructions to an integer. If we 1486 // get two identical ConstantInt's, then we are good to share them. We use 1487 // the constant folding APIs to do this so that we get the benefit of 1488 // DataLayout. 1489 if (isa<PointerType>(A->getType())) 1490 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1491 const_cast<Constant *>(A), IntTy, DL); 1492 else if (A->getType() != IntTy) 1493 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1494 IntTy, DL); 1495 if (isa<PointerType>(B->getType())) 1496 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1497 const_cast<Constant *>(B), IntTy, DL); 1498 else if (B->getType() != IntTy) 1499 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1500 IntTy, DL); 1501 1502 if (A != B) 1503 return false; 1504 1505 // Constants only safely match if A doesn't contain undef/poison. 1506 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1507 // TODO: Handle cases where A and B have the same undef/poison elements. 1508 // TODO: Merge A and B with mismatching undef/poison elements. 1509 return !ContainsUndefOrPoisonA; 1510 } 1511 1512 /// Create a new entry in the constant pool or return an existing one. 1513 /// User must specify the log2 of the minimum required alignment for the object. 1514 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1515 Align Alignment) { 1516 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1517 1518 // Check to see if we already have this constant. 1519 // 1520 // FIXME, this could be made much more efficient for large constant pools. 1521 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1522 if (!Constants[i].isMachineConstantPoolEntry() && 1523 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1524 if (Constants[i].getAlign() < Alignment) 1525 Constants[i].Alignment = Alignment; 1526 return i; 1527 } 1528 1529 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1530 return Constants.size()-1; 1531 } 1532 1533 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1534 Align Alignment) { 1535 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1536 1537 // Check to see if we already have this constant. 1538 // 1539 // FIXME, this could be made much more efficient for large constant pools. 1540 int Idx = V->getExistingMachineCPValue(this, Alignment); 1541 if (Idx != -1) { 1542 MachineCPVsSharingEntries.insert(V); 1543 return (unsigned)Idx; 1544 } 1545 1546 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1547 return Constants.size()-1; 1548 } 1549 1550 void MachineConstantPool::print(raw_ostream &OS) const { 1551 if (Constants.empty()) return; 1552 1553 OS << "Constant Pool:\n"; 1554 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1555 OS << " cp#" << i << ": "; 1556 if (Constants[i].isMachineConstantPoolEntry()) 1557 Constants[i].Val.MachineCPVal->print(OS); 1558 else 1559 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1560 OS << ", align=" << Constants[i].getAlign().value(); 1561 OS << "\n"; 1562 } 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // Template specialization for MachineFunction implementation of 1567 // ProfileSummaryInfo::getEntryCount(). 1568 //===----------------------------------------------------------------------===// 1569 template <> 1570 std::optional<Function::ProfileCount> 1571 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1572 const llvm::MachineFunction *F) const { 1573 return F->getFunction().getEntryCount(); 1574 } 1575 1576 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1577 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1578 #endif 1579