1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 #include "LiveDebugValues/LiveDebugValues.h" 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "codegen" 84 85 static cl::opt<unsigned> AlignAllFunctions( 86 "align-all-functions", 87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 88 "means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 92 using P = MachineFunctionProperties::Property; 93 94 // clang-format off 95 switch(Prop) { 96 case P::FailedISel: return "FailedISel"; 97 case P::IsSSA: return "IsSSA"; 98 case P::Legalized: return "Legalized"; 99 case P::NoPHIs: return "NoPHIs"; 100 case P::NoVRegs: return "NoVRegs"; 101 case P::RegBankSelected: return "RegBankSelected"; 102 case P::Selected: return "Selected"; 103 case P::TracksLiveness: return "TracksLiveness"; 104 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 105 case P::FailsVerification: return "FailsVerification"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 165 const TargetSubtargetInfo &STI, 166 unsigned FunctionNum, MachineModuleInfo &mmi) 167 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 FrameInfo = new (Allocator) MachineFrameInfo( 204 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 205 /*ForcedRealign=*/CanRealignSP && 206 F.hasFnAttribute(Attribute::StackAlignment)); 207 208 setUnsafeStackSize(F, *FrameInfo); 209 210 if (F.hasFnAttribute(Attribute::StackAlignment)) 211 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 212 213 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 214 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 215 216 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 217 // FIXME: Use Function::hasOptSize(). 218 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 219 Alignment = std::max(Alignment, 220 STI->getTargetLowering()->getPrefFunctionAlignment()); 221 222 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 223 // to load a type hash before the function label. Ensure functions are aligned 224 // by a least 4 to avoid unaligned access, which is especially important for 225 // -mno-unaligned-access. 226 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 227 F.getMetadata(LLVMContext::MD_kcfi_type)) 228 Alignment = std::max(Alignment, Align(4)); 229 230 if (AlignAllFunctions) 231 Alignment = Align(1ULL << AlignAllFunctions); 232 233 JumpTableInfo = nullptr; 234 235 if (isFuncletEHPersonality(classifyEHPersonality( 236 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 237 WinEHInfo = new (Allocator) WinEHFuncInfo(); 238 } 239 240 if (isScopedEHPersonality(classifyEHPersonality( 241 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 242 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 243 } 244 245 assert(Target.isCompatibleDataLayout(getDataLayout()) && 246 "Can't create a MachineFunction using a Module with a " 247 "Target-incompatible DataLayout attached\n"); 248 249 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 250 } 251 252 void MachineFunction::initTargetMachineFunctionInfo( 253 const TargetSubtargetInfo &STI) { 254 assert(!MFInfo && "MachineFunctionInfo already set"); 255 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 256 } 257 258 MachineFunction::~MachineFunction() { 259 clear(); 260 } 261 262 void MachineFunction::clear() { 263 Properties.reset(); 264 // Don't call destructors on MachineInstr and MachineOperand. All of their 265 // memory comes from the BumpPtrAllocator which is about to be purged. 266 // 267 // Do call MachineBasicBlock destructors, it contains std::vectors. 268 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 269 I->Insts.clearAndLeakNodesUnsafely(); 270 MBBNumbering.clear(); 271 272 InstructionRecycler.clear(Allocator); 273 OperandRecycler.clear(Allocator); 274 BasicBlockRecycler.clear(Allocator); 275 CodeViewAnnotations.clear(); 276 VariableDbgInfos.clear(); 277 if (RegInfo) { 278 RegInfo->~MachineRegisterInfo(); 279 Allocator.Deallocate(RegInfo); 280 } 281 if (MFInfo) { 282 MFInfo->~MachineFunctionInfo(); 283 Allocator.Deallocate(MFInfo); 284 } 285 286 FrameInfo->~MachineFrameInfo(); 287 Allocator.Deallocate(FrameInfo); 288 289 ConstantPool->~MachineConstantPool(); 290 Allocator.Deallocate(ConstantPool); 291 292 if (JumpTableInfo) { 293 JumpTableInfo->~MachineJumpTableInfo(); 294 Allocator.Deallocate(JumpTableInfo); 295 } 296 297 if (WinEHInfo) { 298 WinEHInfo->~WinEHFuncInfo(); 299 Allocator.Deallocate(WinEHInfo); 300 } 301 302 if (WasmEHInfo) { 303 WasmEHInfo->~WasmEHFuncInfo(); 304 Allocator.Deallocate(WasmEHInfo); 305 } 306 } 307 308 const DataLayout &MachineFunction::getDataLayout() const { 309 return F.getParent()->getDataLayout(); 310 } 311 312 /// Get the JumpTableInfo for this function. 313 /// If it does not already exist, allocate one. 314 MachineJumpTableInfo *MachineFunction:: 315 getOrCreateJumpTableInfo(unsigned EntryKind) { 316 if (JumpTableInfo) return JumpTableInfo; 317 318 JumpTableInfo = new (Allocator) 319 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 320 return JumpTableInfo; 321 } 322 323 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 324 return F.getDenormalMode(FPType); 325 } 326 327 /// Should we be emitting segmented stack stuff for the function 328 bool MachineFunction::shouldSplitStack() const { 329 return getFunction().hasFnAttribute("split-stack"); 330 } 331 332 [[nodiscard]] unsigned 333 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 334 FrameInstructions.push_back(Inst); 335 return FrameInstructions.size() - 1; 336 } 337 338 /// This discards all of the MachineBasicBlock numbers and recomputes them. 339 /// This guarantees that the MBB numbers are sequential, dense, and match the 340 /// ordering of the blocks within the function. If a specific MachineBasicBlock 341 /// is specified, only that block and those after it are renumbered. 342 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 343 if (empty()) { MBBNumbering.clear(); return; } 344 MachineFunction::iterator MBBI, E = end(); 345 if (MBB == nullptr) 346 MBBI = begin(); 347 else 348 MBBI = MBB->getIterator(); 349 350 // Figure out the block number this should have. 351 unsigned BlockNo = 0; 352 if (MBBI != begin()) 353 BlockNo = std::prev(MBBI)->getNumber() + 1; 354 355 for (; MBBI != E; ++MBBI, ++BlockNo) { 356 if (MBBI->getNumber() != (int)BlockNo) { 357 // Remove use of the old number. 358 if (MBBI->getNumber() != -1) { 359 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 360 "MBB number mismatch!"); 361 MBBNumbering[MBBI->getNumber()] = nullptr; 362 } 363 364 // If BlockNo is already taken, set that block's number to -1. 365 if (MBBNumbering[BlockNo]) 366 MBBNumbering[BlockNo]->setNumber(-1); 367 368 MBBNumbering[BlockNo] = &*MBBI; 369 MBBI->setNumber(BlockNo); 370 } 371 } 372 373 // Okay, all the blocks are renumbered. If we have compactified the block 374 // numbering, shrink MBBNumbering now. 375 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 376 MBBNumbering.resize(BlockNo); 377 } 378 379 /// This method iterates over the basic blocks and assigns their IsBeginSection 380 /// and IsEndSection fields. This must be called after MBB layout is finalized 381 /// and the SectionID's are assigned to MBBs. 382 void MachineFunction::assignBeginEndSections() { 383 front().setIsBeginSection(); 384 auto CurrentSectionID = front().getSectionID(); 385 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 386 if (MBBI->getSectionID() == CurrentSectionID) 387 continue; 388 MBBI->setIsBeginSection(); 389 std::prev(MBBI)->setIsEndSection(); 390 CurrentSectionID = MBBI->getSectionID(); 391 } 392 back().setIsEndSection(); 393 } 394 395 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 396 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 397 DebugLoc DL, 398 bool NoImplicit) { 399 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 400 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 401 } 402 403 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 404 /// identical in all ways except the instruction has no parent, prev, or next. 405 MachineInstr * 406 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 407 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 408 MachineInstr(*this, *Orig); 409 } 410 411 MachineInstr &MachineFunction::cloneMachineInstrBundle( 412 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 413 const MachineInstr &Orig) { 414 MachineInstr *FirstClone = nullptr; 415 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 416 while (true) { 417 MachineInstr *Cloned = CloneMachineInstr(&*I); 418 MBB.insert(InsertBefore, Cloned); 419 if (FirstClone == nullptr) { 420 FirstClone = Cloned; 421 } else { 422 Cloned->bundleWithPred(); 423 } 424 425 if (!I->isBundledWithSucc()) 426 break; 427 ++I; 428 } 429 // Copy over call site info to the cloned instruction if needed. If Orig is in 430 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 431 // the bundle. 432 if (Orig.shouldUpdateCallSiteInfo()) 433 copyCallSiteInfo(&Orig, FirstClone); 434 return *FirstClone; 435 } 436 437 /// Delete the given MachineInstr. 438 /// 439 /// This function also serves as the MachineInstr destructor - the real 440 /// ~MachineInstr() destructor must be empty. 441 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 442 // Verify that a call site info is at valid state. This assertion should 443 // be triggered during the implementation of support for the 444 // call site info of a new architecture. If the assertion is triggered, 445 // back trace will tell where to insert a call to updateCallSiteInfo(). 446 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 447 "Call site info was not updated!"); 448 // Strip it for parts. The operand array and the MI object itself are 449 // independently recyclable. 450 if (MI->Operands) 451 deallocateOperandArray(MI->CapOperands, MI->Operands); 452 // Don't call ~MachineInstr() which must be trivial anyway because 453 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 454 // destructors. 455 InstructionRecycler.Deallocate(Allocator, MI); 456 } 457 458 /// Allocate a new MachineBasicBlock. Use this instead of 459 /// `new MachineBasicBlock'. 460 MachineBasicBlock * 461 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 462 std::optional<UniqueBBID> BBID) { 463 MachineBasicBlock *MBB = 464 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 465 MachineBasicBlock(*this, BB); 466 // Set BBID for `-basic-block=sections=labels` and 467 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 468 // blocks. 469 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 470 Target.Options.BBAddrMap || 471 Target.getBBSectionsType() == BasicBlockSection::List) 472 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 473 return MBB; 474 } 475 476 /// Delete the given MachineBasicBlock. 477 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 478 assert(MBB->getParent() == this && "MBB parent mismatch!"); 479 // Clean up any references to MBB in jump tables before deleting it. 480 if (JumpTableInfo) 481 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 482 MBB->~MachineBasicBlock(); 483 BasicBlockRecycler.Deallocate(Allocator, MBB); 484 } 485 486 MachineMemOperand *MachineFunction::getMachineMemOperand( 487 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 488 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 489 SyncScope::ID SSID, AtomicOrdering Ordering, 490 AtomicOrdering FailureOrdering) { 491 assert((!Size.hasValue() || 492 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 493 "Unexpected an unknown size to be represented using " 494 "LocationSize::beforeOrAfter()"); 495 return new (Allocator) 496 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 497 Ordering, FailureOrdering); 498 } 499 500 MachineMemOperand *MachineFunction::getMachineMemOperand( 501 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 502 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 503 SyncScope::ID SSID, AtomicOrdering Ordering, 504 AtomicOrdering FailureOrdering) { 505 return new (Allocator) 506 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 507 Ordering, FailureOrdering); 508 } 509 510 MachineMemOperand * 511 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 512 const MachinePointerInfo &PtrInfo, 513 LocationSize Size) { 514 assert((!Size.hasValue() || 515 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 516 "Unexpected an unknown size to be represented using " 517 "LocationSize::beforeOrAfter()"); 518 return new (Allocator) 519 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 520 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 521 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 522 } 523 524 MachineMemOperand *MachineFunction::getMachineMemOperand( 525 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 526 return new (Allocator) 527 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 528 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 529 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 530 } 531 532 MachineMemOperand * 533 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 534 int64_t Offset, LLT Ty) { 535 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 536 537 // If there is no pointer value, the offset isn't tracked so we need to adjust 538 // the base alignment. 539 Align Alignment = PtrInfo.V.isNull() 540 ? commonAlignment(MMO->getBaseAlign(), Offset) 541 : MMO->getBaseAlign(); 542 543 // Do not preserve ranges, since we don't necessarily know what the high bits 544 // are anymore. 545 return new (Allocator) MachineMemOperand( 546 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 547 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 548 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 549 } 550 551 MachineMemOperand * 552 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 553 const AAMDNodes &AAInfo) { 554 MachinePointerInfo MPI = MMO->getValue() ? 555 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 556 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 557 558 return new (Allocator) MachineMemOperand( 559 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 560 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 561 MMO->getFailureOrdering()); 562 } 563 564 MachineMemOperand * 565 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 566 MachineMemOperand::Flags Flags) { 567 return new (Allocator) MachineMemOperand( 568 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 569 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 570 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 571 } 572 573 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 574 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 575 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 576 uint32_t CFIType) { 577 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 578 PostInstrSymbol, HeapAllocMarker, 579 PCSections, CFIType); 580 } 581 582 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 583 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 584 llvm::copy(Name, Dest); 585 Dest[Name.size()] = 0; 586 return Dest; 587 } 588 589 uint32_t *MachineFunction::allocateRegMask() { 590 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 591 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 592 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 593 memset(Mask, 0, Size * sizeof(Mask[0])); 594 return Mask; 595 } 596 597 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 598 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 599 copy(Mask, AllocMask); 600 return {AllocMask, Mask.size()}; 601 } 602 603 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 604 LLVM_DUMP_METHOD void MachineFunction::dump() const { 605 print(dbgs()); 606 } 607 #endif 608 609 StringRef MachineFunction::getName() const { 610 return getFunction().getName(); 611 } 612 613 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 614 OS << "# Machine code for function " << getName() << ": "; 615 getProperties().print(OS); 616 OS << '\n'; 617 618 // Print Frame Information 619 FrameInfo->print(*this, OS); 620 621 // Print JumpTable Information 622 if (JumpTableInfo) 623 JumpTableInfo->print(OS); 624 625 // Print Constant Pool 626 ConstantPool->print(OS); 627 628 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 629 630 if (RegInfo && !RegInfo->livein_empty()) { 631 OS << "Function Live Ins: "; 632 for (MachineRegisterInfo::livein_iterator 633 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 634 OS << printReg(I->first, TRI); 635 if (I->second) 636 OS << " in " << printReg(I->second, TRI); 637 if (std::next(I) != E) 638 OS << ", "; 639 } 640 OS << '\n'; 641 } 642 643 ModuleSlotTracker MST(getFunction().getParent()); 644 MST.incorporateFunction(getFunction()); 645 for (const auto &BB : *this) { 646 OS << '\n'; 647 // If we print the whole function, print it at its most verbose level. 648 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 649 } 650 651 OS << "\n# End machine code for function " << getName() << ".\n\n"; 652 } 653 654 /// True if this function needs frame moves for debug or exceptions. 655 bool MachineFunction::needsFrameMoves() const { 656 return getMMI().hasDebugInfo() || 657 getTarget().Options.ForceDwarfFrameSection || 658 F.needsUnwindTableEntry(); 659 } 660 661 namespace llvm { 662 663 template<> 664 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 665 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 666 667 static std::string getGraphName(const MachineFunction *F) { 668 return ("CFG for '" + F->getName() + "' function").str(); 669 } 670 671 std::string getNodeLabel(const MachineBasicBlock *Node, 672 const MachineFunction *Graph) { 673 std::string OutStr; 674 { 675 raw_string_ostream OSS(OutStr); 676 677 if (isSimple()) { 678 OSS << printMBBReference(*Node); 679 if (const BasicBlock *BB = Node->getBasicBlock()) 680 OSS << ": " << BB->getName(); 681 } else 682 Node->print(OSS); 683 } 684 685 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 686 687 // Process string output to make it nicer... 688 for (unsigned i = 0; i != OutStr.length(); ++i) 689 if (OutStr[i] == '\n') { // Left justify 690 OutStr[i] = '\\'; 691 OutStr.insert(OutStr.begin()+i+1, 'l'); 692 } 693 return OutStr; 694 } 695 }; 696 697 } // end namespace llvm 698 699 void MachineFunction::viewCFG() const 700 { 701 #ifndef NDEBUG 702 ViewGraph(this, "mf" + getName()); 703 #else 704 errs() << "MachineFunction::viewCFG is only available in debug builds on " 705 << "systems with Graphviz or gv!\n"; 706 #endif // NDEBUG 707 } 708 709 void MachineFunction::viewCFGOnly() const 710 { 711 #ifndef NDEBUG 712 ViewGraph(this, "mf" + getName(), true); 713 #else 714 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 715 << "systems with Graphviz or gv!\n"; 716 #endif // NDEBUG 717 } 718 719 /// Add the specified physical register as a live-in value and 720 /// create a corresponding virtual register for it. 721 Register MachineFunction::addLiveIn(MCRegister PReg, 722 const TargetRegisterClass *RC) { 723 MachineRegisterInfo &MRI = getRegInfo(); 724 Register VReg = MRI.getLiveInVirtReg(PReg); 725 if (VReg) { 726 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 727 (void)VRegRC; 728 // A physical register can be added several times. 729 // Between two calls, the register class of the related virtual register 730 // may have been constrained to match some operation constraints. 731 // In that case, check that the current register class includes the 732 // physical register and is a sub class of the specified RC. 733 assert((VRegRC == RC || (VRegRC->contains(PReg) && 734 RC->hasSubClassEq(VRegRC))) && 735 "Register class mismatch!"); 736 return VReg; 737 } 738 VReg = MRI.createVirtualRegister(RC); 739 MRI.addLiveIn(PReg, VReg); 740 return VReg; 741 } 742 743 /// Return the MCSymbol for the specified non-empty jump table. 744 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 745 /// normal 'L' label is returned. 746 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 747 bool isLinkerPrivate) const { 748 const DataLayout &DL = getDataLayout(); 749 assert(JumpTableInfo && "No jump tables"); 750 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 751 752 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 753 : DL.getPrivateGlobalPrefix(); 754 SmallString<60> Name; 755 raw_svector_ostream(Name) 756 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 757 return Ctx.getOrCreateSymbol(Name); 758 } 759 760 /// Return a function-local symbol to represent the PIC base. 761 MCSymbol *MachineFunction::getPICBaseSymbol() const { 762 const DataLayout &DL = getDataLayout(); 763 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 764 Twine(getFunctionNumber()) + "$pb"); 765 } 766 767 /// \name Exception Handling 768 /// \{ 769 770 LandingPadInfo & 771 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 772 unsigned N = LandingPads.size(); 773 for (unsigned i = 0; i < N; ++i) { 774 LandingPadInfo &LP = LandingPads[i]; 775 if (LP.LandingPadBlock == LandingPad) 776 return LP; 777 } 778 779 LandingPads.push_back(LandingPadInfo(LandingPad)); 780 return LandingPads[N]; 781 } 782 783 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 784 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 785 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 786 LP.BeginLabels.push_back(BeginLabel); 787 LP.EndLabels.push_back(EndLabel); 788 } 789 790 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 791 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 792 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 793 LP.LandingPadLabel = LandingPadLabel; 794 795 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 796 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 797 // If there's no typeid list specified, then "cleanup" is implicit. 798 // Otherwise, id 0 is reserved for the cleanup action. 799 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 800 LP.TypeIds.push_back(0); 801 802 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 803 // correct, but we need to do it this way because of how the DWARF EH 804 // emitter processes the clauses. 805 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 806 Value *Val = LPI->getClause(I - 1); 807 if (LPI->isCatch(I - 1)) { 808 LP.TypeIds.push_back( 809 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 810 } else { 811 // Add filters in a list. 812 auto *CVal = cast<Constant>(Val); 813 SmallVector<unsigned, 4> FilterList; 814 for (const Use &U : CVal->operands()) 815 FilterList.push_back( 816 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 817 818 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 819 } 820 } 821 822 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 823 for (unsigned I = CPI->arg_size(); I != 0; --I) { 824 auto *TypeInfo = 825 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 826 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 827 } 828 829 } else { 830 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 831 } 832 833 return LandingPadLabel; 834 } 835 836 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 837 ArrayRef<unsigned> Sites) { 838 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 839 } 840 841 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 842 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 843 if (TypeInfos[i] == TI) return i + 1; 844 845 TypeInfos.push_back(TI); 846 return TypeInfos.size(); 847 } 848 849 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 850 // If the new filter coincides with the tail of an existing filter, then 851 // re-use the existing filter. Folding filters more than this requires 852 // re-ordering filters and/or their elements - probably not worth it. 853 for (unsigned i : FilterEnds) { 854 unsigned j = TyIds.size(); 855 856 while (i && j) 857 if (FilterIds[--i] != TyIds[--j]) 858 goto try_next; 859 860 if (!j) 861 // The new filter coincides with range [i, end) of the existing filter. 862 return -(1 + i); 863 864 try_next:; 865 } 866 867 // Add the new filter. 868 int FilterID = -(1 + FilterIds.size()); 869 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 870 llvm::append_range(FilterIds, TyIds); 871 FilterEnds.push_back(FilterIds.size()); 872 FilterIds.push_back(0); // terminator 873 return FilterID; 874 } 875 876 MachineFunction::CallSiteInfoMap::iterator 877 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 878 assert(MI->isCandidateForCallSiteEntry() && 879 "Call site info refers only to call (MI) candidates"); 880 881 if (!Target.Options.EmitCallSiteInfo) 882 return CallSitesInfo.end(); 883 return CallSitesInfo.find(MI); 884 } 885 886 /// Return the call machine instruction or find a call within bundle. 887 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 888 if (!MI->isBundle()) 889 return MI; 890 891 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 892 getBundleEnd(MI->getIterator()))) 893 if (BMI.isCandidateForCallSiteEntry()) 894 return &BMI; 895 896 llvm_unreachable("Unexpected bundle without a call site candidate"); 897 } 898 899 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 900 assert(MI->shouldUpdateCallSiteInfo() && 901 "Call site info refers only to call (MI) candidates or " 902 "candidates inside bundles"); 903 904 const MachineInstr *CallMI = getCallInstr(MI); 905 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 906 if (CSIt == CallSitesInfo.end()) 907 return; 908 CallSitesInfo.erase(CSIt); 909 } 910 911 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 912 const MachineInstr *New) { 913 assert(Old->shouldUpdateCallSiteInfo() && 914 "Call site info refers only to call (MI) candidates or " 915 "candidates inside bundles"); 916 917 if (!New->isCandidateForCallSiteEntry()) 918 return eraseCallSiteInfo(Old); 919 920 const MachineInstr *OldCallMI = getCallInstr(Old); 921 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 922 if (CSIt == CallSitesInfo.end()) 923 return; 924 925 CallSiteInfo CSInfo = CSIt->second; 926 CallSitesInfo[New] = CSInfo; 927 } 928 929 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 930 const MachineInstr *New) { 931 assert(Old->shouldUpdateCallSiteInfo() && 932 "Call site info refers only to call (MI) candidates or " 933 "candidates inside bundles"); 934 935 if (!New->isCandidateForCallSiteEntry()) 936 return eraseCallSiteInfo(Old); 937 938 const MachineInstr *OldCallMI = getCallInstr(Old); 939 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 940 if (CSIt == CallSitesInfo.end()) 941 return; 942 943 CallSiteInfo CSInfo = std::move(CSIt->second); 944 CallSitesInfo.erase(CSIt); 945 CallSitesInfo[New] = CSInfo; 946 } 947 948 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 949 DebugInstrNumberingCount = Num; 950 } 951 952 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 953 DebugInstrOperandPair B, 954 unsigned Subreg) { 955 // Catch any accidental self-loops. 956 assert(A.first != B.first); 957 // Don't allow any substitutions _from_ the memory operand number. 958 assert(A.second != DebugOperandMemNumber); 959 960 DebugValueSubstitutions.push_back({A, B, Subreg}); 961 } 962 963 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 964 MachineInstr &New, 965 unsigned MaxOperand) { 966 // If the Old instruction wasn't tracked at all, there is no work to do. 967 unsigned OldInstrNum = Old.peekDebugInstrNum(); 968 if (!OldInstrNum) 969 return; 970 971 // Iterate over all operands looking for defs to create substitutions for. 972 // Avoid creating new instr numbers unless we create a new substitution. 973 // While this has no functional effect, it risks confusing someone reading 974 // MIR output. 975 // Examine all the operands, or the first N specified by the caller. 976 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 977 for (unsigned int I = 0; I < MaxOperand; ++I) { 978 const auto &OldMO = Old.getOperand(I); 979 auto &NewMO = New.getOperand(I); 980 (void)NewMO; 981 982 if (!OldMO.isReg() || !OldMO.isDef()) 983 continue; 984 assert(NewMO.isDef()); 985 986 unsigned NewInstrNum = New.getDebugInstrNum(); 987 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 988 std::make_pair(NewInstrNum, I)); 989 } 990 } 991 992 auto MachineFunction::salvageCopySSA( 993 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 994 -> DebugInstrOperandPair { 995 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 996 997 // Check whether this copy-like instruction has already been salvaged into 998 // an operand pair. 999 Register Dest; 1000 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1001 Dest = CopyDstSrc->Destination->getReg(); 1002 } else { 1003 assert(MI.isSubregToReg()); 1004 Dest = MI.getOperand(0).getReg(); 1005 } 1006 1007 auto CacheIt = DbgPHICache.find(Dest); 1008 if (CacheIt != DbgPHICache.end()) 1009 return CacheIt->second; 1010 1011 // Calculate the instruction number to use, or install a DBG_PHI. 1012 auto OperandPair = salvageCopySSAImpl(MI); 1013 DbgPHICache.insert({Dest, OperandPair}); 1014 return OperandPair; 1015 } 1016 1017 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1018 -> DebugInstrOperandPair { 1019 MachineRegisterInfo &MRI = getRegInfo(); 1020 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1021 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1022 1023 // Chase the value read by a copy-like instruction back to the instruction 1024 // that ultimately _defines_ that value. This may pass: 1025 // * Through multiple intermediate copies, including subregister moves / 1026 // copies, 1027 // * Copies from physical registers that must then be traced back to the 1028 // defining instruction, 1029 // * Or, physical registers may be live-in to (only) the entry block, which 1030 // requires a DBG_PHI to be created. 1031 // We can pursue this problem in that order: trace back through copies, 1032 // optionally through a physical register, to a defining instruction. We 1033 // should never move from physreg to vreg. As we're still in SSA form, no need 1034 // to worry about partial definitions of registers. 1035 1036 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1037 // returns the register read and any subregister identifying which part is 1038 // read. 1039 auto GetRegAndSubreg = 1040 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1041 Register NewReg, OldReg; 1042 unsigned SubReg; 1043 if (Cpy.isCopy()) { 1044 OldReg = Cpy.getOperand(0).getReg(); 1045 NewReg = Cpy.getOperand(1).getReg(); 1046 SubReg = Cpy.getOperand(1).getSubReg(); 1047 } else if (Cpy.isSubregToReg()) { 1048 OldReg = Cpy.getOperand(0).getReg(); 1049 NewReg = Cpy.getOperand(2).getReg(); 1050 SubReg = Cpy.getOperand(3).getImm(); 1051 } else { 1052 auto CopyDetails = *TII.isCopyInstr(Cpy); 1053 const MachineOperand &Src = *CopyDetails.Source; 1054 const MachineOperand &Dest = *CopyDetails.Destination; 1055 OldReg = Dest.getReg(); 1056 NewReg = Src.getReg(); 1057 SubReg = Src.getSubReg(); 1058 } 1059 1060 return {NewReg, SubReg}; 1061 }; 1062 1063 // First seek either the defining instruction, or a copy from a physreg. 1064 // During search, the current state is the current copy instruction, and which 1065 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1066 // deal with those later. 1067 auto State = GetRegAndSubreg(MI); 1068 auto CurInst = MI.getIterator(); 1069 SmallVector<unsigned, 4> SubregsSeen; 1070 while (true) { 1071 // If we've found a copy from a physreg, first portion of search is over. 1072 if (!State.first.isVirtual()) 1073 break; 1074 1075 // Record any subregister qualifier. 1076 if (State.second) 1077 SubregsSeen.push_back(State.second); 1078 1079 assert(MRI.hasOneDef(State.first)); 1080 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1081 CurInst = Inst.getIterator(); 1082 1083 // Any non-copy instruction is the defining instruction we're seeking. 1084 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1085 break; 1086 State = GetRegAndSubreg(Inst); 1087 }; 1088 1089 // Helper lambda to apply additional subregister substitutions to a known 1090 // instruction/operand pair. Adds new (fake) substitutions so that we can 1091 // record the subregister. FIXME: this isn't very space efficient if multiple 1092 // values are tracked back through the same copies; cache something later. 1093 auto ApplySubregisters = 1094 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1095 for (unsigned Subreg : reverse(SubregsSeen)) { 1096 // Fetch a new instruction number, not attached to an actual instruction. 1097 unsigned NewInstrNumber = getNewDebugInstrNum(); 1098 // Add a substitution from the "new" number to the known one, with a 1099 // qualifying subreg. 1100 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1101 // Return the new number; to find the underlying value, consumers need to 1102 // deal with the qualifying subreg. 1103 P = {NewInstrNumber, 0}; 1104 } 1105 return P; 1106 }; 1107 1108 // If we managed to find the defining instruction after COPYs, return an 1109 // instruction / operand pair after adding subregister qualifiers. 1110 if (State.first.isVirtual()) { 1111 // Virtual register def -- we can just look up where this happens. 1112 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1113 for (auto &MO : Inst->all_defs()) { 1114 if (MO.getReg() != State.first) 1115 continue; 1116 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1117 } 1118 1119 llvm_unreachable("Vreg def with no corresponding operand?"); 1120 } 1121 1122 // Our search ended in a copy from a physreg: walk back up the function 1123 // looking for whatever defines the physreg. 1124 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1125 State = GetRegAndSubreg(*CurInst); 1126 Register RegToSeek = State.first; 1127 1128 auto RMII = CurInst->getReverseIterator(); 1129 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1130 for (auto &ToExamine : PrevInstrs) { 1131 for (auto &MO : ToExamine.all_defs()) { 1132 // Test for operand that defines something aliasing RegToSeek. 1133 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1134 continue; 1135 1136 return ApplySubregisters( 1137 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1138 } 1139 } 1140 1141 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1142 1143 // We reached the start of the block before finding a defining instruction. 1144 // There are numerous scenarios where this can happen: 1145 // * Constant physical registers, 1146 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1147 // * Arguments in the entry block, 1148 // * Exception handling landing pads. 1149 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1150 // the variable value at this position, rather than checking it makes sense. 1151 1152 // Create DBG_PHI for specified physreg. 1153 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1154 TII.get(TargetOpcode::DBG_PHI)); 1155 Builder.addReg(State.first); 1156 unsigned NewNum = getNewDebugInstrNum(); 1157 Builder.addImm(NewNum); 1158 return ApplySubregisters({NewNum, 0u}); 1159 } 1160 1161 void MachineFunction::finalizeDebugInstrRefs() { 1162 auto *TII = getSubtarget().getInstrInfo(); 1163 1164 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1165 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1166 MI.setDesc(RefII); 1167 MI.setDebugValueUndef(); 1168 }; 1169 1170 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1171 for (auto &MBB : *this) { 1172 for (auto &MI : MBB) { 1173 if (!MI.isDebugRef()) 1174 continue; 1175 1176 bool IsValidRef = true; 1177 1178 for (MachineOperand &MO : MI.debug_operands()) { 1179 if (!MO.isReg()) 1180 continue; 1181 1182 Register Reg = MO.getReg(); 1183 1184 // Some vregs can be deleted as redundant in the meantime. Mark those 1185 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1186 // quickly deleted, leaving dangling references to vregs with no def. 1187 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1188 IsValidRef = false; 1189 break; 1190 } 1191 1192 assert(Reg.isVirtual()); 1193 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1194 1195 // If we've found a copy-like instruction, follow it back to the 1196 // instruction that defines the source value, see salvageCopySSA docs 1197 // for why this is important. 1198 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1199 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1200 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1201 } else { 1202 // Otherwise, identify the operand number that the VReg refers to. 1203 unsigned OperandIdx = 0; 1204 for (const auto &DefMO : DefMI.operands()) { 1205 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1206 break; 1207 ++OperandIdx; 1208 } 1209 assert(OperandIdx < DefMI.getNumOperands()); 1210 1211 // Morph this instr ref to point at the given instruction and operand. 1212 unsigned ID = DefMI.getDebugInstrNum(); 1213 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1214 } 1215 } 1216 1217 if (!IsValidRef) 1218 MakeUndefDbgValue(MI); 1219 } 1220 } 1221 } 1222 1223 bool MachineFunction::shouldUseDebugInstrRef() const { 1224 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1225 // have optimized code inlined into this unoptimized code, however with 1226 // fewer and less aggressive optimizations happening, coverage and accuracy 1227 // should not suffer. 1228 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1229 return false; 1230 1231 // Don't use instr-ref if this function is marked optnone. 1232 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1233 return false; 1234 1235 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1236 return true; 1237 1238 return false; 1239 } 1240 1241 bool MachineFunction::useDebugInstrRef() const { 1242 return UseDebugInstrRef; 1243 } 1244 1245 void MachineFunction::setUseDebugInstrRef(bool Use) { 1246 UseDebugInstrRef = Use; 1247 } 1248 1249 // Use one million as a high / reserved number. 1250 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1251 1252 /// \} 1253 1254 //===----------------------------------------------------------------------===// 1255 // MachineJumpTableInfo implementation 1256 //===----------------------------------------------------------------------===// 1257 1258 /// Return the size of each entry in the jump table. 1259 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1260 // The size of a jump table entry is 4 bytes unless the entry is just the 1261 // address of a block, in which case it is the pointer size. 1262 switch (getEntryKind()) { 1263 case MachineJumpTableInfo::EK_BlockAddress: 1264 return TD.getPointerSize(); 1265 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1266 case MachineJumpTableInfo::EK_LabelDifference64: 1267 return 8; 1268 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1269 case MachineJumpTableInfo::EK_LabelDifference32: 1270 case MachineJumpTableInfo::EK_Custom32: 1271 return 4; 1272 case MachineJumpTableInfo::EK_Inline: 1273 return 0; 1274 } 1275 llvm_unreachable("Unknown jump table encoding!"); 1276 } 1277 1278 /// Return the alignment of each entry in the jump table. 1279 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1280 // The alignment of a jump table entry is the alignment of int32 unless the 1281 // entry is just the address of a block, in which case it is the pointer 1282 // alignment. 1283 switch (getEntryKind()) { 1284 case MachineJumpTableInfo::EK_BlockAddress: 1285 return TD.getPointerABIAlignment(0).value(); 1286 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1287 case MachineJumpTableInfo::EK_LabelDifference64: 1288 return TD.getABIIntegerTypeAlignment(64).value(); 1289 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1290 case MachineJumpTableInfo::EK_LabelDifference32: 1291 case MachineJumpTableInfo::EK_Custom32: 1292 return TD.getABIIntegerTypeAlignment(32).value(); 1293 case MachineJumpTableInfo::EK_Inline: 1294 return 1; 1295 } 1296 llvm_unreachable("Unknown jump table encoding!"); 1297 } 1298 1299 /// Create a new jump table entry in the jump table info. 1300 unsigned MachineJumpTableInfo::createJumpTableIndex( 1301 const std::vector<MachineBasicBlock*> &DestBBs) { 1302 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1303 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1304 return JumpTables.size()-1; 1305 } 1306 1307 /// If Old is the target of any jump tables, update the jump tables to branch 1308 /// to New instead. 1309 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1310 MachineBasicBlock *New) { 1311 assert(Old != New && "Not making a change?"); 1312 bool MadeChange = false; 1313 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1314 ReplaceMBBInJumpTable(i, Old, New); 1315 return MadeChange; 1316 } 1317 1318 /// If MBB is present in any jump tables, remove it. 1319 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1320 bool MadeChange = false; 1321 for (MachineJumpTableEntry &JTE : JumpTables) { 1322 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1323 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1324 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1325 } 1326 return MadeChange; 1327 } 1328 1329 /// If Old is a target of the jump tables, update the jump table to branch to 1330 /// New instead. 1331 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1332 MachineBasicBlock *Old, 1333 MachineBasicBlock *New) { 1334 assert(Old != New && "Not making a change?"); 1335 bool MadeChange = false; 1336 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1337 for (MachineBasicBlock *&MBB : JTE.MBBs) 1338 if (MBB == Old) { 1339 MBB = New; 1340 MadeChange = true; 1341 } 1342 return MadeChange; 1343 } 1344 1345 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1346 if (JumpTables.empty()) return; 1347 1348 OS << "Jump Tables:\n"; 1349 1350 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1351 OS << printJumpTableEntryReference(i) << ':'; 1352 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1353 OS << ' ' << printMBBReference(*MBB); 1354 if (i != e) 1355 OS << '\n'; 1356 } 1357 1358 OS << '\n'; 1359 } 1360 1361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1362 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1363 #endif 1364 1365 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1366 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1367 } 1368 1369 //===----------------------------------------------------------------------===// 1370 // MachineConstantPool implementation 1371 //===----------------------------------------------------------------------===// 1372 1373 void MachineConstantPoolValue::anchor() {} 1374 1375 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1376 return DL.getTypeAllocSize(Ty); 1377 } 1378 1379 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1380 if (isMachineConstantPoolEntry()) 1381 return Val.MachineCPVal->getSizeInBytes(DL); 1382 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1383 } 1384 1385 bool MachineConstantPoolEntry::needsRelocation() const { 1386 if (isMachineConstantPoolEntry()) 1387 return true; 1388 return Val.ConstVal->needsDynamicRelocation(); 1389 } 1390 1391 SectionKind 1392 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1393 if (needsRelocation()) 1394 return SectionKind::getReadOnlyWithRel(); 1395 switch (getSizeInBytes(*DL)) { 1396 case 4: 1397 return SectionKind::getMergeableConst4(); 1398 case 8: 1399 return SectionKind::getMergeableConst8(); 1400 case 16: 1401 return SectionKind::getMergeableConst16(); 1402 case 32: 1403 return SectionKind::getMergeableConst32(); 1404 default: 1405 return SectionKind::getReadOnly(); 1406 } 1407 } 1408 1409 MachineConstantPool::~MachineConstantPool() { 1410 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1411 // so keep track of which we've deleted to avoid double deletions. 1412 DenseSet<MachineConstantPoolValue*> Deleted; 1413 for (const MachineConstantPoolEntry &C : Constants) 1414 if (C.isMachineConstantPoolEntry()) { 1415 Deleted.insert(C.Val.MachineCPVal); 1416 delete C.Val.MachineCPVal; 1417 } 1418 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1419 if (Deleted.count(CPV) == 0) 1420 delete CPV; 1421 } 1422 } 1423 1424 /// Test whether the given two constants can be allocated the same constant pool 1425 /// entry referenced by \param A. 1426 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1427 const DataLayout &DL) { 1428 // Handle the trivial case quickly. 1429 if (A == B) return true; 1430 1431 // If they have the same type but weren't the same constant, quickly 1432 // reject them. 1433 if (A->getType() == B->getType()) return false; 1434 1435 // We can't handle structs or arrays. 1436 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1437 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1438 return false; 1439 1440 // For now, only support constants with the same size. 1441 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1442 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1443 return false; 1444 1445 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1446 1447 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1448 1449 // Try constant folding a bitcast of both instructions to an integer. If we 1450 // get two identical ConstantInt's, then we are good to share them. We use 1451 // the constant folding APIs to do this so that we get the benefit of 1452 // DataLayout. 1453 if (isa<PointerType>(A->getType())) 1454 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1455 const_cast<Constant *>(A), IntTy, DL); 1456 else if (A->getType() != IntTy) 1457 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1458 IntTy, DL); 1459 if (isa<PointerType>(B->getType())) 1460 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1461 const_cast<Constant *>(B), IntTy, DL); 1462 else if (B->getType() != IntTy) 1463 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1464 IntTy, DL); 1465 1466 if (A != B) 1467 return false; 1468 1469 // Constants only safely match if A doesn't contain undef/poison. 1470 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1471 // TODO: Handle cases where A and B have the same undef/poison elements. 1472 // TODO: Merge A and B with mismatching undef/poison elements. 1473 return !ContainsUndefOrPoisonA; 1474 } 1475 1476 /// Create a new entry in the constant pool or return an existing one. 1477 /// User must specify the log2 of the minimum required alignment for the object. 1478 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1479 Align Alignment) { 1480 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1481 1482 // Check to see if we already have this constant. 1483 // 1484 // FIXME, this could be made much more efficient for large constant pools. 1485 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1486 if (!Constants[i].isMachineConstantPoolEntry() && 1487 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1488 if (Constants[i].getAlign() < Alignment) 1489 Constants[i].Alignment = Alignment; 1490 return i; 1491 } 1492 1493 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1494 return Constants.size()-1; 1495 } 1496 1497 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1498 Align Alignment) { 1499 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1500 1501 // Check to see if we already have this constant. 1502 // 1503 // FIXME, this could be made much more efficient for large constant pools. 1504 int Idx = V->getExistingMachineCPValue(this, Alignment); 1505 if (Idx != -1) { 1506 MachineCPVsSharingEntries.insert(V); 1507 return (unsigned)Idx; 1508 } 1509 1510 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1511 return Constants.size()-1; 1512 } 1513 1514 void MachineConstantPool::print(raw_ostream &OS) const { 1515 if (Constants.empty()) return; 1516 1517 OS << "Constant Pool:\n"; 1518 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1519 OS << " cp#" << i << ": "; 1520 if (Constants[i].isMachineConstantPoolEntry()) 1521 Constants[i].Val.MachineCPVal->print(OS); 1522 else 1523 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1524 OS << ", align=" << Constants[i].getAlign().value(); 1525 OS << "\n"; 1526 } 1527 } 1528 1529 //===----------------------------------------------------------------------===// 1530 // Template specialization for MachineFunction implementation of 1531 // ProfileSummaryInfo::getEntryCount(). 1532 //===----------------------------------------------------------------------===// 1533 template <> 1534 std::optional<Function::ProfileCount> 1535 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1536 const llvm::MachineFunction *F) const { 1537 return F->getFunction().getEntryCount(); 1538 } 1539 1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1541 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1542 #endif 1543