xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 601e102bdb55e12a2f791e0d68fd6f81ffc21e21)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 #include "LiveDebugValues/LiveDebugValues.h"
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "codegen"
84 
85 static cl::opt<unsigned> AlignAllFunctions(
86     "align-all-functions",
87     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88              "means align on 16B boundaries)."),
89     cl::init(0), cl::Hidden);
90 
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
92   using P = MachineFunctionProperties::Property;
93 
94   // clang-format off
95   switch(Prop) {
96   case P::FailedISel: return "FailedISel";
97   case P::IsSSA: return "IsSSA";
98   case P::Legalized: return "Legalized";
99   case P::NoPHIs: return "NoPHIs";
100   case P::NoVRegs: return "NoVRegs";
101   case P::RegBankSelected: return "RegBankSelected";
102   case P::Selected: return "Selected";
103   case P::TracksLiveness: return "TracksLiveness";
104   case P::TiedOpsRewritten: return "TiedOpsRewritten";
105   case P::FailsVerification: return "FailsVerification";
106   case P::TracksDebugUserValues: return "TracksDebugUserValues";
107   }
108   // clang-format on
109   llvm_unreachable("Invalid machine function property");
110 }
111 
112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113   if (!F.hasFnAttribute(Attribute::SafeStack))
114     return;
115 
116   auto *Existing =
117       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118 
119   if (!Existing || Existing->getNumOperands() != 2)
120     return;
121 
122   auto *MetadataName = "unsafe-stack-size";
123   if (auto &N = Existing->getOperand(0)) {
124     if (N.equalsStr(MetadataName)) {
125       if (auto &Op = Existing->getOperand(1)) {
126         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127         FrameInfo.setUnsafeStackSize(Val);
128       }
129     }
130   }
131 }
132 
133 // Pin the vtable to this file.
134 void MachineFunction::Delegate::anchor() {}
135 
136 void MachineFunctionProperties::print(raw_ostream &OS) const {
137   const char *Separator = "";
138   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139     if (!Properties[I])
140       continue;
141     OS << Separator << getPropertyName(static_cast<Property>(I));
142     Separator = ", ";
143   }
144 }
145 
146 //===----------------------------------------------------------------------===//
147 // MachineFunction implementation
148 //===----------------------------------------------------------------------===//
149 
150 // Out-of-line virtual method.
151 MachineFunctionInfo::~MachineFunctionInfo() = default;
152 
153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154   MBB->getParent()->deleteMachineBasicBlock(MBB);
155 }
156 
157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
158                                            const Function &F) {
159   if (auto MA = F.getFnStackAlign())
160     return *MA;
161   return STI->getFrameLowering()->getStackAlign();
162 }
163 
164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
165                                  const TargetSubtargetInfo &STI,
166                                  unsigned FunctionNum, MachineModuleInfo &mmi)
167     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
168   FunctionNumber = FunctionNum;
169   init();
170 }
171 
172 void MachineFunction::handleInsertion(MachineInstr &MI) {
173   if (TheDelegate)
174     TheDelegate->MF_HandleInsertion(MI);
175 }
176 
177 void MachineFunction::handleRemoval(MachineInstr &MI) {
178   if (TheDelegate)
179     TheDelegate->MF_HandleRemoval(MI);
180 }
181 
182 void MachineFunction::handleChangeDesc(MachineInstr &MI,
183                                        const MCInstrDesc &TID) {
184   if (TheDelegate)
185     TheDelegate->MF_HandleChangeDesc(MI, TID);
186 }
187 
188 void MachineFunction::init() {
189   // Assume the function starts in SSA form with correct liveness.
190   Properties.set(MachineFunctionProperties::Property::IsSSA);
191   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
192   if (STI->getRegisterInfo())
193     RegInfo = new (Allocator) MachineRegisterInfo(this);
194   else
195     RegInfo = nullptr;
196 
197   MFInfo = nullptr;
198 
199   // We can realign the stack if the target supports it and the user hasn't
200   // explicitly asked us not to.
201   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202                       !F.hasFnAttribute("no-realign-stack");
203   FrameInfo = new (Allocator) MachineFrameInfo(
204       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
205       /*ForcedRealign=*/CanRealignSP &&
206           F.hasFnAttribute(Attribute::StackAlignment));
207 
208   setUnsafeStackSize(F, *FrameInfo);
209 
210   if (F.hasFnAttribute(Attribute::StackAlignment))
211     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
212 
213   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
214   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
215 
216   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
217   // FIXME: Use Function::hasOptSize().
218   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
219     Alignment = std::max(Alignment,
220                          STI->getTargetLowering()->getPrefFunctionAlignment());
221 
222   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
223   // to load a type hash before the function label. Ensure functions are aligned
224   // by a least 4 to avoid unaligned access, which is especially important for
225   // -mno-unaligned-access.
226   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
227       F.getMetadata(LLVMContext::MD_kcfi_type))
228     Alignment = std::max(Alignment, Align(4));
229 
230   if (AlignAllFunctions)
231     Alignment = Align(1ULL << AlignAllFunctions);
232 
233   JumpTableInfo = nullptr;
234 
235   if (isFuncletEHPersonality(classifyEHPersonality(
236           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
237     WinEHInfo = new (Allocator) WinEHFuncInfo();
238   }
239 
240   if (isScopedEHPersonality(classifyEHPersonality(
241           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
242     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
243   }
244 
245   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
246          "Can't create a MachineFunction using a Module with a "
247          "Target-incompatible DataLayout attached\n");
248 
249   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
250 }
251 
252 void MachineFunction::initTargetMachineFunctionInfo(
253     const TargetSubtargetInfo &STI) {
254   assert(!MFInfo && "MachineFunctionInfo already set");
255   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
256 }
257 
258 MachineFunction::~MachineFunction() {
259   clear();
260 }
261 
262 void MachineFunction::clear() {
263   Properties.reset();
264   // Don't call destructors on MachineInstr and MachineOperand. All of their
265   // memory comes from the BumpPtrAllocator which is about to be purged.
266   //
267   // Do call MachineBasicBlock destructors, it contains std::vectors.
268   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
269     I->Insts.clearAndLeakNodesUnsafely();
270   MBBNumbering.clear();
271 
272   InstructionRecycler.clear(Allocator);
273   OperandRecycler.clear(Allocator);
274   BasicBlockRecycler.clear(Allocator);
275   CodeViewAnnotations.clear();
276   VariableDbgInfos.clear();
277   if (RegInfo) {
278     RegInfo->~MachineRegisterInfo();
279     Allocator.Deallocate(RegInfo);
280   }
281   if (MFInfo) {
282     MFInfo->~MachineFunctionInfo();
283     Allocator.Deallocate(MFInfo);
284   }
285 
286   FrameInfo->~MachineFrameInfo();
287   Allocator.Deallocate(FrameInfo);
288 
289   ConstantPool->~MachineConstantPool();
290   Allocator.Deallocate(ConstantPool);
291 
292   if (JumpTableInfo) {
293     JumpTableInfo->~MachineJumpTableInfo();
294     Allocator.Deallocate(JumpTableInfo);
295   }
296 
297   if (WinEHInfo) {
298     WinEHInfo->~WinEHFuncInfo();
299     Allocator.Deallocate(WinEHInfo);
300   }
301 
302   if (WasmEHInfo) {
303     WasmEHInfo->~WasmEHFuncInfo();
304     Allocator.Deallocate(WasmEHInfo);
305   }
306 }
307 
308 const DataLayout &MachineFunction::getDataLayout() const {
309   return F.getParent()->getDataLayout();
310 }
311 
312 /// Get the JumpTableInfo for this function.
313 /// If it does not already exist, allocate one.
314 MachineJumpTableInfo *MachineFunction::
315 getOrCreateJumpTableInfo(unsigned EntryKind) {
316   if (JumpTableInfo) return JumpTableInfo;
317 
318   JumpTableInfo = new (Allocator)
319     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
320   return JumpTableInfo;
321 }
322 
323 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
324   return F.getDenormalMode(FPType);
325 }
326 
327 /// Should we be emitting segmented stack stuff for the function
328 bool MachineFunction::shouldSplitStack() const {
329   return getFunction().hasFnAttribute("split-stack");
330 }
331 
332 [[nodiscard]] unsigned
333 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
334   FrameInstructions.push_back(Inst);
335   return FrameInstructions.size() - 1;
336 }
337 
338 /// This discards all of the MachineBasicBlock numbers and recomputes them.
339 /// This guarantees that the MBB numbers are sequential, dense, and match the
340 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
341 /// is specified, only that block and those after it are renumbered.
342 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
343   if (empty()) { MBBNumbering.clear(); return; }
344   MachineFunction::iterator MBBI, E = end();
345   if (MBB == nullptr)
346     MBBI = begin();
347   else
348     MBBI = MBB->getIterator();
349 
350   // Figure out the block number this should have.
351   unsigned BlockNo = 0;
352   if (MBBI != begin())
353     BlockNo = std::prev(MBBI)->getNumber() + 1;
354 
355   for (; MBBI != E; ++MBBI, ++BlockNo) {
356     if (MBBI->getNumber() != (int)BlockNo) {
357       // Remove use of the old number.
358       if (MBBI->getNumber() != -1) {
359         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
360                "MBB number mismatch!");
361         MBBNumbering[MBBI->getNumber()] = nullptr;
362       }
363 
364       // If BlockNo is already taken, set that block's number to -1.
365       if (MBBNumbering[BlockNo])
366         MBBNumbering[BlockNo]->setNumber(-1);
367 
368       MBBNumbering[BlockNo] = &*MBBI;
369       MBBI->setNumber(BlockNo);
370     }
371   }
372 
373   // Okay, all the blocks are renumbered.  If we have compactified the block
374   // numbering, shrink MBBNumbering now.
375   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
376   MBBNumbering.resize(BlockNo);
377 }
378 
379 /// This method iterates over the basic blocks and assigns their IsBeginSection
380 /// and IsEndSection fields. This must be called after MBB layout is finalized
381 /// and the SectionID's are assigned to MBBs.
382 void MachineFunction::assignBeginEndSections() {
383   front().setIsBeginSection();
384   auto CurrentSectionID = front().getSectionID();
385   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
386     if (MBBI->getSectionID() == CurrentSectionID)
387       continue;
388     MBBI->setIsBeginSection();
389     std::prev(MBBI)->setIsEndSection();
390     CurrentSectionID = MBBI->getSectionID();
391   }
392   back().setIsEndSection();
393 }
394 
395 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
396 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
397                                                   DebugLoc DL,
398                                                   bool NoImplicit) {
399   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
400       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
401 }
402 
403 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
404 /// identical in all ways except the instruction has no parent, prev, or next.
405 MachineInstr *
406 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
407   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
408              MachineInstr(*this, *Orig);
409 }
410 
411 MachineInstr &MachineFunction::cloneMachineInstrBundle(
412     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
413     const MachineInstr &Orig) {
414   MachineInstr *FirstClone = nullptr;
415   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
416   while (true) {
417     MachineInstr *Cloned = CloneMachineInstr(&*I);
418     MBB.insert(InsertBefore, Cloned);
419     if (FirstClone == nullptr) {
420       FirstClone = Cloned;
421     } else {
422       Cloned->bundleWithPred();
423     }
424 
425     if (!I->isBundledWithSucc())
426       break;
427     ++I;
428   }
429   // Copy over call site info to the cloned instruction if needed. If Orig is in
430   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
431   // the bundle.
432   if (Orig.shouldUpdateCallSiteInfo())
433     copyCallSiteInfo(&Orig, FirstClone);
434   return *FirstClone;
435 }
436 
437 /// Delete the given MachineInstr.
438 ///
439 /// This function also serves as the MachineInstr destructor - the real
440 /// ~MachineInstr() destructor must be empty.
441 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
442   // Verify that a call site info is at valid state. This assertion should
443   // be triggered during the implementation of support for the
444   // call site info of a new architecture. If the assertion is triggered,
445   // back trace will tell where to insert a call to updateCallSiteInfo().
446   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
447          "Call site info was not updated!");
448   // Strip it for parts. The operand array and the MI object itself are
449   // independently recyclable.
450   if (MI->Operands)
451     deallocateOperandArray(MI->CapOperands, MI->Operands);
452   // Don't call ~MachineInstr() which must be trivial anyway because
453   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
454   // destructors.
455   InstructionRecycler.Deallocate(Allocator, MI);
456 }
457 
458 /// Allocate a new MachineBasicBlock. Use this instead of
459 /// `new MachineBasicBlock'.
460 MachineBasicBlock *
461 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
462                                          std::optional<UniqueBBID> BBID) {
463   MachineBasicBlock *MBB =
464       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
465           MachineBasicBlock(*this, BB);
466   // Set BBID for `-basic-block=sections=labels` and
467   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
468   // blocks.
469   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
470       Target.Options.BBAddrMap ||
471       Target.getBBSectionsType() == BasicBlockSection::List)
472     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
473   return MBB;
474 }
475 
476 /// Delete the given MachineBasicBlock.
477 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
478   assert(MBB->getParent() == this && "MBB parent mismatch!");
479   // Clean up any references to MBB in jump tables before deleting it.
480   if (JumpTableInfo)
481     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
482   MBB->~MachineBasicBlock();
483   BasicBlockRecycler.Deallocate(Allocator, MBB);
484 }
485 
486 MachineMemOperand *MachineFunction::getMachineMemOperand(
487     MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
488     Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
489     SyncScope::ID SSID, AtomicOrdering Ordering,
490     AtomicOrdering FailureOrdering) {
491   assert((!Size.hasValue() ||
492           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
493          "Unexpected an unknown size to be represented using "
494          "LocationSize::beforeOrAfter()");
495   return new (Allocator)
496       MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
497                         Ordering, FailureOrdering);
498 }
499 
500 MachineMemOperand *MachineFunction::getMachineMemOperand(
501     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
502     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
503     SyncScope::ID SSID, AtomicOrdering Ordering,
504     AtomicOrdering FailureOrdering) {
505   return new (Allocator)
506       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
507                         Ordering, FailureOrdering);
508 }
509 
510 MachineMemOperand *
511 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
512                                       const MachinePointerInfo &PtrInfo,
513                                       LocationSize Size) {
514   assert((!Size.hasValue() ||
515           Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
516          "Unexpected an unknown size to be represented using "
517          "LocationSize::beforeOrAfter()");
518   return new (Allocator)
519       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
520                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
521                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
522 }
523 
524 MachineMemOperand *MachineFunction::getMachineMemOperand(
525     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
526   return new (Allocator)
527       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
528                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
529                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
530 }
531 
532 MachineMemOperand *
533 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
534                                       int64_t Offset, LLT Ty) {
535   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
536 
537   // If there is no pointer value, the offset isn't tracked so we need to adjust
538   // the base alignment.
539   Align Alignment = PtrInfo.V.isNull()
540                         ? commonAlignment(MMO->getBaseAlign(), Offset)
541                         : MMO->getBaseAlign();
542 
543   // Do not preserve ranges, since we don't necessarily know what the high bits
544   // are anymore.
545   return new (Allocator) MachineMemOperand(
546       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
547       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
548       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
549 }
550 
551 MachineMemOperand *
552 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
553                                       const AAMDNodes &AAInfo) {
554   MachinePointerInfo MPI = MMO->getValue() ?
555              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
556              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
557 
558   return new (Allocator) MachineMemOperand(
559       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
560       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
561       MMO->getFailureOrdering());
562 }
563 
564 MachineMemOperand *
565 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
566                                       MachineMemOperand::Flags Flags) {
567   return new (Allocator) MachineMemOperand(
568       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
569       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
570       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
571 }
572 
573 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
574     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
575     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
576     uint32_t CFIType) {
577   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
578                                          PostInstrSymbol, HeapAllocMarker,
579                                          PCSections, CFIType);
580 }
581 
582 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
583   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
584   llvm::copy(Name, Dest);
585   Dest[Name.size()] = 0;
586   return Dest;
587 }
588 
589 uint32_t *MachineFunction::allocateRegMask() {
590   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
591   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
592   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
593   memset(Mask, 0, Size * sizeof(Mask[0]));
594   return Mask;
595 }
596 
597 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
598   int* AllocMask = Allocator.Allocate<int>(Mask.size());
599   copy(Mask, AllocMask);
600   return {AllocMask, Mask.size()};
601 }
602 
603 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
604 LLVM_DUMP_METHOD void MachineFunction::dump() const {
605   print(dbgs());
606 }
607 #endif
608 
609 StringRef MachineFunction::getName() const {
610   return getFunction().getName();
611 }
612 
613 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
614   OS << "# Machine code for function " << getName() << ": ";
615   getProperties().print(OS);
616   OS << '\n';
617 
618   // Print Frame Information
619   FrameInfo->print(*this, OS);
620 
621   // Print JumpTable Information
622   if (JumpTableInfo)
623     JumpTableInfo->print(OS);
624 
625   // Print Constant Pool
626   ConstantPool->print(OS);
627 
628   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
629 
630   if (RegInfo && !RegInfo->livein_empty()) {
631     OS << "Function Live Ins: ";
632     for (MachineRegisterInfo::livein_iterator
633          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
634       OS << printReg(I->first, TRI);
635       if (I->second)
636         OS << " in " << printReg(I->second, TRI);
637       if (std::next(I) != E)
638         OS << ", ";
639     }
640     OS << '\n';
641   }
642 
643   ModuleSlotTracker MST(getFunction().getParent());
644   MST.incorporateFunction(getFunction());
645   for (const auto &BB : *this) {
646     OS << '\n';
647     // If we print the whole function, print it at its most verbose level.
648     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
649   }
650 
651   OS << "\n# End machine code for function " << getName() << ".\n\n";
652 }
653 
654 /// True if this function needs frame moves for debug or exceptions.
655 bool MachineFunction::needsFrameMoves() const {
656   return getMMI().hasDebugInfo() ||
657          getTarget().Options.ForceDwarfFrameSection ||
658          F.needsUnwindTableEntry();
659 }
660 
661 namespace llvm {
662 
663   template<>
664   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
665     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
666 
667     static std::string getGraphName(const MachineFunction *F) {
668       return ("CFG for '" + F->getName() + "' function").str();
669     }
670 
671     std::string getNodeLabel(const MachineBasicBlock *Node,
672                              const MachineFunction *Graph) {
673       std::string OutStr;
674       {
675         raw_string_ostream OSS(OutStr);
676 
677         if (isSimple()) {
678           OSS << printMBBReference(*Node);
679           if (const BasicBlock *BB = Node->getBasicBlock())
680             OSS << ": " << BB->getName();
681         } else
682           Node->print(OSS);
683       }
684 
685       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
686 
687       // Process string output to make it nicer...
688       for (unsigned i = 0; i != OutStr.length(); ++i)
689         if (OutStr[i] == '\n') {                            // Left justify
690           OutStr[i] = '\\';
691           OutStr.insert(OutStr.begin()+i+1, 'l');
692         }
693       return OutStr;
694     }
695   };
696 
697 } // end namespace llvm
698 
699 void MachineFunction::viewCFG() const
700 {
701 #ifndef NDEBUG
702   ViewGraph(this, "mf" + getName());
703 #else
704   errs() << "MachineFunction::viewCFG is only available in debug builds on "
705          << "systems with Graphviz or gv!\n";
706 #endif // NDEBUG
707 }
708 
709 void MachineFunction::viewCFGOnly() const
710 {
711 #ifndef NDEBUG
712   ViewGraph(this, "mf" + getName(), true);
713 #else
714   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
715          << "systems with Graphviz or gv!\n";
716 #endif // NDEBUG
717 }
718 
719 /// Add the specified physical register as a live-in value and
720 /// create a corresponding virtual register for it.
721 Register MachineFunction::addLiveIn(MCRegister PReg,
722                                     const TargetRegisterClass *RC) {
723   MachineRegisterInfo &MRI = getRegInfo();
724   Register VReg = MRI.getLiveInVirtReg(PReg);
725   if (VReg) {
726     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
727     (void)VRegRC;
728     // A physical register can be added several times.
729     // Between two calls, the register class of the related virtual register
730     // may have been constrained to match some operation constraints.
731     // In that case, check that the current register class includes the
732     // physical register and is a sub class of the specified RC.
733     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
734                              RC->hasSubClassEq(VRegRC))) &&
735             "Register class mismatch!");
736     return VReg;
737   }
738   VReg = MRI.createVirtualRegister(RC);
739   MRI.addLiveIn(PReg, VReg);
740   return VReg;
741 }
742 
743 /// Return the MCSymbol for the specified non-empty jump table.
744 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
745 /// normal 'L' label is returned.
746 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
747                                         bool isLinkerPrivate) const {
748   const DataLayout &DL = getDataLayout();
749   assert(JumpTableInfo && "No jump tables");
750   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
751 
752   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
753                                      : DL.getPrivateGlobalPrefix();
754   SmallString<60> Name;
755   raw_svector_ostream(Name)
756     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
757   return Ctx.getOrCreateSymbol(Name);
758 }
759 
760 /// Return a function-local symbol to represent the PIC base.
761 MCSymbol *MachineFunction::getPICBaseSymbol() const {
762   const DataLayout &DL = getDataLayout();
763   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
764                                Twine(getFunctionNumber()) + "$pb");
765 }
766 
767 /// \name Exception Handling
768 /// \{
769 
770 LandingPadInfo &
771 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
772   unsigned N = LandingPads.size();
773   for (unsigned i = 0; i < N; ++i) {
774     LandingPadInfo &LP = LandingPads[i];
775     if (LP.LandingPadBlock == LandingPad)
776       return LP;
777   }
778 
779   LandingPads.push_back(LandingPadInfo(LandingPad));
780   return LandingPads[N];
781 }
782 
783 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
784                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
785   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
786   LP.BeginLabels.push_back(BeginLabel);
787   LP.EndLabels.push_back(EndLabel);
788 }
789 
790 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
791   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
792   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
793   LP.LandingPadLabel = LandingPadLabel;
794 
795   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
796   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
797     // If there's no typeid list specified, then "cleanup" is implicit.
798     // Otherwise, id 0 is reserved for the cleanup action.
799     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
800       LP.TypeIds.push_back(0);
801 
802     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
803     //        correct, but we need to do it this way because of how the DWARF EH
804     //        emitter processes the clauses.
805     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
806       Value *Val = LPI->getClause(I - 1);
807       if (LPI->isCatch(I - 1)) {
808         LP.TypeIds.push_back(
809             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
810       } else {
811         // Add filters in a list.
812         auto *CVal = cast<Constant>(Val);
813         SmallVector<unsigned, 4> FilterList;
814         for (const Use &U : CVal->operands())
815           FilterList.push_back(
816               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
817 
818         LP.TypeIds.push_back(getFilterIDFor(FilterList));
819       }
820     }
821 
822   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
823     for (unsigned I = CPI->arg_size(); I != 0; --I) {
824       auto *TypeInfo =
825           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
826       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
827     }
828 
829   } else {
830     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
831   }
832 
833   return LandingPadLabel;
834 }
835 
836 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
837                                             ArrayRef<unsigned> Sites) {
838   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
839 }
840 
841 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
842   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
843     if (TypeInfos[i] == TI) return i + 1;
844 
845   TypeInfos.push_back(TI);
846   return TypeInfos.size();
847 }
848 
849 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
850   // If the new filter coincides with the tail of an existing filter, then
851   // re-use the existing filter.  Folding filters more than this requires
852   // re-ordering filters and/or their elements - probably not worth it.
853   for (unsigned i : FilterEnds) {
854     unsigned j = TyIds.size();
855 
856     while (i && j)
857       if (FilterIds[--i] != TyIds[--j])
858         goto try_next;
859 
860     if (!j)
861       // The new filter coincides with range [i, end) of the existing filter.
862       return -(1 + i);
863 
864 try_next:;
865   }
866 
867   // Add the new filter.
868   int FilterID = -(1 + FilterIds.size());
869   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
870   llvm::append_range(FilterIds, TyIds);
871   FilterEnds.push_back(FilterIds.size());
872   FilterIds.push_back(0); // terminator
873   return FilterID;
874 }
875 
876 MachineFunction::CallSiteInfoMap::iterator
877 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
878   assert(MI->isCandidateForCallSiteEntry() &&
879          "Call site info refers only to call (MI) candidates");
880 
881   if (!Target.Options.EmitCallSiteInfo)
882     return CallSitesInfo.end();
883   return CallSitesInfo.find(MI);
884 }
885 
886 /// Return the call machine instruction or find a call within bundle.
887 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
888   if (!MI->isBundle())
889     return MI;
890 
891   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
892                                     getBundleEnd(MI->getIterator())))
893     if (BMI.isCandidateForCallSiteEntry())
894       return &BMI;
895 
896   llvm_unreachable("Unexpected bundle without a call site candidate");
897 }
898 
899 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
900   assert(MI->shouldUpdateCallSiteInfo() &&
901          "Call site info refers only to call (MI) candidates or "
902          "candidates inside bundles");
903 
904   const MachineInstr *CallMI = getCallInstr(MI);
905   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
906   if (CSIt == CallSitesInfo.end())
907     return;
908   CallSitesInfo.erase(CSIt);
909 }
910 
911 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
912                                        const MachineInstr *New) {
913   assert(Old->shouldUpdateCallSiteInfo() &&
914          "Call site info refers only to call (MI) candidates or "
915          "candidates inside bundles");
916 
917   if (!New->isCandidateForCallSiteEntry())
918     return eraseCallSiteInfo(Old);
919 
920   const MachineInstr *OldCallMI = getCallInstr(Old);
921   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
922   if (CSIt == CallSitesInfo.end())
923     return;
924 
925   CallSiteInfo CSInfo = CSIt->second;
926   CallSitesInfo[New] = CSInfo;
927 }
928 
929 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
930                                        const MachineInstr *New) {
931   assert(Old->shouldUpdateCallSiteInfo() &&
932          "Call site info refers only to call (MI) candidates or "
933          "candidates inside bundles");
934 
935   if (!New->isCandidateForCallSiteEntry())
936     return eraseCallSiteInfo(Old);
937 
938   const MachineInstr *OldCallMI = getCallInstr(Old);
939   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
940   if (CSIt == CallSitesInfo.end())
941     return;
942 
943   CallSiteInfo CSInfo = std::move(CSIt->second);
944   CallSitesInfo.erase(CSIt);
945   CallSitesInfo[New] = CSInfo;
946 }
947 
948 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
949   DebugInstrNumberingCount = Num;
950 }
951 
952 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
953                                                  DebugInstrOperandPair B,
954                                                  unsigned Subreg) {
955   // Catch any accidental self-loops.
956   assert(A.first != B.first);
957   // Don't allow any substitutions _from_ the memory operand number.
958   assert(A.second != DebugOperandMemNumber);
959 
960   DebugValueSubstitutions.push_back({A, B, Subreg});
961 }
962 
963 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
964                                                    MachineInstr &New,
965                                                    unsigned MaxOperand) {
966   // If the Old instruction wasn't tracked at all, there is no work to do.
967   unsigned OldInstrNum = Old.peekDebugInstrNum();
968   if (!OldInstrNum)
969     return;
970 
971   // Iterate over all operands looking for defs to create substitutions for.
972   // Avoid creating new instr numbers unless we create a new substitution.
973   // While this has no functional effect, it risks confusing someone reading
974   // MIR output.
975   // Examine all the operands, or the first N specified by the caller.
976   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
977   for (unsigned int I = 0; I < MaxOperand; ++I) {
978     const auto &OldMO = Old.getOperand(I);
979     auto &NewMO = New.getOperand(I);
980     (void)NewMO;
981 
982     if (!OldMO.isReg() || !OldMO.isDef())
983       continue;
984     assert(NewMO.isDef());
985 
986     unsigned NewInstrNum = New.getDebugInstrNum();
987     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
988                                std::make_pair(NewInstrNum, I));
989   }
990 }
991 
992 auto MachineFunction::salvageCopySSA(
993     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
994     -> DebugInstrOperandPair {
995   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
996 
997   // Check whether this copy-like instruction has already been salvaged into
998   // an operand pair.
999   Register Dest;
1000   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1001     Dest = CopyDstSrc->Destination->getReg();
1002   } else {
1003     assert(MI.isSubregToReg());
1004     Dest = MI.getOperand(0).getReg();
1005   }
1006 
1007   auto CacheIt = DbgPHICache.find(Dest);
1008   if (CacheIt != DbgPHICache.end())
1009     return CacheIt->second;
1010 
1011   // Calculate the instruction number to use, or install a DBG_PHI.
1012   auto OperandPair = salvageCopySSAImpl(MI);
1013   DbgPHICache.insert({Dest, OperandPair});
1014   return OperandPair;
1015 }
1016 
1017 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1018     -> DebugInstrOperandPair {
1019   MachineRegisterInfo &MRI = getRegInfo();
1020   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1021   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1022 
1023   // Chase the value read by a copy-like instruction back to the instruction
1024   // that ultimately _defines_ that value. This may pass:
1025   //  * Through multiple intermediate copies, including subregister moves /
1026   //    copies,
1027   //  * Copies from physical registers that must then be traced back to the
1028   //    defining instruction,
1029   //  * Or, physical registers may be live-in to (only) the entry block, which
1030   //    requires a DBG_PHI to be created.
1031   // We can pursue this problem in that order: trace back through copies,
1032   // optionally through a physical register, to a defining instruction. We
1033   // should never move from physreg to vreg. As we're still in SSA form, no need
1034   // to worry about partial definitions of registers.
1035 
1036   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1037   // returns the register read and any subregister identifying which part is
1038   // read.
1039   auto GetRegAndSubreg =
1040       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1041     Register NewReg, OldReg;
1042     unsigned SubReg;
1043     if (Cpy.isCopy()) {
1044       OldReg = Cpy.getOperand(0).getReg();
1045       NewReg = Cpy.getOperand(1).getReg();
1046       SubReg = Cpy.getOperand(1).getSubReg();
1047     } else if (Cpy.isSubregToReg()) {
1048       OldReg = Cpy.getOperand(0).getReg();
1049       NewReg = Cpy.getOperand(2).getReg();
1050       SubReg = Cpy.getOperand(3).getImm();
1051     } else {
1052       auto CopyDetails = *TII.isCopyInstr(Cpy);
1053       const MachineOperand &Src = *CopyDetails.Source;
1054       const MachineOperand &Dest = *CopyDetails.Destination;
1055       OldReg = Dest.getReg();
1056       NewReg = Src.getReg();
1057       SubReg = Src.getSubReg();
1058     }
1059 
1060     return {NewReg, SubReg};
1061   };
1062 
1063   // First seek either the defining instruction, or a copy from a physreg.
1064   // During search, the current state is the current copy instruction, and which
1065   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1066   // deal with those later.
1067   auto State = GetRegAndSubreg(MI);
1068   auto CurInst = MI.getIterator();
1069   SmallVector<unsigned, 4> SubregsSeen;
1070   while (true) {
1071     // If we've found a copy from a physreg, first portion of search is over.
1072     if (!State.first.isVirtual())
1073       break;
1074 
1075     // Record any subregister qualifier.
1076     if (State.second)
1077       SubregsSeen.push_back(State.second);
1078 
1079     assert(MRI.hasOneDef(State.first));
1080     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1081     CurInst = Inst.getIterator();
1082 
1083     // Any non-copy instruction is the defining instruction we're seeking.
1084     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1085       break;
1086     State = GetRegAndSubreg(Inst);
1087   };
1088 
1089   // Helper lambda to apply additional subregister substitutions to a known
1090   // instruction/operand pair. Adds new (fake) substitutions so that we can
1091   // record the subregister. FIXME: this isn't very space efficient if multiple
1092   // values are tracked back through the same copies; cache something later.
1093   auto ApplySubregisters =
1094       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1095     for (unsigned Subreg : reverse(SubregsSeen)) {
1096       // Fetch a new instruction number, not attached to an actual instruction.
1097       unsigned NewInstrNumber = getNewDebugInstrNum();
1098       // Add a substitution from the "new" number to the known one, with a
1099       // qualifying subreg.
1100       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1101       // Return the new number; to find the underlying value, consumers need to
1102       // deal with the qualifying subreg.
1103       P = {NewInstrNumber, 0};
1104     }
1105     return P;
1106   };
1107 
1108   // If we managed to find the defining instruction after COPYs, return an
1109   // instruction / operand pair after adding subregister qualifiers.
1110   if (State.first.isVirtual()) {
1111     // Virtual register def -- we can just look up where this happens.
1112     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1113     for (auto &MO : Inst->all_defs()) {
1114       if (MO.getReg() != State.first)
1115         continue;
1116       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1117     }
1118 
1119     llvm_unreachable("Vreg def with no corresponding operand?");
1120   }
1121 
1122   // Our search ended in a copy from a physreg: walk back up the function
1123   // looking for whatever defines the physreg.
1124   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1125   State = GetRegAndSubreg(*CurInst);
1126   Register RegToSeek = State.first;
1127 
1128   auto RMII = CurInst->getReverseIterator();
1129   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1130   for (auto &ToExamine : PrevInstrs) {
1131     for (auto &MO : ToExamine.all_defs()) {
1132       // Test for operand that defines something aliasing RegToSeek.
1133       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1134         continue;
1135 
1136       return ApplySubregisters(
1137           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1138     }
1139   }
1140 
1141   MachineBasicBlock &InsertBB = *CurInst->getParent();
1142 
1143   // We reached the start of the block before finding a defining instruction.
1144   // There are numerous scenarios where this can happen:
1145   // * Constant physical registers,
1146   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1147   // * Arguments in the entry block,
1148   // * Exception handling landing pads.
1149   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1150   // the variable value at this position, rather than checking it makes sense.
1151 
1152   // Create DBG_PHI for specified physreg.
1153   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1154                          TII.get(TargetOpcode::DBG_PHI));
1155   Builder.addReg(State.first);
1156   unsigned NewNum = getNewDebugInstrNum();
1157   Builder.addImm(NewNum);
1158   return ApplySubregisters({NewNum, 0u});
1159 }
1160 
1161 void MachineFunction::finalizeDebugInstrRefs() {
1162   auto *TII = getSubtarget().getInstrInfo();
1163 
1164   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1165     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1166     MI.setDesc(RefII);
1167     MI.setDebugValueUndef();
1168   };
1169 
1170   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1171   for (auto &MBB : *this) {
1172     for (auto &MI : MBB) {
1173       if (!MI.isDebugRef())
1174         continue;
1175 
1176       bool IsValidRef = true;
1177 
1178       for (MachineOperand &MO : MI.debug_operands()) {
1179         if (!MO.isReg())
1180           continue;
1181 
1182         Register Reg = MO.getReg();
1183 
1184         // Some vregs can be deleted as redundant in the meantime. Mark those
1185         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1186         // quickly deleted, leaving dangling references to vregs with no def.
1187         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1188           IsValidRef = false;
1189           break;
1190         }
1191 
1192         assert(Reg.isVirtual());
1193         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1194 
1195         // If we've found a copy-like instruction, follow it back to the
1196         // instruction that defines the source value, see salvageCopySSA docs
1197         // for why this is important.
1198         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1199           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1200           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1201         } else {
1202           // Otherwise, identify the operand number that the VReg refers to.
1203           unsigned OperandIdx = 0;
1204           for (const auto &DefMO : DefMI.operands()) {
1205             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1206               break;
1207             ++OperandIdx;
1208           }
1209           assert(OperandIdx < DefMI.getNumOperands());
1210 
1211           // Morph this instr ref to point at the given instruction and operand.
1212           unsigned ID = DefMI.getDebugInstrNum();
1213           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1214         }
1215       }
1216 
1217       if (!IsValidRef)
1218         MakeUndefDbgValue(MI);
1219     }
1220   }
1221 }
1222 
1223 bool MachineFunction::shouldUseDebugInstrRef() const {
1224   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1225   // have optimized code inlined into this unoptimized code, however with
1226   // fewer and less aggressive optimizations happening, coverage and accuracy
1227   // should not suffer.
1228   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1229     return false;
1230 
1231   // Don't use instr-ref if this function is marked optnone.
1232   if (F.hasFnAttribute(Attribute::OptimizeNone))
1233     return false;
1234 
1235   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1236     return true;
1237 
1238   return false;
1239 }
1240 
1241 bool MachineFunction::useDebugInstrRef() const {
1242   return UseDebugInstrRef;
1243 }
1244 
1245 void MachineFunction::setUseDebugInstrRef(bool Use) {
1246   UseDebugInstrRef = Use;
1247 }
1248 
1249 // Use one million as a high / reserved number.
1250 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1251 
1252 /// \}
1253 
1254 //===----------------------------------------------------------------------===//
1255 //  MachineJumpTableInfo implementation
1256 //===----------------------------------------------------------------------===//
1257 
1258 /// Return the size of each entry in the jump table.
1259 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1260   // The size of a jump table entry is 4 bytes unless the entry is just the
1261   // address of a block, in which case it is the pointer size.
1262   switch (getEntryKind()) {
1263   case MachineJumpTableInfo::EK_BlockAddress:
1264     return TD.getPointerSize();
1265   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1266   case MachineJumpTableInfo::EK_LabelDifference64:
1267     return 8;
1268   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1269   case MachineJumpTableInfo::EK_LabelDifference32:
1270   case MachineJumpTableInfo::EK_Custom32:
1271     return 4;
1272   case MachineJumpTableInfo::EK_Inline:
1273     return 0;
1274   }
1275   llvm_unreachable("Unknown jump table encoding!");
1276 }
1277 
1278 /// Return the alignment of each entry in the jump table.
1279 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1280   // The alignment of a jump table entry is the alignment of int32 unless the
1281   // entry is just the address of a block, in which case it is the pointer
1282   // alignment.
1283   switch (getEntryKind()) {
1284   case MachineJumpTableInfo::EK_BlockAddress:
1285     return TD.getPointerABIAlignment(0).value();
1286   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1287   case MachineJumpTableInfo::EK_LabelDifference64:
1288     return TD.getABIIntegerTypeAlignment(64).value();
1289   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1290   case MachineJumpTableInfo::EK_LabelDifference32:
1291   case MachineJumpTableInfo::EK_Custom32:
1292     return TD.getABIIntegerTypeAlignment(32).value();
1293   case MachineJumpTableInfo::EK_Inline:
1294     return 1;
1295   }
1296   llvm_unreachable("Unknown jump table encoding!");
1297 }
1298 
1299 /// Create a new jump table entry in the jump table info.
1300 unsigned MachineJumpTableInfo::createJumpTableIndex(
1301                                const std::vector<MachineBasicBlock*> &DestBBs) {
1302   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1303   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1304   return JumpTables.size()-1;
1305 }
1306 
1307 /// If Old is the target of any jump tables, update the jump tables to branch
1308 /// to New instead.
1309 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1310                                                   MachineBasicBlock *New) {
1311   assert(Old != New && "Not making a change?");
1312   bool MadeChange = false;
1313   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1314     ReplaceMBBInJumpTable(i, Old, New);
1315   return MadeChange;
1316 }
1317 
1318 /// If MBB is present in any jump tables, remove it.
1319 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1320   bool MadeChange = false;
1321   for (MachineJumpTableEntry &JTE : JumpTables) {
1322     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1323     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1324     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1325   }
1326   return MadeChange;
1327 }
1328 
1329 /// If Old is a target of the jump tables, update the jump table to branch to
1330 /// New instead.
1331 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1332                                                  MachineBasicBlock *Old,
1333                                                  MachineBasicBlock *New) {
1334   assert(Old != New && "Not making a change?");
1335   bool MadeChange = false;
1336   MachineJumpTableEntry &JTE = JumpTables[Idx];
1337   for (MachineBasicBlock *&MBB : JTE.MBBs)
1338     if (MBB == Old) {
1339       MBB = New;
1340       MadeChange = true;
1341     }
1342   return MadeChange;
1343 }
1344 
1345 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1346   if (JumpTables.empty()) return;
1347 
1348   OS << "Jump Tables:\n";
1349 
1350   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1351     OS << printJumpTableEntryReference(i) << ':';
1352     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1353       OS << ' ' << printMBBReference(*MBB);
1354     if (i != e)
1355       OS << '\n';
1356   }
1357 
1358   OS << '\n';
1359 }
1360 
1361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1362 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1363 #endif
1364 
1365 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1366   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1367 }
1368 
1369 //===----------------------------------------------------------------------===//
1370 //  MachineConstantPool implementation
1371 //===----------------------------------------------------------------------===//
1372 
1373 void MachineConstantPoolValue::anchor() {}
1374 
1375 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1376   return DL.getTypeAllocSize(Ty);
1377 }
1378 
1379 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1380   if (isMachineConstantPoolEntry())
1381     return Val.MachineCPVal->getSizeInBytes(DL);
1382   return DL.getTypeAllocSize(Val.ConstVal->getType());
1383 }
1384 
1385 bool MachineConstantPoolEntry::needsRelocation() const {
1386   if (isMachineConstantPoolEntry())
1387     return true;
1388   return Val.ConstVal->needsDynamicRelocation();
1389 }
1390 
1391 SectionKind
1392 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1393   if (needsRelocation())
1394     return SectionKind::getReadOnlyWithRel();
1395   switch (getSizeInBytes(*DL)) {
1396   case 4:
1397     return SectionKind::getMergeableConst4();
1398   case 8:
1399     return SectionKind::getMergeableConst8();
1400   case 16:
1401     return SectionKind::getMergeableConst16();
1402   case 32:
1403     return SectionKind::getMergeableConst32();
1404   default:
1405     return SectionKind::getReadOnly();
1406   }
1407 }
1408 
1409 MachineConstantPool::~MachineConstantPool() {
1410   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1411   // so keep track of which we've deleted to avoid double deletions.
1412   DenseSet<MachineConstantPoolValue*> Deleted;
1413   for (const MachineConstantPoolEntry &C : Constants)
1414     if (C.isMachineConstantPoolEntry()) {
1415       Deleted.insert(C.Val.MachineCPVal);
1416       delete C.Val.MachineCPVal;
1417     }
1418   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1419     if (Deleted.count(CPV) == 0)
1420       delete CPV;
1421   }
1422 }
1423 
1424 /// Test whether the given two constants can be allocated the same constant pool
1425 /// entry referenced by \param A.
1426 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1427                                       const DataLayout &DL) {
1428   // Handle the trivial case quickly.
1429   if (A == B) return true;
1430 
1431   // If they have the same type but weren't the same constant, quickly
1432   // reject them.
1433   if (A->getType() == B->getType()) return false;
1434 
1435   // We can't handle structs or arrays.
1436   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1437       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1438     return false;
1439 
1440   // For now, only support constants with the same size.
1441   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1442   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1443     return false;
1444 
1445   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1446 
1447   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1448 
1449   // Try constant folding a bitcast of both instructions to an integer.  If we
1450   // get two identical ConstantInt's, then we are good to share them.  We use
1451   // the constant folding APIs to do this so that we get the benefit of
1452   // DataLayout.
1453   if (isa<PointerType>(A->getType()))
1454     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1455                                 const_cast<Constant *>(A), IntTy, DL);
1456   else if (A->getType() != IntTy)
1457     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1458                                 IntTy, DL);
1459   if (isa<PointerType>(B->getType()))
1460     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1461                                 const_cast<Constant *>(B), IntTy, DL);
1462   else if (B->getType() != IntTy)
1463     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1464                                 IntTy, DL);
1465 
1466   if (A != B)
1467     return false;
1468 
1469   // Constants only safely match if A doesn't contain undef/poison.
1470   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1471   // TODO: Handle cases where A and B have the same undef/poison elements.
1472   // TODO: Merge A and B with mismatching undef/poison elements.
1473   return !ContainsUndefOrPoisonA;
1474 }
1475 
1476 /// Create a new entry in the constant pool or return an existing one.
1477 /// User must specify the log2 of the minimum required alignment for the object.
1478 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1479                                                    Align Alignment) {
1480   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1481 
1482   // Check to see if we already have this constant.
1483   //
1484   // FIXME, this could be made much more efficient for large constant pools.
1485   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1486     if (!Constants[i].isMachineConstantPoolEntry() &&
1487         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1488       if (Constants[i].getAlign() < Alignment)
1489         Constants[i].Alignment = Alignment;
1490       return i;
1491     }
1492 
1493   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1494   return Constants.size()-1;
1495 }
1496 
1497 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1498                                                    Align Alignment) {
1499   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1500 
1501   // Check to see if we already have this constant.
1502   //
1503   // FIXME, this could be made much more efficient for large constant pools.
1504   int Idx = V->getExistingMachineCPValue(this, Alignment);
1505   if (Idx != -1) {
1506     MachineCPVsSharingEntries.insert(V);
1507     return (unsigned)Idx;
1508   }
1509 
1510   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1511   return Constants.size()-1;
1512 }
1513 
1514 void MachineConstantPool::print(raw_ostream &OS) const {
1515   if (Constants.empty()) return;
1516 
1517   OS << "Constant Pool:\n";
1518   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1519     OS << "  cp#" << i << ": ";
1520     if (Constants[i].isMachineConstantPoolEntry())
1521       Constants[i].Val.MachineCPVal->print(OS);
1522     else
1523       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1524     OS << ", align=" << Constants[i].getAlign().value();
1525     OS << "\n";
1526   }
1527 }
1528 
1529 //===----------------------------------------------------------------------===//
1530 // Template specialization for MachineFunction implementation of
1531 // ProfileSummaryInfo::getEntryCount().
1532 //===----------------------------------------------------------------------===//
1533 template <>
1534 std::optional<Function::ProfileCount>
1535 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1536     const llvm::MachineFunction *F) const {
1537   return F->getFunction().getEntryCount();
1538 }
1539 
1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1541 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1542 #endif
1543