1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/GraphWriter.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <string> 73 #include <type_traits> 74 #include <utility> 75 #include <vector> 76 77 #include "LiveDebugValues/LiveDebugValues.h" 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 111 if (!F.hasFnAttribute(Attribute::SafeStack)) 112 return; 113 114 auto *Existing = 115 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 116 117 if (!Existing || Existing->getNumOperands() != 2) 118 return; 119 120 auto *MetadataName = "unsafe-stack-size"; 121 if (auto &N = Existing->getOperand(0)) { 122 if (cast<MDString>(N.get())->getString() == MetadataName) { 123 if (auto &Op = Existing->getOperand(1)) { 124 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 125 FrameInfo.setUnsafeStackSize(Val); 126 } 127 } 128 } 129 } 130 131 // Pin the vtable to this file. 132 void MachineFunction::Delegate::anchor() {} 133 134 void MachineFunctionProperties::print(raw_ostream &OS) const { 135 const char *Separator = ""; 136 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 137 if (!Properties[I]) 138 continue; 139 OS << Separator << getPropertyName(static_cast<Property>(I)); 140 Separator = ", "; 141 } 142 } 143 144 //===----------------------------------------------------------------------===// 145 // MachineFunction implementation 146 //===----------------------------------------------------------------------===// 147 148 // Out-of-line virtual method. 149 MachineFunctionInfo::~MachineFunctionInfo() = default; 150 151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 152 MBB->getParent()->deleteMachineBasicBlock(MBB); 153 } 154 155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 156 const Function &F) { 157 if (auto MA = F.getFnStackAlign()) 158 return *MA; 159 return STI->getFrameLowering()->getStackAlign(); 160 } 161 162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 163 const TargetSubtargetInfo &STI, 164 unsigned FunctionNum, MachineModuleInfo &mmi) 165 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 166 FunctionNumber = FunctionNum; 167 init(); 168 } 169 170 void MachineFunction::handleInsertion(MachineInstr &MI) { 171 if (TheDelegate) 172 TheDelegate->MF_HandleInsertion(MI); 173 } 174 175 void MachineFunction::handleRemoval(MachineInstr &MI) { 176 if (TheDelegate) 177 TheDelegate->MF_HandleRemoval(MI); 178 } 179 180 void MachineFunction::init() { 181 // Assume the function starts in SSA form with correct liveness. 182 Properties.set(MachineFunctionProperties::Property::IsSSA); 183 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 184 if (STI->getRegisterInfo()) 185 RegInfo = new (Allocator) MachineRegisterInfo(this); 186 else 187 RegInfo = nullptr; 188 189 MFInfo = nullptr; 190 // We can realign the stack if the target supports it and the user hasn't 191 // explicitly asked us not to. 192 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 193 !F.hasFnAttribute("no-realign-stack"); 194 FrameInfo = new (Allocator) MachineFrameInfo( 195 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 196 /*ForcedRealign=*/CanRealignSP && 197 F.hasFnAttribute(Attribute::StackAlignment)); 198 199 setUnsafeStackSize(F, *FrameInfo); 200 201 if (F.hasFnAttribute(Attribute::StackAlignment)) 202 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 203 204 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 205 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 206 207 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 208 // FIXME: Use Function::hasOptSize(). 209 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 210 Alignment = std::max(Alignment, 211 STI->getTargetLowering()->getPrefFunctionAlignment()); 212 213 if (AlignAllFunctions) 214 Alignment = Align(1ULL << AlignAllFunctions); 215 216 JumpTableInfo = nullptr; 217 218 if (isFuncletEHPersonality(classifyEHPersonality( 219 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 220 WinEHInfo = new (Allocator) WinEHFuncInfo(); 221 } 222 223 if (isScopedEHPersonality(classifyEHPersonality( 224 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 225 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 226 } 227 228 assert(Target.isCompatibleDataLayout(getDataLayout()) && 229 "Can't create a MachineFunction using a Module with a " 230 "Target-incompatible DataLayout attached\n"); 231 232 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 233 } 234 235 MachineFunction::~MachineFunction() { 236 clear(); 237 } 238 239 void MachineFunction::clear() { 240 Properties.reset(); 241 // Don't call destructors on MachineInstr and MachineOperand. All of their 242 // memory comes from the BumpPtrAllocator which is about to be purged. 243 // 244 // Do call MachineBasicBlock destructors, it contains std::vectors. 245 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 246 I->Insts.clearAndLeakNodesUnsafely(); 247 MBBNumbering.clear(); 248 249 InstructionRecycler.clear(Allocator); 250 OperandRecycler.clear(Allocator); 251 BasicBlockRecycler.clear(Allocator); 252 CodeViewAnnotations.clear(); 253 VariableDbgInfos.clear(); 254 if (RegInfo) { 255 RegInfo->~MachineRegisterInfo(); 256 Allocator.Deallocate(RegInfo); 257 } 258 if (MFInfo) { 259 MFInfo->~MachineFunctionInfo(); 260 Allocator.Deallocate(MFInfo); 261 } 262 263 FrameInfo->~MachineFrameInfo(); 264 Allocator.Deallocate(FrameInfo); 265 266 ConstantPool->~MachineConstantPool(); 267 Allocator.Deallocate(ConstantPool); 268 269 if (JumpTableInfo) { 270 JumpTableInfo->~MachineJumpTableInfo(); 271 Allocator.Deallocate(JumpTableInfo); 272 } 273 274 if (WinEHInfo) { 275 WinEHInfo->~WinEHFuncInfo(); 276 Allocator.Deallocate(WinEHInfo); 277 } 278 279 if (WasmEHInfo) { 280 WasmEHInfo->~WasmEHFuncInfo(); 281 Allocator.Deallocate(WasmEHInfo); 282 } 283 } 284 285 const DataLayout &MachineFunction::getDataLayout() const { 286 return F.getParent()->getDataLayout(); 287 } 288 289 /// Get the JumpTableInfo for this function. 290 /// If it does not already exist, allocate one. 291 MachineJumpTableInfo *MachineFunction:: 292 getOrCreateJumpTableInfo(unsigned EntryKind) { 293 if (JumpTableInfo) return JumpTableInfo; 294 295 JumpTableInfo = new (Allocator) 296 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 297 return JumpTableInfo; 298 } 299 300 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 301 return F.getDenormalMode(FPType); 302 } 303 304 /// Should we be emitting segmented stack stuff for the function 305 bool MachineFunction::shouldSplitStack() const { 306 return getFunction().hasFnAttribute("split-stack"); 307 } 308 309 [[nodiscard]] unsigned 310 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 311 FrameInstructions.push_back(Inst); 312 return FrameInstructions.size() - 1; 313 } 314 315 /// This discards all of the MachineBasicBlock numbers and recomputes them. 316 /// This guarantees that the MBB numbers are sequential, dense, and match the 317 /// ordering of the blocks within the function. If a specific MachineBasicBlock 318 /// is specified, only that block and those after it are renumbered. 319 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 320 if (empty()) { MBBNumbering.clear(); return; } 321 MachineFunction::iterator MBBI, E = end(); 322 if (MBB == nullptr) 323 MBBI = begin(); 324 else 325 MBBI = MBB->getIterator(); 326 327 // Figure out the block number this should have. 328 unsigned BlockNo = 0; 329 if (MBBI != begin()) 330 BlockNo = std::prev(MBBI)->getNumber() + 1; 331 332 for (; MBBI != E; ++MBBI, ++BlockNo) { 333 if (MBBI->getNumber() != (int)BlockNo) { 334 // Remove use of the old number. 335 if (MBBI->getNumber() != -1) { 336 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 337 "MBB number mismatch!"); 338 MBBNumbering[MBBI->getNumber()] = nullptr; 339 } 340 341 // If BlockNo is already taken, set that block's number to -1. 342 if (MBBNumbering[BlockNo]) 343 MBBNumbering[BlockNo]->setNumber(-1); 344 345 MBBNumbering[BlockNo] = &*MBBI; 346 MBBI->setNumber(BlockNo); 347 } 348 } 349 350 // Okay, all the blocks are renumbered. If we have compactified the block 351 // numbering, shrink MBBNumbering now. 352 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 353 MBBNumbering.resize(BlockNo); 354 } 355 356 /// This method iterates over the basic blocks and assigns their IsBeginSection 357 /// and IsEndSection fields. This must be called after MBB layout is finalized 358 /// and the SectionID's are assigned to MBBs. 359 void MachineFunction::assignBeginEndSections() { 360 front().setIsBeginSection(); 361 auto CurrentSectionID = front().getSectionID(); 362 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 363 if (MBBI->getSectionID() == CurrentSectionID) 364 continue; 365 MBBI->setIsBeginSection(); 366 std::prev(MBBI)->setIsEndSection(); 367 CurrentSectionID = MBBI->getSectionID(); 368 } 369 back().setIsEndSection(); 370 } 371 372 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 373 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 374 DebugLoc DL, 375 bool NoImplicit) { 376 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 377 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 378 } 379 380 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 381 /// identical in all ways except the instruction has no parent, prev, or next. 382 MachineInstr * 383 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 384 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 385 MachineInstr(*this, *Orig); 386 } 387 388 MachineInstr &MachineFunction::cloneMachineInstrBundle( 389 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 390 const MachineInstr &Orig) { 391 MachineInstr *FirstClone = nullptr; 392 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 393 while (true) { 394 MachineInstr *Cloned = CloneMachineInstr(&*I); 395 MBB.insert(InsertBefore, Cloned); 396 if (FirstClone == nullptr) { 397 FirstClone = Cloned; 398 } else { 399 Cloned->bundleWithPred(); 400 } 401 402 if (!I->isBundledWithSucc()) 403 break; 404 ++I; 405 } 406 // Copy over call site info to the cloned instruction if needed. If Orig is in 407 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 408 // the bundle. 409 if (Orig.shouldUpdateCallSiteInfo()) 410 copyCallSiteInfo(&Orig, FirstClone); 411 return *FirstClone; 412 } 413 414 /// Delete the given MachineInstr. 415 /// 416 /// This function also serves as the MachineInstr destructor - the real 417 /// ~MachineInstr() destructor must be empty. 418 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 419 // Verify that a call site info is at valid state. This assertion should 420 // be triggered during the implementation of support for the 421 // call site info of a new architecture. If the assertion is triggered, 422 // back trace will tell where to insert a call to updateCallSiteInfo(). 423 assert((!MI->isCandidateForCallSiteEntry() || 424 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 425 "Call site info was not updated!"); 426 // Strip it for parts. The operand array and the MI object itself are 427 // independently recyclable. 428 if (MI->Operands) 429 deallocateOperandArray(MI->CapOperands, MI->Operands); 430 // Don't call ~MachineInstr() which must be trivial anyway because 431 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 432 // destructors. 433 InstructionRecycler.Deallocate(Allocator, MI); 434 } 435 436 /// Allocate a new MachineBasicBlock. Use this instead of 437 /// `new MachineBasicBlock'. 438 MachineBasicBlock * 439 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 440 MachineBasicBlock *MBB = 441 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 442 MachineBasicBlock(*this, bb); 443 // Set BBID for `-basic-block=sections=labels` and 444 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 445 // blocks. 446 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 447 Target.getBBSectionsType() == BasicBlockSection::List) 448 MBB->setBBID(NextBBID++); 449 return MBB; 450 } 451 452 /// Delete the given MachineBasicBlock. 453 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 454 assert(MBB->getParent() == this && "MBB parent mismatch!"); 455 // Clean up any references to MBB in jump tables before deleting it. 456 if (JumpTableInfo) 457 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 458 MBB->~MachineBasicBlock(); 459 BasicBlockRecycler.Deallocate(Allocator, MBB); 460 } 461 462 MachineMemOperand *MachineFunction::getMachineMemOperand( 463 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 464 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 465 SyncScope::ID SSID, AtomicOrdering Ordering, 466 AtomicOrdering FailureOrdering) { 467 return new (Allocator) 468 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 469 SSID, Ordering, FailureOrdering); 470 } 471 472 MachineMemOperand *MachineFunction::getMachineMemOperand( 473 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 474 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 475 SyncScope::ID SSID, AtomicOrdering Ordering, 476 AtomicOrdering FailureOrdering) { 477 return new (Allocator) 478 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 479 Ordering, FailureOrdering); 480 } 481 482 MachineMemOperand *MachineFunction::getMachineMemOperand( 483 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 484 return new (Allocator) 485 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 486 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 487 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 488 } 489 490 MachineMemOperand *MachineFunction::getMachineMemOperand( 491 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 492 return new (Allocator) 493 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 494 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 495 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 496 } 497 498 MachineMemOperand * 499 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 500 int64_t Offset, LLT Ty) { 501 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 502 503 // If there is no pointer value, the offset isn't tracked so we need to adjust 504 // the base alignment. 505 Align Alignment = PtrInfo.V.isNull() 506 ? commonAlignment(MMO->getBaseAlign(), Offset) 507 : MMO->getBaseAlign(); 508 509 // Do not preserve ranges, since we don't necessarily know what the high bits 510 // are anymore. 511 return new (Allocator) MachineMemOperand( 512 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 513 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 514 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 515 } 516 517 MachineMemOperand * 518 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 519 const AAMDNodes &AAInfo) { 520 MachinePointerInfo MPI = MMO->getValue() ? 521 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 522 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 523 524 return new (Allocator) MachineMemOperand( 525 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 526 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 527 MMO->getFailureOrdering()); 528 } 529 530 MachineMemOperand * 531 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 532 MachineMemOperand::Flags Flags) { 533 return new (Allocator) MachineMemOperand( 534 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 535 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 536 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 537 } 538 539 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 540 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 541 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 542 uint32_t CFIType) { 543 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 544 PostInstrSymbol, HeapAllocMarker, 545 PCSections, CFIType); 546 } 547 548 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 549 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 550 llvm::copy(Name, Dest); 551 Dest[Name.size()] = 0; 552 return Dest; 553 } 554 555 uint32_t *MachineFunction::allocateRegMask() { 556 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 557 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 558 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 559 memset(Mask, 0, Size * sizeof(Mask[0])); 560 return Mask; 561 } 562 563 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 564 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 565 copy(Mask, AllocMask); 566 return {AllocMask, Mask.size()}; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 LLVM_DUMP_METHOD void MachineFunction::dump() const { 571 print(dbgs()); 572 } 573 #endif 574 575 StringRef MachineFunction::getName() const { 576 return getFunction().getName(); 577 } 578 579 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 580 OS << "# Machine code for function " << getName() << ": "; 581 getProperties().print(OS); 582 OS << '\n'; 583 584 // Print Frame Information 585 FrameInfo->print(*this, OS); 586 587 // Print JumpTable Information 588 if (JumpTableInfo) 589 JumpTableInfo->print(OS); 590 591 // Print Constant Pool 592 ConstantPool->print(OS); 593 594 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 595 596 if (RegInfo && !RegInfo->livein_empty()) { 597 OS << "Function Live Ins: "; 598 for (MachineRegisterInfo::livein_iterator 599 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 600 OS << printReg(I->first, TRI); 601 if (I->second) 602 OS << " in " << printReg(I->second, TRI); 603 if (std::next(I) != E) 604 OS << ", "; 605 } 606 OS << '\n'; 607 } 608 609 ModuleSlotTracker MST(getFunction().getParent()); 610 MST.incorporateFunction(getFunction()); 611 for (const auto &BB : *this) { 612 OS << '\n'; 613 // If we print the whole function, print it at its most verbose level. 614 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 615 } 616 617 OS << "\n# End machine code for function " << getName() << ".\n\n"; 618 } 619 620 /// True if this function needs frame moves for debug or exceptions. 621 bool MachineFunction::needsFrameMoves() const { 622 return getMMI().hasDebugInfo() || 623 getTarget().Options.ForceDwarfFrameSection || 624 F.needsUnwindTableEntry(); 625 } 626 627 namespace llvm { 628 629 template<> 630 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 631 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 632 633 static std::string getGraphName(const MachineFunction *F) { 634 return ("CFG for '" + F->getName() + "' function").str(); 635 } 636 637 std::string getNodeLabel(const MachineBasicBlock *Node, 638 const MachineFunction *Graph) { 639 std::string OutStr; 640 { 641 raw_string_ostream OSS(OutStr); 642 643 if (isSimple()) { 644 OSS << printMBBReference(*Node); 645 if (const BasicBlock *BB = Node->getBasicBlock()) 646 OSS << ": " << BB->getName(); 647 } else 648 Node->print(OSS); 649 } 650 651 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 652 653 // Process string output to make it nicer... 654 for (unsigned i = 0; i != OutStr.length(); ++i) 655 if (OutStr[i] == '\n') { // Left justify 656 OutStr[i] = '\\'; 657 OutStr.insert(OutStr.begin()+i+1, 'l'); 658 } 659 return OutStr; 660 } 661 }; 662 663 } // end namespace llvm 664 665 void MachineFunction::viewCFG() const 666 { 667 #ifndef NDEBUG 668 ViewGraph(this, "mf" + getName()); 669 #else 670 errs() << "MachineFunction::viewCFG is only available in debug builds on " 671 << "systems with Graphviz or gv!\n"; 672 #endif // NDEBUG 673 } 674 675 void MachineFunction::viewCFGOnly() const 676 { 677 #ifndef NDEBUG 678 ViewGraph(this, "mf" + getName(), true); 679 #else 680 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 681 << "systems with Graphviz or gv!\n"; 682 #endif // NDEBUG 683 } 684 685 /// Add the specified physical register as a live-in value and 686 /// create a corresponding virtual register for it. 687 Register MachineFunction::addLiveIn(MCRegister PReg, 688 const TargetRegisterClass *RC) { 689 MachineRegisterInfo &MRI = getRegInfo(); 690 Register VReg = MRI.getLiveInVirtReg(PReg); 691 if (VReg) { 692 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 693 (void)VRegRC; 694 // A physical register can be added several times. 695 // Between two calls, the register class of the related virtual register 696 // may have been constrained to match some operation constraints. 697 // In that case, check that the current register class includes the 698 // physical register and is a sub class of the specified RC. 699 assert((VRegRC == RC || (VRegRC->contains(PReg) && 700 RC->hasSubClassEq(VRegRC))) && 701 "Register class mismatch!"); 702 return VReg; 703 } 704 VReg = MRI.createVirtualRegister(RC); 705 MRI.addLiveIn(PReg, VReg); 706 return VReg; 707 } 708 709 /// Return the MCSymbol for the specified non-empty jump table. 710 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 711 /// normal 'L' label is returned. 712 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 713 bool isLinkerPrivate) const { 714 const DataLayout &DL = getDataLayout(); 715 assert(JumpTableInfo && "No jump tables"); 716 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 717 718 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 719 : DL.getPrivateGlobalPrefix(); 720 SmallString<60> Name; 721 raw_svector_ostream(Name) 722 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 723 return Ctx.getOrCreateSymbol(Name); 724 } 725 726 /// Return a function-local symbol to represent the PIC base. 727 MCSymbol *MachineFunction::getPICBaseSymbol() const { 728 const DataLayout &DL = getDataLayout(); 729 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 730 Twine(getFunctionNumber()) + "$pb"); 731 } 732 733 /// \name Exception Handling 734 /// \{ 735 736 LandingPadInfo & 737 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 738 unsigned N = LandingPads.size(); 739 for (unsigned i = 0; i < N; ++i) { 740 LandingPadInfo &LP = LandingPads[i]; 741 if (LP.LandingPadBlock == LandingPad) 742 return LP; 743 } 744 745 LandingPads.push_back(LandingPadInfo(LandingPad)); 746 return LandingPads[N]; 747 } 748 749 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 750 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 751 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 752 LP.BeginLabels.push_back(BeginLabel); 753 LP.EndLabels.push_back(EndLabel); 754 } 755 756 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 757 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 758 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 759 LP.LandingPadLabel = LandingPadLabel; 760 761 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 762 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 763 if (const auto *PF = 764 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 765 getMMI().addPersonality(PF); 766 767 if (LPI->isCleanup()) 768 addCleanup(LandingPad); 769 770 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 771 // correct, but we need to do it this way because of how the DWARF EH 772 // emitter processes the clauses. 773 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 774 Value *Val = LPI->getClause(I - 1); 775 if (LPI->isCatch(I - 1)) { 776 addCatchTypeInfo(LandingPad, 777 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 778 } else { 779 // Add filters in a list. 780 auto *CVal = cast<Constant>(Val); 781 SmallVector<const GlobalValue *, 4> FilterList; 782 for (const Use &U : CVal->operands()) 783 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 784 785 addFilterTypeInfo(LandingPad, FilterList); 786 } 787 } 788 789 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 790 for (unsigned I = CPI->arg_size(); I != 0; --I) { 791 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 792 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 793 } 794 795 } else { 796 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 797 } 798 799 return LandingPadLabel; 800 } 801 802 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 803 ArrayRef<const GlobalValue *> TyInfo) { 804 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 805 for (const GlobalValue *GV : llvm::reverse(TyInfo)) 806 LP.TypeIds.push_back(getTypeIDFor(GV)); 807 } 808 809 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 810 ArrayRef<const GlobalValue *> TyInfo) { 811 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 812 std::vector<unsigned> IdsInFilter(TyInfo.size()); 813 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 814 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 815 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 816 } 817 818 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 819 bool TidyIfNoBeginLabels) { 820 for (unsigned i = 0; i != LandingPads.size(); ) { 821 LandingPadInfo &LandingPad = LandingPads[i]; 822 if (LandingPad.LandingPadLabel && 823 !LandingPad.LandingPadLabel->isDefined() && 824 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 825 LandingPad.LandingPadLabel = nullptr; 826 827 // Special case: we *should* emit LPs with null LP MBB. This indicates 828 // "nounwind" case. 829 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 830 LandingPads.erase(LandingPads.begin() + i); 831 continue; 832 } 833 834 if (TidyIfNoBeginLabels) { 835 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 836 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 837 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 838 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 839 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 840 continue; 841 842 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 843 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 844 --j; 845 --e; 846 } 847 848 // Remove landing pads with no try-ranges. 849 if (LandingPads[i].BeginLabels.empty()) { 850 LandingPads.erase(LandingPads.begin() + i); 851 continue; 852 } 853 } 854 855 // If there is no landing pad, ensure that the list of typeids is empty. 856 // If the only typeid is a cleanup, this is the same as having no typeids. 857 if (!LandingPad.LandingPadBlock || 858 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 859 LandingPad.TypeIds.clear(); 860 ++i; 861 } 862 } 863 864 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 865 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 866 LP.TypeIds.push_back(0); 867 } 868 869 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 870 ArrayRef<unsigned> Sites) { 871 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 872 } 873 874 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 875 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 876 if (TypeInfos[i] == TI) return i + 1; 877 878 TypeInfos.push_back(TI); 879 return TypeInfos.size(); 880 } 881 882 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 883 // If the new filter coincides with the tail of an existing filter, then 884 // re-use the existing filter. Folding filters more than this requires 885 // re-ordering filters and/or their elements - probably not worth it. 886 for (unsigned i : FilterEnds) { 887 unsigned j = TyIds.size(); 888 889 while (i && j) 890 if (FilterIds[--i] != TyIds[--j]) 891 goto try_next; 892 893 if (!j) 894 // The new filter coincides with range [i, end) of the existing filter. 895 return -(1 + i); 896 897 try_next:; 898 } 899 900 // Add the new filter. 901 int FilterID = -(1 + FilterIds.size()); 902 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 903 llvm::append_range(FilterIds, TyIds); 904 FilterEnds.push_back(FilterIds.size()); 905 FilterIds.push_back(0); // terminator 906 return FilterID; 907 } 908 909 MachineFunction::CallSiteInfoMap::iterator 910 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 911 assert(MI->isCandidateForCallSiteEntry() && 912 "Call site info refers only to call (MI) candidates"); 913 914 if (!Target.Options.EmitCallSiteInfo) 915 return CallSitesInfo.end(); 916 return CallSitesInfo.find(MI); 917 } 918 919 /// Return the call machine instruction or find a call within bundle. 920 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 921 if (!MI->isBundle()) 922 return MI; 923 924 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 925 getBundleEnd(MI->getIterator()))) 926 if (BMI.isCandidateForCallSiteEntry()) 927 return &BMI; 928 929 llvm_unreachable("Unexpected bundle without a call site candidate"); 930 } 931 932 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 933 assert(MI->shouldUpdateCallSiteInfo() && 934 "Call site info refers only to call (MI) candidates or " 935 "candidates inside bundles"); 936 937 const MachineInstr *CallMI = getCallInstr(MI); 938 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 939 if (CSIt == CallSitesInfo.end()) 940 return; 941 CallSitesInfo.erase(CSIt); 942 } 943 944 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 945 const MachineInstr *New) { 946 assert(Old->shouldUpdateCallSiteInfo() && 947 "Call site info refers only to call (MI) candidates or " 948 "candidates inside bundles"); 949 950 if (!New->isCandidateForCallSiteEntry()) 951 return eraseCallSiteInfo(Old); 952 953 const MachineInstr *OldCallMI = getCallInstr(Old); 954 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 955 if (CSIt == CallSitesInfo.end()) 956 return; 957 958 CallSiteInfo CSInfo = CSIt->second; 959 CallSitesInfo[New] = CSInfo; 960 } 961 962 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 963 const MachineInstr *New) { 964 assert(Old->shouldUpdateCallSiteInfo() && 965 "Call site info refers only to call (MI) candidates or " 966 "candidates inside bundles"); 967 968 if (!New->isCandidateForCallSiteEntry()) 969 return eraseCallSiteInfo(Old); 970 971 const MachineInstr *OldCallMI = getCallInstr(Old); 972 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 973 if (CSIt == CallSitesInfo.end()) 974 return; 975 976 CallSiteInfo CSInfo = std::move(CSIt->second); 977 CallSitesInfo.erase(CSIt); 978 CallSitesInfo[New] = CSInfo; 979 } 980 981 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 982 DebugInstrNumberingCount = Num; 983 } 984 985 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 986 DebugInstrOperandPair B, 987 unsigned Subreg) { 988 // Catch any accidental self-loops. 989 assert(A.first != B.first); 990 // Don't allow any substitutions _from_ the memory operand number. 991 assert(A.second != DebugOperandMemNumber); 992 993 DebugValueSubstitutions.push_back({A, B, Subreg}); 994 } 995 996 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 997 MachineInstr &New, 998 unsigned MaxOperand) { 999 // If the Old instruction wasn't tracked at all, there is no work to do. 1000 unsigned OldInstrNum = Old.peekDebugInstrNum(); 1001 if (!OldInstrNum) 1002 return; 1003 1004 // Iterate over all operands looking for defs to create substitutions for. 1005 // Avoid creating new instr numbers unless we create a new substitution. 1006 // While this has no functional effect, it risks confusing someone reading 1007 // MIR output. 1008 // Examine all the operands, or the first N specified by the caller. 1009 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 1010 for (unsigned int I = 0; I < MaxOperand; ++I) { 1011 const auto &OldMO = Old.getOperand(I); 1012 auto &NewMO = New.getOperand(I); 1013 (void)NewMO; 1014 1015 if (!OldMO.isReg() || !OldMO.isDef()) 1016 continue; 1017 assert(NewMO.isDef()); 1018 1019 unsigned NewInstrNum = New.getDebugInstrNum(); 1020 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1021 std::make_pair(NewInstrNum, I)); 1022 } 1023 } 1024 1025 auto MachineFunction::salvageCopySSA( 1026 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1027 -> DebugInstrOperandPair { 1028 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1029 1030 // Check whether this copy-like instruction has already been salvaged into 1031 // an operand pair. 1032 Register Dest; 1033 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1034 Dest = CopyDstSrc->Destination->getReg(); 1035 } else { 1036 assert(MI.isSubregToReg()); 1037 Dest = MI.getOperand(0).getReg(); 1038 } 1039 1040 auto CacheIt = DbgPHICache.find(Dest); 1041 if (CacheIt != DbgPHICache.end()) 1042 return CacheIt->second; 1043 1044 // Calculate the instruction number to use, or install a DBG_PHI. 1045 auto OperandPair = salvageCopySSAImpl(MI); 1046 DbgPHICache.insert({Dest, OperandPair}); 1047 return OperandPair; 1048 } 1049 1050 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1051 -> DebugInstrOperandPair { 1052 MachineRegisterInfo &MRI = getRegInfo(); 1053 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1054 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1055 1056 // Chase the value read by a copy-like instruction back to the instruction 1057 // that ultimately _defines_ that value. This may pass: 1058 // * Through multiple intermediate copies, including subregister moves / 1059 // copies, 1060 // * Copies from physical registers that must then be traced back to the 1061 // defining instruction, 1062 // * Or, physical registers may be live-in to (only) the entry block, which 1063 // requires a DBG_PHI to be created. 1064 // We can pursue this problem in that order: trace back through copies, 1065 // optionally through a physical register, to a defining instruction. We 1066 // should never move from physreg to vreg. As we're still in SSA form, no need 1067 // to worry about partial definitions of registers. 1068 1069 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1070 // returns the register read and any subregister identifying which part is 1071 // read. 1072 auto GetRegAndSubreg = 1073 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1074 Register NewReg, OldReg; 1075 unsigned SubReg; 1076 if (Cpy.isCopy()) { 1077 OldReg = Cpy.getOperand(0).getReg(); 1078 NewReg = Cpy.getOperand(1).getReg(); 1079 SubReg = Cpy.getOperand(1).getSubReg(); 1080 } else if (Cpy.isSubregToReg()) { 1081 OldReg = Cpy.getOperand(0).getReg(); 1082 NewReg = Cpy.getOperand(2).getReg(); 1083 SubReg = Cpy.getOperand(3).getImm(); 1084 } else { 1085 auto CopyDetails = *TII.isCopyInstr(Cpy); 1086 const MachineOperand &Src = *CopyDetails.Source; 1087 const MachineOperand &Dest = *CopyDetails.Destination; 1088 OldReg = Dest.getReg(); 1089 NewReg = Src.getReg(); 1090 SubReg = Src.getSubReg(); 1091 } 1092 1093 return {NewReg, SubReg}; 1094 }; 1095 1096 // First seek either the defining instruction, or a copy from a physreg. 1097 // During search, the current state is the current copy instruction, and which 1098 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1099 // deal with those later. 1100 auto State = GetRegAndSubreg(MI); 1101 auto CurInst = MI.getIterator(); 1102 SmallVector<unsigned, 4> SubregsSeen; 1103 while (true) { 1104 // If we've found a copy from a physreg, first portion of search is over. 1105 if (!State.first.isVirtual()) 1106 break; 1107 1108 // Record any subregister qualifier. 1109 if (State.second) 1110 SubregsSeen.push_back(State.second); 1111 1112 assert(MRI.hasOneDef(State.first)); 1113 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1114 CurInst = Inst.getIterator(); 1115 1116 // Any non-copy instruction is the defining instruction we're seeking. 1117 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1118 break; 1119 State = GetRegAndSubreg(Inst); 1120 }; 1121 1122 // Helper lambda to apply additional subregister substitutions to a known 1123 // instruction/operand pair. Adds new (fake) substitutions so that we can 1124 // record the subregister. FIXME: this isn't very space efficient if multiple 1125 // values are tracked back through the same copies; cache something later. 1126 auto ApplySubregisters = 1127 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1128 for (unsigned Subreg : reverse(SubregsSeen)) { 1129 // Fetch a new instruction number, not attached to an actual instruction. 1130 unsigned NewInstrNumber = getNewDebugInstrNum(); 1131 // Add a substitution from the "new" number to the known one, with a 1132 // qualifying subreg. 1133 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1134 // Return the new number; to find the underlying value, consumers need to 1135 // deal with the qualifying subreg. 1136 P = {NewInstrNumber, 0}; 1137 } 1138 return P; 1139 }; 1140 1141 // If we managed to find the defining instruction after COPYs, return an 1142 // instruction / operand pair after adding subregister qualifiers. 1143 if (State.first.isVirtual()) { 1144 // Virtual register def -- we can just look up where this happens. 1145 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1146 for (auto &MO : Inst->operands()) { 1147 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1148 continue; 1149 return ApplySubregisters( 1150 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1151 } 1152 1153 llvm_unreachable("Vreg def with no corresponding operand?"); 1154 } 1155 1156 // Our search ended in a copy from a physreg: walk back up the function 1157 // looking for whatever defines the physreg. 1158 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1159 State = GetRegAndSubreg(*CurInst); 1160 Register RegToSeek = State.first; 1161 1162 auto RMII = CurInst->getReverseIterator(); 1163 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1164 for (auto &ToExamine : PrevInstrs) { 1165 for (auto &MO : ToExamine.operands()) { 1166 // Test for operand that defines something aliasing RegToSeek. 1167 if (!MO.isReg() || !MO.isDef() || 1168 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1169 continue; 1170 1171 return ApplySubregisters( 1172 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1173 } 1174 } 1175 1176 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1177 1178 // We reached the start of the block before finding a defining instruction. 1179 // There are numerous scenarios where this can happen: 1180 // * Constant physical registers, 1181 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1182 // * Arguments in the entry block, 1183 // * Exception handling landing pads. 1184 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1185 // the variable value at this position, rather than checking it makes sense. 1186 1187 // Create DBG_PHI for specified physreg. 1188 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1189 TII.get(TargetOpcode::DBG_PHI)); 1190 Builder.addReg(State.first); 1191 unsigned NewNum = getNewDebugInstrNum(); 1192 Builder.addImm(NewNum); 1193 return ApplySubregisters({NewNum, 0u}); 1194 } 1195 1196 void MachineFunction::finalizeDebugInstrRefs() { 1197 auto *TII = getSubtarget().getInstrInfo(); 1198 1199 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1200 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1201 MI.setDesc(RefII); 1202 MI.getOperand(0).setReg(0); 1203 MI.getOperand(1).ChangeToRegister(0, false); 1204 }; 1205 1206 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1207 for (auto &MBB : *this) { 1208 for (auto &MI : MBB) { 1209 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1210 continue; 1211 1212 Register Reg = MI.getOperand(0).getReg(); 1213 1214 // Some vregs can be deleted as redundant in the meantime. Mark those 1215 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1216 // quickly deleted, leaving dangling references to vregs with no def. 1217 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1218 MakeUndefDbgValue(MI); 1219 continue; 1220 } 1221 1222 assert(Reg.isVirtual()); 1223 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1224 1225 // If we've found a copy-like instruction, follow it back to the 1226 // instruction that defines the source value, see salvageCopySSA docs 1227 // for why this is important. 1228 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1229 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1230 MI.getOperand(0).ChangeToImmediate(Result.first); 1231 MI.getOperand(1).setImm(Result.second); 1232 } else { 1233 // Otherwise, identify the operand number that the VReg refers to. 1234 unsigned OperandIdx = 0; 1235 for (const auto &MO : DefMI.operands()) { 1236 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1237 break; 1238 ++OperandIdx; 1239 } 1240 assert(OperandIdx < DefMI.getNumOperands()); 1241 1242 // Morph this instr ref to point at the given instruction and operand. 1243 unsigned ID = DefMI.getDebugInstrNum(); 1244 MI.getOperand(0).ChangeToImmediate(ID); 1245 MI.getOperand(1).setImm(OperandIdx); 1246 } 1247 } 1248 } 1249 } 1250 1251 bool MachineFunction::useDebugInstrRef() const { 1252 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1253 // have optimized code inlined into this unoptimized code, however with 1254 // fewer and less aggressive optimizations happening, coverage and accuracy 1255 // should not suffer. 1256 if (getTarget().getOptLevel() == CodeGenOpt::None) 1257 return false; 1258 1259 // Don't use instr-ref if this function is marked optnone. 1260 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1261 return false; 1262 1263 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1264 return true; 1265 1266 return false; 1267 } 1268 1269 // Use one million as a high / reserved number. 1270 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1271 1272 /// \} 1273 1274 //===----------------------------------------------------------------------===// 1275 // MachineJumpTableInfo implementation 1276 //===----------------------------------------------------------------------===// 1277 1278 /// Return the size of each entry in the jump table. 1279 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1280 // The size of a jump table entry is 4 bytes unless the entry is just the 1281 // address of a block, in which case it is the pointer size. 1282 switch (getEntryKind()) { 1283 case MachineJumpTableInfo::EK_BlockAddress: 1284 return TD.getPointerSize(); 1285 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1286 return 8; 1287 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1288 case MachineJumpTableInfo::EK_LabelDifference32: 1289 case MachineJumpTableInfo::EK_Custom32: 1290 return 4; 1291 case MachineJumpTableInfo::EK_Inline: 1292 return 0; 1293 } 1294 llvm_unreachable("Unknown jump table encoding!"); 1295 } 1296 1297 /// Return the alignment of each entry in the jump table. 1298 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1299 // The alignment of a jump table entry is the alignment of int32 unless the 1300 // entry is just the address of a block, in which case it is the pointer 1301 // alignment. 1302 switch (getEntryKind()) { 1303 case MachineJumpTableInfo::EK_BlockAddress: 1304 return TD.getPointerABIAlignment(0).value(); 1305 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1306 return TD.getABIIntegerTypeAlignment(64).value(); 1307 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1308 case MachineJumpTableInfo::EK_LabelDifference32: 1309 case MachineJumpTableInfo::EK_Custom32: 1310 return TD.getABIIntegerTypeAlignment(32).value(); 1311 case MachineJumpTableInfo::EK_Inline: 1312 return 1; 1313 } 1314 llvm_unreachable("Unknown jump table encoding!"); 1315 } 1316 1317 /// Create a new jump table entry in the jump table info. 1318 unsigned MachineJumpTableInfo::createJumpTableIndex( 1319 const std::vector<MachineBasicBlock*> &DestBBs) { 1320 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1321 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1322 return JumpTables.size()-1; 1323 } 1324 1325 /// If Old is the target of any jump tables, update the jump tables to branch 1326 /// to New instead. 1327 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1328 MachineBasicBlock *New) { 1329 assert(Old != New && "Not making a change?"); 1330 bool MadeChange = false; 1331 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1332 ReplaceMBBInJumpTable(i, Old, New); 1333 return MadeChange; 1334 } 1335 1336 /// If MBB is present in any jump tables, remove it. 1337 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1338 bool MadeChange = false; 1339 for (MachineJumpTableEntry &JTE : JumpTables) { 1340 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1341 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1342 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1343 } 1344 return MadeChange; 1345 } 1346 1347 /// If Old is a target of the jump tables, update the jump table to branch to 1348 /// New instead. 1349 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1350 MachineBasicBlock *Old, 1351 MachineBasicBlock *New) { 1352 assert(Old != New && "Not making a change?"); 1353 bool MadeChange = false; 1354 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1355 for (MachineBasicBlock *&MBB : JTE.MBBs) 1356 if (MBB == Old) { 1357 MBB = New; 1358 MadeChange = true; 1359 } 1360 return MadeChange; 1361 } 1362 1363 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1364 if (JumpTables.empty()) return; 1365 1366 OS << "Jump Tables:\n"; 1367 1368 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1369 OS << printJumpTableEntryReference(i) << ':'; 1370 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1371 OS << ' ' << printMBBReference(*MBB); 1372 if (i != e) 1373 OS << '\n'; 1374 } 1375 1376 OS << '\n'; 1377 } 1378 1379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1380 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1381 #endif 1382 1383 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1384 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // MachineConstantPool implementation 1389 //===----------------------------------------------------------------------===// 1390 1391 void MachineConstantPoolValue::anchor() {} 1392 1393 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1394 return DL.getTypeAllocSize(Ty); 1395 } 1396 1397 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1398 if (isMachineConstantPoolEntry()) 1399 return Val.MachineCPVal->getSizeInBytes(DL); 1400 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1401 } 1402 1403 bool MachineConstantPoolEntry::needsRelocation() const { 1404 if (isMachineConstantPoolEntry()) 1405 return true; 1406 return Val.ConstVal->needsDynamicRelocation(); 1407 } 1408 1409 SectionKind 1410 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1411 if (needsRelocation()) 1412 return SectionKind::getReadOnlyWithRel(); 1413 switch (getSizeInBytes(*DL)) { 1414 case 4: 1415 return SectionKind::getMergeableConst4(); 1416 case 8: 1417 return SectionKind::getMergeableConst8(); 1418 case 16: 1419 return SectionKind::getMergeableConst16(); 1420 case 32: 1421 return SectionKind::getMergeableConst32(); 1422 default: 1423 return SectionKind::getReadOnly(); 1424 } 1425 } 1426 1427 MachineConstantPool::~MachineConstantPool() { 1428 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1429 // so keep track of which we've deleted to avoid double deletions. 1430 DenseSet<MachineConstantPoolValue*> Deleted; 1431 for (const MachineConstantPoolEntry &C : Constants) 1432 if (C.isMachineConstantPoolEntry()) { 1433 Deleted.insert(C.Val.MachineCPVal); 1434 delete C.Val.MachineCPVal; 1435 } 1436 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1437 if (Deleted.count(CPV) == 0) 1438 delete CPV; 1439 } 1440 } 1441 1442 /// Test whether the given two constants can be allocated the same constant pool 1443 /// entry. 1444 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1445 const DataLayout &DL) { 1446 // Handle the trivial case quickly. 1447 if (A == B) return true; 1448 1449 // If they have the same type but weren't the same constant, quickly 1450 // reject them. 1451 if (A->getType() == B->getType()) return false; 1452 1453 // We can't handle structs or arrays. 1454 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1455 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1456 return false; 1457 1458 // For now, only support constants with the same size. 1459 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1460 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1461 return false; 1462 1463 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1464 1465 // Try constant folding a bitcast of both instructions to an integer. If we 1466 // get two identical ConstantInt's, then we are good to share them. We use 1467 // the constant folding APIs to do this so that we get the benefit of 1468 // DataLayout. 1469 if (isa<PointerType>(A->getType())) 1470 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1471 const_cast<Constant *>(A), IntTy, DL); 1472 else if (A->getType() != IntTy) 1473 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1474 IntTy, DL); 1475 if (isa<PointerType>(B->getType())) 1476 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1477 const_cast<Constant *>(B), IntTy, DL); 1478 else if (B->getType() != IntTy) 1479 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1480 IntTy, DL); 1481 1482 return A == B; 1483 } 1484 1485 /// Create a new entry in the constant pool or return an existing one. 1486 /// User must specify the log2 of the minimum required alignment for the object. 1487 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1488 Align Alignment) { 1489 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1490 1491 // Check to see if we already have this constant. 1492 // 1493 // FIXME, this could be made much more efficient for large constant pools. 1494 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1495 if (!Constants[i].isMachineConstantPoolEntry() && 1496 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1497 if (Constants[i].getAlign() < Alignment) 1498 Constants[i].Alignment = Alignment; 1499 return i; 1500 } 1501 1502 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1503 return Constants.size()-1; 1504 } 1505 1506 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1507 Align Alignment) { 1508 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1509 1510 // Check to see if we already have this constant. 1511 // 1512 // FIXME, this could be made much more efficient for large constant pools. 1513 int Idx = V->getExistingMachineCPValue(this, Alignment); 1514 if (Idx != -1) { 1515 MachineCPVsSharingEntries.insert(V); 1516 return (unsigned)Idx; 1517 } 1518 1519 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1520 return Constants.size()-1; 1521 } 1522 1523 void MachineConstantPool::print(raw_ostream &OS) const { 1524 if (Constants.empty()) return; 1525 1526 OS << "Constant Pool:\n"; 1527 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1528 OS << " cp#" << i << ": "; 1529 if (Constants[i].isMachineConstantPoolEntry()) 1530 Constants[i].Val.MachineCPVal->print(OS); 1531 else 1532 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1533 OS << ", align=" << Constants[i].getAlign().value(); 1534 OS << "\n"; 1535 } 1536 } 1537 1538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1539 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1540 #endif 1541