xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 5d3a8842295e8ff9c8c1c98e2acf5fff76b3a2f8)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/TargetFrameLowering.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <string>
73 #include <type_traits>
74 #include <utility>
75 #include <vector>
76 
77 #include "LiveDebugValues/LiveDebugValues.h"
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   // clang-format off
93   switch(Prop) {
94   case P::FailedISel: return "FailedISel";
95   case P::IsSSA: return "IsSSA";
96   case P::Legalized: return "Legalized";
97   case P::NoPHIs: return "NoPHIs";
98   case P::NoVRegs: return "NoVRegs";
99   case P::RegBankSelected: return "RegBankSelected";
100   case P::Selected: return "Selected";
101   case P::TracksLiveness: return "TracksLiveness";
102   case P::TiedOpsRewritten: return "TiedOpsRewritten";
103   case P::FailsVerification: return "FailsVerification";
104   case P::TracksDebugUserValues: return "TracksDebugUserValues";
105   }
106   // clang-format on
107   llvm_unreachable("Invalid machine function property");
108 }
109 
110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
111   if (!F.hasFnAttribute(Attribute::SafeStack))
112     return;
113 
114   auto *Existing =
115       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
116 
117   if (!Existing || Existing->getNumOperands() != 2)
118     return;
119 
120   auto *MetadataName = "unsafe-stack-size";
121   if (auto &N = Existing->getOperand(0)) {
122     if (N.equalsStr(MetadataName)) {
123       if (auto &Op = Existing->getOperand(1)) {
124         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
125         FrameInfo.setUnsafeStackSize(Val);
126       }
127     }
128   }
129 }
130 
131 // Pin the vtable to this file.
132 void MachineFunction::Delegate::anchor() {}
133 
134 void MachineFunctionProperties::print(raw_ostream &OS) const {
135   const char *Separator = "";
136   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
137     if (!Properties[I])
138       continue;
139     OS << Separator << getPropertyName(static_cast<Property>(I));
140     Separator = ", ";
141   }
142 }
143 
144 //===----------------------------------------------------------------------===//
145 // MachineFunction implementation
146 //===----------------------------------------------------------------------===//
147 
148 // Out-of-line virtual method.
149 MachineFunctionInfo::~MachineFunctionInfo() = default;
150 
151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
152   MBB->getParent()->deleteMachineBasicBlock(MBB);
153 }
154 
155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
156                                            const Function &F) {
157   if (auto MA = F.getFnStackAlign())
158     return *MA;
159   return STI->getFrameLowering()->getStackAlign();
160 }
161 
162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
163                                  const TargetSubtargetInfo &STI,
164                                  unsigned FunctionNum, MachineModuleInfo &mmi)
165     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
166   FunctionNumber = FunctionNum;
167   init();
168 }
169 
170 void MachineFunction::handleInsertion(MachineInstr &MI) {
171   if (TheDelegate)
172     TheDelegate->MF_HandleInsertion(MI);
173 }
174 
175 void MachineFunction::handleRemoval(MachineInstr &MI) {
176   if (TheDelegate)
177     TheDelegate->MF_HandleRemoval(MI);
178 }
179 
180 void MachineFunction::init() {
181   // Assume the function starts in SSA form with correct liveness.
182   Properties.set(MachineFunctionProperties::Property::IsSSA);
183   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
184   if (STI->getRegisterInfo())
185     RegInfo = new (Allocator) MachineRegisterInfo(this);
186   else
187     RegInfo = nullptr;
188 
189   MFInfo = nullptr;
190 
191   // We can realign the stack if the target supports it and the user hasn't
192   // explicitly asked us not to.
193   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
194                       !F.hasFnAttribute("no-realign-stack");
195   FrameInfo = new (Allocator) MachineFrameInfo(
196       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
197       /*ForcedRealign=*/CanRealignSP &&
198           F.hasFnAttribute(Attribute::StackAlignment));
199 
200   setUnsafeStackSize(F, *FrameInfo);
201 
202   if (F.hasFnAttribute(Attribute::StackAlignment))
203     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
204 
205   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
206   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
207 
208   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
209   // FIXME: Use Function::hasOptSize().
210   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
211     Alignment = std::max(Alignment,
212                          STI->getTargetLowering()->getPrefFunctionAlignment());
213 
214   if (AlignAllFunctions)
215     Alignment = Align(1ULL << AlignAllFunctions);
216 
217   JumpTableInfo = nullptr;
218 
219   if (isFuncletEHPersonality(classifyEHPersonality(
220           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
221     WinEHInfo = new (Allocator) WinEHFuncInfo();
222   }
223 
224   if (isScopedEHPersonality(classifyEHPersonality(
225           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
226     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
227   }
228 
229   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
230          "Can't create a MachineFunction using a Module with a "
231          "Target-incompatible DataLayout attached\n");
232 
233   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
234 }
235 
236 void MachineFunction::initTargetMachineFunctionInfo(
237     const TargetSubtargetInfo &STI) {
238   assert(!MFInfo && "MachineFunctionInfo already set");
239   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
240 }
241 
242 MachineFunction::~MachineFunction() {
243   clear();
244 }
245 
246 void MachineFunction::clear() {
247   Properties.reset();
248   // Don't call destructors on MachineInstr and MachineOperand. All of their
249   // memory comes from the BumpPtrAllocator which is about to be purged.
250   //
251   // Do call MachineBasicBlock destructors, it contains std::vectors.
252   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
253     I->Insts.clearAndLeakNodesUnsafely();
254   MBBNumbering.clear();
255 
256   InstructionRecycler.clear(Allocator);
257   OperandRecycler.clear(Allocator);
258   BasicBlockRecycler.clear(Allocator);
259   CodeViewAnnotations.clear();
260   VariableDbgInfos.clear();
261   if (RegInfo) {
262     RegInfo->~MachineRegisterInfo();
263     Allocator.Deallocate(RegInfo);
264   }
265   if (MFInfo) {
266     MFInfo->~MachineFunctionInfo();
267     Allocator.Deallocate(MFInfo);
268   }
269 
270   FrameInfo->~MachineFrameInfo();
271   Allocator.Deallocate(FrameInfo);
272 
273   ConstantPool->~MachineConstantPool();
274   Allocator.Deallocate(ConstantPool);
275 
276   if (JumpTableInfo) {
277     JumpTableInfo->~MachineJumpTableInfo();
278     Allocator.Deallocate(JumpTableInfo);
279   }
280 
281   if (WinEHInfo) {
282     WinEHInfo->~WinEHFuncInfo();
283     Allocator.Deallocate(WinEHInfo);
284   }
285 
286   if (WasmEHInfo) {
287     WasmEHInfo->~WasmEHFuncInfo();
288     Allocator.Deallocate(WasmEHInfo);
289   }
290 }
291 
292 const DataLayout &MachineFunction::getDataLayout() const {
293   return F.getParent()->getDataLayout();
294 }
295 
296 /// Get the JumpTableInfo for this function.
297 /// If it does not already exist, allocate one.
298 MachineJumpTableInfo *MachineFunction::
299 getOrCreateJumpTableInfo(unsigned EntryKind) {
300   if (JumpTableInfo) return JumpTableInfo;
301 
302   JumpTableInfo = new (Allocator)
303     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
304   return JumpTableInfo;
305 }
306 
307 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
308   return F.getDenormalMode(FPType);
309 }
310 
311 /// Should we be emitting segmented stack stuff for the function
312 bool MachineFunction::shouldSplitStack() const {
313   return getFunction().hasFnAttribute("split-stack");
314 }
315 
316 [[nodiscard]] unsigned
317 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
318   FrameInstructions.push_back(Inst);
319   return FrameInstructions.size() - 1;
320 }
321 
322 /// This discards all of the MachineBasicBlock numbers and recomputes them.
323 /// This guarantees that the MBB numbers are sequential, dense, and match the
324 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
325 /// is specified, only that block and those after it are renumbered.
326 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
327   if (empty()) { MBBNumbering.clear(); return; }
328   MachineFunction::iterator MBBI, E = end();
329   if (MBB == nullptr)
330     MBBI = begin();
331   else
332     MBBI = MBB->getIterator();
333 
334   // Figure out the block number this should have.
335   unsigned BlockNo = 0;
336   if (MBBI != begin())
337     BlockNo = std::prev(MBBI)->getNumber() + 1;
338 
339   for (; MBBI != E; ++MBBI, ++BlockNo) {
340     if (MBBI->getNumber() != (int)BlockNo) {
341       // Remove use of the old number.
342       if (MBBI->getNumber() != -1) {
343         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
344                "MBB number mismatch!");
345         MBBNumbering[MBBI->getNumber()] = nullptr;
346       }
347 
348       // If BlockNo is already taken, set that block's number to -1.
349       if (MBBNumbering[BlockNo])
350         MBBNumbering[BlockNo]->setNumber(-1);
351 
352       MBBNumbering[BlockNo] = &*MBBI;
353       MBBI->setNumber(BlockNo);
354     }
355   }
356 
357   // Okay, all the blocks are renumbered.  If we have compactified the block
358   // numbering, shrink MBBNumbering now.
359   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
360   MBBNumbering.resize(BlockNo);
361 }
362 
363 /// This method iterates over the basic blocks and assigns their IsBeginSection
364 /// and IsEndSection fields. This must be called after MBB layout is finalized
365 /// and the SectionID's are assigned to MBBs.
366 void MachineFunction::assignBeginEndSections() {
367   front().setIsBeginSection();
368   auto CurrentSectionID = front().getSectionID();
369   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
370     if (MBBI->getSectionID() == CurrentSectionID)
371       continue;
372     MBBI->setIsBeginSection();
373     std::prev(MBBI)->setIsEndSection();
374     CurrentSectionID = MBBI->getSectionID();
375   }
376   back().setIsEndSection();
377 }
378 
379 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
380 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
381                                                   DebugLoc DL,
382                                                   bool NoImplicit) {
383   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
384       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
385 }
386 
387 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
388 /// identical in all ways except the instruction has no parent, prev, or next.
389 MachineInstr *
390 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
391   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
392              MachineInstr(*this, *Orig);
393 }
394 
395 MachineInstr &MachineFunction::cloneMachineInstrBundle(
396     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
397     const MachineInstr &Orig) {
398   MachineInstr *FirstClone = nullptr;
399   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
400   while (true) {
401     MachineInstr *Cloned = CloneMachineInstr(&*I);
402     MBB.insert(InsertBefore, Cloned);
403     if (FirstClone == nullptr) {
404       FirstClone = Cloned;
405     } else {
406       Cloned->bundleWithPred();
407     }
408 
409     if (!I->isBundledWithSucc())
410       break;
411     ++I;
412   }
413   // Copy over call site info to the cloned instruction if needed. If Orig is in
414   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
415   // the bundle.
416   if (Orig.shouldUpdateCallSiteInfo())
417     copyCallSiteInfo(&Orig, FirstClone);
418   return *FirstClone;
419 }
420 
421 /// Delete the given MachineInstr.
422 ///
423 /// This function also serves as the MachineInstr destructor - the real
424 /// ~MachineInstr() destructor must be empty.
425 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
426   // Verify that a call site info is at valid state. This assertion should
427   // be triggered during the implementation of support for the
428   // call site info of a new architecture. If the assertion is triggered,
429   // back trace will tell where to insert a call to updateCallSiteInfo().
430   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
431          "Call site info was not updated!");
432   // Strip it for parts. The operand array and the MI object itself are
433   // independently recyclable.
434   if (MI->Operands)
435     deallocateOperandArray(MI->CapOperands, MI->Operands);
436   // Don't call ~MachineInstr() which must be trivial anyway because
437   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
438   // destructors.
439   InstructionRecycler.Deallocate(Allocator, MI);
440 }
441 
442 /// Allocate a new MachineBasicBlock. Use this instead of
443 /// `new MachineBasicBlock'.
444 MachineBasicBlock *
445 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
446   MachineBasicBlock *MBB =
447       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
448           MachineBasicBlock(*this, bb);
449   // Set BBID for `-basic-block=sections=labels` and
450   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
451   // blocks.
452   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
453       Target.getBBSectionsType() == BasicBlockSection::List)
454     MBB->setBBID(NextBBID++);
455   return MBB;
456 }
457 
458 /// Delete the given MachineBasicBlock.
459 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
460   assert(MBB->getParent() == this && "MBB parent mismatch!");
461   // Clean up any references to MBB in jump tables before deleting it.
462   if (JumpTableInfo)
463     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
464   MBB->~MachineBasicBlock();
465   BasicBlockRecycler.Deallocate(Allocator, MBB);
466 }
467 
468 MachineMemOperand *MachineFunction::getMachineMemOperand(
469     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
470     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
471     SyncScope::ID SSID, AtomicOrdering Ordering,
472     AtomicOrdering FailureOrdering) {
473   return new (Allocator)
474       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
475                         SSID, Ordering, FailureOrdering);
476 }
477 
478 MachineMemOperand *MachineFunction::getMachineMemOperand(
479     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
480     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
481     SyncScope::ID SSID, AtomicOrdering Ordering,
482     AtomicOrdering FailureOrdering) {
483   return new (Allocator)
484       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
485                         Ordering, FailureOrdering);
486 }
487 
488 MachineMemOperand *MachineFunction::getMachineMemOperand(
489     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
490   return new (Allocator)
491       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
492                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
493                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
494 }
495 
496 MachineMemOperand *MachineFunction::getMachineMemOperand(
497     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
498   return new (Allocator)
499       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
500                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
501                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
502 }
503 
504 MachineMemOperand *
505 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
506                                       int64_t Offset, LLT Ty) {
507   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
508 
509   // If there is no pointer value, the offset isn't tracked so we need to adjust
510   // the base alignment.
511   Align Alignment = PtrInfo.V.isNull()
512                         ? commonAlignment(MMO->getBaseAlign(), Offset)
513                         : MMO->getBaseAlign();
514 
515   // Do not preserve ranges, since we don't necessarily know what the high bits
516   // are anymore.
517   return new (Allocator) MachineMemOperand(
518       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
519       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
520       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
521 }
522 
523 MachineMemOperand *
524 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
525                                       const AAMDNodes &AAInfo) {
526   MachinePointerInfo MPI = MMO->getValue() ?
527              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
528              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
529 
530   return new (Allocator) MachineMemOperand(
531       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
532       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
533       MMO->getFailureOrdering());
534 }
535 
536 MachineMemOperand *
537 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
538                                       MachineMemOperand::Flags Flags) {
539   return new (Allocator) MachineMemOperand(
540       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
541       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
542       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
543 }
544 
545 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
546     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
547     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
548     uint32_t CFIType) {
549   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
550                                          PostInstrSymbol, HeapAllocMarker,
551                                          PCSections, CFIType);
552 }
553 
554 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
555   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
556   llvm::copy(Name, Dest);
557   Dest[Name.size()] = 0;
558   return Dest;
559 }
560 
561 uint32_t *MachineFunction::allocateRegMask() {
562   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
563   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
564   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
565   memset(Mask, 0, Size * sizeof(Mask[0]));
566   return Mask;
567 }
568 
569 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
570   int* AllocMask = Allocator.Allocate<int>(Mask.size());
571   copy(Mask, AllocMask);
572   return {AllocMask, Mask.size()};
573 }
574 
575 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
576 LLVM_DUMP_METHOD void MachineFunction::dump() const {
577   print(dbgs());
578 }
579 #endif
580 
581 StringRef MachineFunction::getName() const {
582   return getFunction().getName();
583 }
584 
585 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
586   OS << "# Machine code for function " << getName() << ": ";
587   getProperties().print(OS);
588   OS << '\n';
589 
590   // Print Frame Information
591   FrameInfo->print(*this, OS);
592 
593   // Print JumpTable Information
594   if (JumpTableInfo)
595     JumpTableInfo->print(OS);
596 
597   // Print Constant Pool
598   ConstantPool->print(OS);
599 
600   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
601 
602   if (RegInfo && !RegInfo->livein_empty()) {
603     OS << "Function Live Ins: ";
604     for (MachineRegisterInfo::livein_iterator
605          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
606       OS << printReg(I->first, TRI);
607       if (I->second)
608         OS << " in " << printReg(I->second, TRI);
609       if (std::next(I) != E)
610         OS << ", ";
611     }
612     OS << '\n';
613   }
614 
615   ModuleSlotTracker MST(getFunction().getParent());
616   MST.incorporateFunction(getFunction());
617   for (const auto &BB : *this) {
618     OS << '\n';
619     // If we print the whole function, print it at its most verbose level.
620     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
621   }
622 
623   OS << "\n# End machine code for function " << getName() << ".\n\n";
624 }
625 
626 /// True if this function needs frame moves for debug or exceptions.
627 bool MachineFunction::needsFrameMoves() const {
628   return getMMI().hasDebugInfo() ||
629          getTarget().Options.ForceDwarfFrameSection ||
630          F.needsUnwindTableEntry();
631 }
632 
633 namespace llvm {
634 
635   template<>
636   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
637     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
638 
639     static std::string getGraphName(const MachineFunction *F) {
640       return ("CFG for '" + F->getName() + "' function").str();
641     }
642 
643     std::string getNodeLabel(const MachineBasicBlock *Node,
644                              const MachineFunction *Graph) {
645       std::string OutStr;
646       {
647         raw_string_ostream OSS(OutStr);
648 
649         if (isSimple()) {
650           OSS << printMBBReference(*Node);
651           if (const BasicBlock *BB = Node->getBasicBlock())
652             OSS << ": " << BB->getName();
653         } else
654           Node->print(OSS);
655       }
656 
657       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
658 
659       // Process string output to make it nicer...
660       for (unsigned i = 0; i != OutStr.length(); ++i)
661         if (OutStr[i] == '\n') {                            // Left justify
662           OutStr[i] = '\\';
663           OutStr.insert(OutStr.begin()+i+1, 'l');
664         }
665       return OutStr;
666     }
667   };
668 
669 } // end namespace llvm
670 
671 void MachineFunction::viewCFG() const
672 {
673 #ifndef NDEBUG
674   ViewGraph(this, "mf" + getName());
675 #else
676   errs() << "MachineFunction::viewCFG is only available in debug builds on "
677          << "systems with Graphviz or gv!\n";
678 #endif // NDEBUG
679 }
680 
681 void MachineFunction::viewCFGOnly() const
682 {
683 #ifndef NDEBUG
684   ViewGraph(this, "mf" + getName(), true);
685 #else
686   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
687          << "systems with Graphviz or gv!\n";
688 #endif // NDEBUG
689 }
690 
691 /// Add the specified physical register as a live-in value and
692 /// create a corresponding virtual register for it.
693 Register MachineFunction::addLiveIn(MCRegister PReg,
694                                     const TargetRegisterClass *RC) {
695   MachineRegisterInfo &MRI = getRegInfo();
696   Register VReg = MRI.getLiveInVirtReg(PReg);
697   if (VReg) {
698     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
699     (void)VRegRC;
700     // A physical register can be added several times.
701     // Between two calls, the register class of the related virtual register
702     // may have been constrained to match some operation constraints.
703     // In that case, check that the current register class includes the
704     // physical register and is a sub class of the specified RC.
705     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
706                              RC->hasSubClassEq(VRegRC))) &&
707             "Register class mismatch!");
708     return VReg;
709   }
710   VReg = MRI.createVirtualRegister(RC);
711   MRI.addLiveIn(PReg, VReg);
712   return VReg;
713 }
714 
715 /// Return the MCSymbol for the specified non-empty jump table.
716 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
717 /// normal 'L' label is returned.
718 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
719                                         bool isLinkerPrivate) const {
720   const DataLayout &DL = getDataLayout();
721   assert(JumpTableInfo && "No jump tables");
722   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
723 
724   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
725                                      : DL.getPrivateGlobalPrefix();
726   SmallString<60> Name;
727   raw_svector_ostream(Name)
728     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
729   return Ctx.getOrCreateSymbol(Name);
730 }
731 
732 /// Return a function-local symbol to represent the PIC base.
733 MCSymbol *MachineFunction::getPICBaseSymbol() const {
734   const DataLayout &DL = getDataLayout();
735   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
736                                Twine(getFunctionNumber()) + "$pb");
737 }
738 
739 /// \name Exception Handling
740 /// \{
741 
742 LandingPadInfo &
743 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
744   unsigned N = LandingPads.size();
745   for (unsigned i = 0; i < N; ++i) {
746     LandingPadInfo &LP = LandingPads[i];
747     if (LP.LandingPadBlock == LandingPad)
748       return LP;
749   }
750 
751   LandingPads.push_back(LandingPadInfo(LandingPad));
752   return LandingPads[N];
753 }
754 
755 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
756                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
757   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
758   LP.BeginLabels.push_back(BeginLabel);
759   LP.EndLabels.push_back(EndLabel);
760 }
761 
762 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
763   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
764   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
765   LP.LandingPadLabel = LandingPadLabel;
766 
767   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
768   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
769     // If there's no typeid list specified, then "cleanup" is implicit.
770     // Otherwise, id 0 is reserved for the cleanup action.
771     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
772       LP.TypeIds.push_back(0);
773 
774     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
775     //        correct, but we need to do it this way because of how the DWARF EH
776     //        emitter processes the clauses.
777     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
778       Value *Val = LPI->getClause(I - 1);
779       if (LPI->isCatch(I - 1)) {
780         LP.TypeIds.push_back(
781             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
782       } else {
783         // Add filters in a list.
784         auto *CVal = cast<Constant>(Val);
785         SmallVector<unsigned, 4> FilterList;
786         for (const Use &U : CVal->operands())
787           FilterList.push_back(
788               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
789 
790         LP.TypeIds.push_back(getFilterIDFor(FilterList));
791       }
792     }
793 
794   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
795     for (unsigned I = CPI->arg_size(); I != 0; --I) {
796       auto *TypeInfo =
797           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
798       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
799     }
800 
801   } else {
802     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
803   }
804 
805   return LandingPadLabel;
806 }
807 
808 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
809                                             ArrayRef<unsigned> Sites) {
810   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
811 }
812 
813 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
814   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
815     if (TypeInfos[i] == TI) return i + 1;
816 
817   TypeInfos.push_back(TI);
818   return TypeInfos.size();
819 }
820 
821 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
822   // If the new filter coincides with the tail of an existing filter, then
823   // re-use the existing filter.  Folding filters more than this requires
824   // re-ordering filters and/or their elements - probably not worth it.
825   for (unsigned i : FilterEnds) {
826     unsigned j = TyIds.size();
827 
828     while (i && j)
829       if (FilterIds[--i] != TyIds[--j])
830         goto try_next;
831 
832     if (!j)
833       // The new filter coincides with range [i, end) of the existing filter.
834       return -(1 + i);
835 
836 try_next:;
837   }
838 
839   // Add the new filter.
840   int FilterID = -(1 + FilterIds.size());
841   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
842   llvm::append_range(FilterIds, TyIds);
843   FilterEnds.push_back(FilterIds.size());
844   FilterIds.push_back(0); // terminator
845   return FilterID;
846 }
847 
848 MachineFunction::CallSiteInfoMap::iterator
849 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
850   assert(MI->isCandidateForCallSiteEntry() &&
851          "Call site info refers only to call (MI) candidates");
852 
853   if (!Target.Options.EmitCallSiteInfo)
854     return CallSitesInfo.end();
855   return CallSitesInfo.find(MI);
856 }
857 
858 /// Return the call machine instruction or find a call within bundle.
859 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
860   if (!MI->isBundle())
861     return MI;
862 
863   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
864                                     getBundleEnd(MI->getIterator())))
865     if (BMI.isCandidateForCallSiteEntry())
866       return &BMI;
867 
868   llvm_unreachable("Unexpected bundle without a call site candidate");
869 }
870 
871 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
872   assert(MI->shouldUpdateCallSiteInfo() &&
873          "Call site info refers only to call (MI) candidates or "
874          "candidates inside bundles");
875 
876   const MachineInstr *CallMI = getCallInstr(MI);
877   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
878   if (CSIt == CallSitesInfo.end())
879     return;
880   CallSitesInfo.erase(CSIt);
881 }
882 
883 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
884                                        const MachineInstr *New) {
885   assert(Old->shouldUpdateCallSiteInfo() &&
886          "Call site info refers only to call (MI) candidates or "
887          "candidates inside bundles");
888 
889   if (!New->isCandidateForCallSiteEntry())
890     return eraseCallSiteInfo(Old);
891 
892   const MachineInstr *OldCallMI = getCallInstr(Old);
893   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
894   if (CSIt == CallSitesInfo.end())
895     return;
896 
897   CallSiteInfo CSInfo = CSIt->second;
898   CallSitesInfo[New] = CSInfo;
899 }
900 
901 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
902                                        const MachineInstr *New) {
903   assert(Old->shouldUpdateCallSiteInfo() &&
904          "Call site info refers only to call (MI) candidates or "
905          "candidates inside bundles");
906 
907   if (!New->isCandidateForCallSiteEntry())
908     return eraseCallSiteInfo(Old);
909 
910   const MachineInstr *OldCallMI = getCallInstr(Old);
911   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
912   if (CSIt == CallSitesInfo.end())
913     return;
914 
915   CallSiteInfo CSInfo = std::move(CSIt->second);
916   CallSitesInfo.erase(CSIt);
917   CallSitesInfo[New] = CSInfo;
918 }
919 
920 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
921   DebugInstrNumberingCount = Num;
922 }
923 
924 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
925                                                  DebugInstrOperandPair B,
926                                                  unsigned Subreg) {
927   // Catch any accidental self-loops.
928   assert(A.first != B.first);
929   // Don't allow any substitutions _from_ the memory operand number.
930   assert(A.second != DebugOperandMemNumber);
931 
932   DebugValueSubstitutions.push_back({A, B, Subreg});
933 }
934 
935 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
936                                                    MachineInstr &New,
937                                                    unsigned MaxOperand) {
938   // If the Old instruction wasn't tracked at all, there is no work to do.
939   unsigned OldInstrNum = Old.peekDebugInstrNum();
940   if (!OldInstrNum)
941     return;
942 
943   // Iterate over all operands looking for defs to create substitutions for.
944   // Avoid creating new instr numbers unless we create a new substitution.
945   // While this has no functional effect, it risks confusing someone reading
946   // MIR output.
947   // Examine all the operands, or the first N specified by the caller.
948   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
949   for (unsigned int I = 0; I < MaxOperand; ++I) {
950     const auto &OldMO = Old.getOperand(I);
951     auto &NewMO = New.getOperand(I);
952     (void)NewMO;
953 
954     if (!OldMO.isReg() || !OldMO.isDef())
955       continue;
956     assert(NewMO.isDef());
957 
958     unsigned NewInstrNum = New.getDebugInstrNum();
959     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
960                                std::make_pair(NewInstrNum, I));
961   }
962 }
963 
964 auto MachineFunction::salvageCopySSA(
965     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
966     -> DebugInstrOperandPair {
967   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
968 
969   // Check whether this copy-like instruction has already been salvaged into
970   // an operand pair.
971   Register Dest;
972   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
973     Dest = CopyDstSrc->Destination->getReg();
974   } else {
975     assert(MI.isSubregToReg());
976     Dest = MI.getOperand(0).getReg();
977   }
978 
979   auto CacheIt = DbgPHICache.find(Dest);
980   if (CacheIt != DbgPHICache.end())
981     return CacheIt->second;
982 
983   // Calculate the instruction number to use, or install a DBG_PHI.
984   auto OperandPair = salvageCopySSAImpl(MI);
985   DbgPHICache.insert({Dest, OperandPair});
986   return OperandPair;
987 }
988 
989 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
990     -> DebugInstrOperandPair {
991   MachineRegisterInfo &MRI = getRegInfo();
992   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
993   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
994 
995   // Chase the value read by a copy-like instruction back to the instruction
996   // that ultimately _defines_ that value. This may pass:
997   //  * Through multiple intermediate copies, including subregister moves /
998   //    copies,
999   //  * Copies from physical registers that must then be traced back to the
1000   //    defining instruction,
1001   //  * Or, physical registers may be live-in to (only) the entry block, which
1002   //    requires a DBG_PHI to be created.
1003   // We can pursue this problem in that order: trace back through copies,
1004   // optionally through a physical register, to a defining instruction. We
1005   // should never move from physreg to vreg. As we're still in SSA form, no need
1006   // to worry about partial definitions of registers.
1007 
1008   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1009   // returns the register read and any subregister identifying which part is
1010   // read.
1011   auto GetRegAndSubreg =
1012       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1013     Register NewReg, OldReg;
1014     unsigned SubReg;
1015     if (Cpy.isCopy()) {
1016       OldReg = Cpy.getOperand(0).getReg();
1017       NewReg = Cpy.getOperand(1).getReg();
1018       SubReg = Cpy.getOperand(1).getSubReg();
1019     } else if (Cpy.isSubregToReg()) {
1020       OldReg = Cpy.getOperand(0).getReg();
1021       NewReg = Cpy.getOperand(2).getReg();
1022       SubReg = Cpy.getOperand(3).getImm();
1023     } else {
1024       auto CopyDetails = *TII.isCopyInstr(Cpy);
1025       const MachineOperand &Src = *CopyDetails.Source;
1026       const MachineOperand &Dest = *CopyDetails.Destination;
1027       OldReg = Dest.getReg();
1028       NewReg = Src.getReg();
1029       SubReg = Src.getSubReg();
1030     }
1031 
1032     return {NewReg, SubReg};
1033   };
1034 
1035   // First seek either the defining instruction, or a copy from a physreg.
1036   // During search, the current state is the current copy instruction, and which
1037   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1038   // deal with those later.
1039   auto State = GetRegAndSubreg(MI);
1040   auto CurInst = MI.getIterator();
1041   SmallVector<unsigned, 4> SubregsSeen;
1042   while (true) {
1043     // If we've found a copy from a physreg, first portion of search is over.
1044     if (!State.first.isVirtual())
1045       break;
1046 
1047     // Record any subregister qualifier.
1048     if (State.second)
1049       SubregsSeen.push_back(State.second);
1050 
1051     assert(MRI.hasOneDef(State.first));
1052     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1053     CurInst = Inst.getIterator();
1054 
1055     // Any non-copy instruction is the defining instruction we're seeking.
1056     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1057       break;
1058     State = GetRegAndSubreg(Inst);
1059   };
1060 
1061   // Helper lambda to apply additional subregister substitutions to a known
1062   // instruction/operand pair. Adds new (fake) substitutions so that we can
1063   // record the subregister. FIXME: this isn't very space efficient if multiple
1064   // values are tracked back through the same copies; cache something later.
1065   auto ApplySubregisters =
1066       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1067     for (unsigned Subreg : reverse(SubregsSeen)) {
1068       // Fetch a new instruction number, not attached to an actual instruction.
1069       unsigned NewInstrNumber = getNewDebugInstrNum();
1070       // Add a substitution from the "new" number to the known one, with a
1071       // qualifying subreg.
1072       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1073       // Return the new number; to find the underlying value, consumers need to
1074       // deal with the qualifying subreg.
1075       P = {NewInstrNumber, 0};
1076     }
1077     return P;
1078   };
1079 
1080   // If we managed to find the defining instruction after COPYs, return an
1081   // instruction / operand pair after adding subregister qualifiers.
1082   if (State.first.isVirtual()) {
1083     // Virtual register def -- we can just look up where this happens.
1084     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1085     for (auto &MO : Inst->operands()) {
1086       if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1087         continue;
1088       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1089     }
1090 
1091     llvm_unreachable("Vreg def with no corresponding operand?");
1092   }
1093 
1094   // Our search ended in a copy from a physreg: walk back up the function
1095   // looking for whatever defines the physreg.
1096   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1097   State = GetRegAndSubreg(*CurInst);
1098   Register RegToSeek = State.first;
1099 
1100   auto RMII = CurInst->getReverseIterator();
1101   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1102   for (auto &ToExamine : PrevInstrs) {
1103     for (auto &MO : ToExamine.operands()) {
1104       // Test for operand that defines something aliasing RegToSeek.
1105       if (!MO.isReg() || !MO.isDef() ||
1106           !TRI.regsOverlap(RegToSeek, MO.getReg()))
1107         continue;
1108 
1109       return ApplySubregisters(
1110           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1111     }
1112   }
1113 
1114   MachineBasicBlock &InsertBB = *CurInst->getParent();
1115 
1116   // We reached the start of the block before finding a defining instruction.
1117   // There are numerous scenarios where this can happen:
1118   // * Constant physical registers,
1119   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1120   // * Arguments in the entry block,
1121   // * Exception handling landing pads.
1122   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1123   // the variable value at this position, rather than checking it makes sense.
1124 
1125   // Create DBG_PHI for specified physreg.
1126   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1127                          TII.get(TargetOpcode::DBG_PHI));
1128   Builder.addReg(State.first);
1129   unsigned NewNum = getNewDebugInstrNum();
1130   Builder.addImm(NewNum);
1131   return ApplySubregisters({NewNum, 0u});
1132 }
1133 
1134 void MachineFunction::finalizeDebugInstrRefs() {
1135   auto *TII = getSubtarget().getInstrInfo();
1136 
1137   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1138     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1139     MI.setDesc(RefII);
1140     MI.setDebugValueUndef();
1141   };
1142 
1143   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1144   for (auto &MBB : *this) {
1145     for (auto &MI : MBB) {
1146       if (!MI.isDebugRef())
1147         continue;
1148 
1149       bool IsValidRef = true;
1150 
1151       for (MachineOperand &MO : MI.debug_operands()) {
1152         if (!MO.isReg())
1153           continue;
1154 
1155         Register Reg = MO.getReg();
1156 
1157         // Some vregs can be deleted as redundant in the meantime. Mark those
1158         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1159         // quickly deleted, leaving dangling references to vregs with no def.
1160         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1161           IsValidRef = false;
1162           break;
1163         }
1164 
1165         assert(Reg.isVirtual());
1166         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1167 
1168         // If we've found a copy-like instruction, follow it back to the
1169         // instruction that defines the source value, see salvageCopySSA docs
1170         // for why this is important.
1171         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1172           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1173           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1174         } else {
1175           // Otherwise, identify the operand number that the VReg refers to.
1176           unsigned OperandIdx = 0;
1177           for (const auto &DefMO : DefMI.operands()) {
1178             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1179               break;
1180             ++OperandIdx;
1181           }
1182           assert(OperandIdx < DefMI.getNumOperands());
1183 
1184           // Morph this instr ref to point at the given instruction and operand.
1185           unsigned ID = DefMI.getDebugInstrNum();
1186           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1187         }
1188       }
1189 
1190       if (!IsValidRef)
1191         MakeUndefDbgValue(MI);
1192     }
1193   }
1194 }
1195 
1196 bool MachineFunction::shouldUseDebugInstrRef() const {
1197   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1198   // have optimized code inlined into this unoptimized code, however with
1199   // fewer and less aggressive optimizations happening, coverage and accuracy
1200   // should not suffer.
1201   if (getTarget().getOptLevel() == CodeGenOpt::None)
1202     return false;
1203 
1204   // Don't use instr-ref if this function is marked optnone.
1205   if (F.hasFnAttribute(Attribute::OptimizeNone))
1206     return false;
1207 
1208   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1209     return true;
1210 
1211   return false;
1212 }
1213 
1214 bool MachineFunction::useDebugInstrRef() const {
1215   return UseDebugInstrRef;
1216 }
1217 
1218 void MachineFunction::setUseDebugInstrRef(bool Use) {
1219   UseDebugInstrRef = Use;
1220 }
1221 
1222 // Use one million as a high / reserved number.
1223 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1224 
1225 /// \}
1226 
1227 //===----------------------------------------------------------------------===//
1228 //  MachineJumpTableInfo implementation
1229 //===----------------------------------------------------------------------===//
1230 
1231 /// Return the size of each entry in the jump table.
1232 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1233   // The size of a jump table entry is 4 bytes unless the entry is just the
1234   // address of a block, in which case it is the pointer size.
1235   switch (getEntryKind()) {
1236   case MachineJumpTableInfo::EK_BlockAddress:
1237     return TD.getPointerSize();
1238   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1239     return 8;
1240   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1241   case MachineJumpTableInfo::EK_LabelDifference32:
1242   case MachineJumpTableInfo::EK_Custom32:
1243     return 4;
1244   case MachineJumpTableInfo::EK_Inline:
1245     return 0;
1246   }
1247   llvm_unreachable("Unknown jump table encoding!");
1248 }
1249 
1250 /// Return the alignment of each entry in the jump table.
1251 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1252   // The alignment of a jump table entry is the alignment of int32 unless the
1253   // entry is just the address of a block, in which case it is the pointer
1254   // alignment.
1255   switch (getEntryKind()) {
1256   case MachineJumpTableInfo::EK_BlockAddress:
1257     return TD.getPointerABIAlignment(0).value();
1258   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1259     return TD.getABIIntegerTypeAlignment(64).value();
1260   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1261   case MachineJumpTableInfo::EK_LabelDifference32:
1262   case MachineJumpTableInfo::EK_Custom32:
1263     return TD.getABIIntegerTypeAlignment(32).value();
1264   case MachineJumpTableInfo::EK_Inline:
1265     return 1;
1266   }
1267   llvm_unreachable("Unknown jump table encoding!");
1268 }
1269 
1270 /// Create a new jump table entry in the jump table info.
1271 unsigned MachineJumpTableInfo::createJumpTableIndex(
1272                                const std::vector<MachineBasicBlock*> &DestBBs) {
1273   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1274   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1275   return JumpTables.size()-1;
1276 }
1277 
1278 /// If Old is the target of any jump tables, update the jump tables to branch
1279 /// to New instead.
1280 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1281                                                   MachineBasicBlock *New) {
1282   assert(Old != New && "Not making a change?");
1283   bool MadeChange = false;
1284   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1285     ReplaceMBBInJumpTable(i, Old, New);
1286   return MadeChange;
1287 }
1288 
1289 /// If MBB is present in any jump tables, remove it.
1290 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1291   bool MadeChange = false;
1292   for (MachineJumpTableEntry &JTE : JumpTables) {
1293     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1294     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1295     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1296   }
1297   return MadeChange;
1298 }
1299 
1300 /// If Old is a target of the jump tables, update the jump table to branch to
1301 /// New instead.
1302 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1303                                                  MachineBasicBlock *Old,
1304                                                  MachineBasicBlock *New) {
1305   assert(Old != New && "Not making a change?");
1306   bool MadeChange = false;
1307   MachineJumpTableEntry &JTE = JumpTables[Idx];
1308   for (MachineBasicBlock *&MBB : JTE.MBBs)
1309     if (MBB == Old) {
1310       MBB = New;
1311       MadeChange = true;
1312     }
1313   return MadeChange;
1314 }
1315 
1316 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1317   if (JumpTables.empty()) return;
1318 
1319   OS << "Jump Tables:\n";
1320 
1321   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1322     OS << printJumpTableEntryReference(i) << ':';
1323     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1324       OS << ' ' << printMBBReference(*MBB);
1325     if (i != e)
1326       OS << '\n';
1327   }
1328 
1329   OS << '\n';
1330 }
1331 
1332 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1333 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1334 #endif
1335 
1336 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1337   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1338 }
1339 
1340 //===----------------------------------------------------------------------===//
1341 //  MachineConstantPool implementation
1342 //===----------------------------------------------------------------------===//
1343 
1344 void MachineConstantPoolValue::anchor() {}
1345 
1346 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1347   return DL.getTypeAllocSize(Ty);
1348 }
1349 
1350 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1351   if (isMachineConstantPoolEntry())
1352     return Val.MachineCPVal->getSizeInBytes(DL);
1353   return DL.getTypeAllocSize(Val.ConstVal->getType());
1354 }
1355 
1356 bool MachineConstantPoolEntry::needsRelocation() const {
1357   if (isMachineConstantPoolEntry())
1358     return true;
1359   return Val.ConstVal->needsDynamicRelocation();
1360 }
1361 
1362 SectionKind
1363 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1364   if (needsRelocation())
1365     return SectionKind::getReadOnlyWithRel();
1366   switch (getSizeInBytes(*DL)) {
1367   case 4:
1368     return SectionKind::getMergeableConst4();
1369   case 8:
1370     return SectionKind::getMergeableConst8();
1371   case 16:
1372     return SectionKind::getMergeableConst16();
1373   case 32:
1374     return SectionKind::getMergeableConst32();
1375   default:
1376     return SectionKind::getReadOnly();
1377   }
1378 }
1379 
1380 MachineConstantPool::~MachineConstantPool() {
1381   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1382   // so keep track of which we've deleted to avoid double deletions.
1383   DenseSet<MachineConstantPoolValue*> Deleted;
1384   for (const MachineConstantPoolEntry &C : Constants)
1385     if (C.isMachineConstantPoolEntry()) {
1386       Deleted.insert(C.Val.MachineCPVal);
1387       delete C.Val.MachineCPVal;
1388     }
1389   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1390     if (Deleted.count(CPV) == 0)
1391       delete CPV;
1392   }
1393 }
1394 
1395 /// Test whether the given two constants can be allocated the same constant pool
1396 /// entry.
1397 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1398                                       const DataLayout &DL) {
1399   // Handle the trivial case quickly.
1400   if (A == B) return true;
1401 
1402   // If they have the same type but weren't the same constant, quickly
1403   // reject them.
1404   if (A->getType() == B->getType()) return false;
1405 
1406   // We can't handle structs or arrays.
1407   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1408       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1409     return false;
1410 
1411   // For now, only support constants with the same size.
1412   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1413   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1414     return false;
1415 
1416   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1417 
1418   // Try constant folding a bitcast of both instructions to an integer.  If we
1419   // get two identical ConstantInt's, then we are good to share them.  We use
1420   // the constant folding APIs to do this so that we get the benefit of
1421   // DataLayout.
1422   if (isa<PointerType>(A->getType()))
1423     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1424                                 const_cast<Constant *>(A), IntTy, DL);
1425   else if (A->getType() != IntTy)
1426     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1427                                 IntTy, DL);
1428   if (isa<PointerType>(B->getType()))
1429     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1430                                 const_cast<Constant *>(B), IntTy, DL);
1431   else if (B->getType() != IntTy)
1432     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1433                                 IntTy, DL);
1434 
1435   return A == B;
1436 }
1437 
1438 /// Create a new entry in the constant pool or return an existing one.
1439 /// User must specify the log2 of the minimum required alignment for the object.
1440 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1441                                                    Align Alignment) {
1442   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1443 
1444   // Check to see if we already have this constant.
1445   //
1446   // FIXME, this could be made much more efficient for large constant pools.
1447   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1448     if (!Constants[i].isMachineConstantPoolEntry() &&
1449         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1450       if (Constants[i].getAlign() < Alignment)
1451         Constants[i].Alignment = Alignment;
1452       return i;
1453     }
1454 
1455   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1456   return Constants.size()-1;
1457 }
1458 
1459 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1460                                                    Align Alignment) {
1461   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1462 
1463   // Check to see if we already have this constant.
1464   //
1465   // FIXME, this could be made much more efficient for large constant pools.
1466   int Idx = V->getExistingMachineCPValue(this, Alignment);
1467   if (Idx != -1) {
1468     MachineCPVsSharingEntries.insert(V);
1469     return (unsigned)Idx;
1470   }
1471 
1472   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1473   return Constants.size()-1;
1474 }
1475 
1476 void MachineConstantPool::print(raw_ostream &OS) const {
1477   if (Constants.empty()) return;
1478 
1479   OS << "Constant Pool:\n";
1480   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1481     OS << "  cp#" << i << ": ";
1482     if (Constants[i].isMachineConstantPoolEntry())
1483       Constants[i].Val.MachineCPVal->print(OS);
1484     else
1485       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1486     OS << ", align=" << Constants[i].getAlign().value();
1487     OS << "\n";
1488   }
1489 }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1493 #endif
1494