xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 4dad4914f7d5232639e64ffbc816078184f1462c)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   switch(Prop) {
93   case P::FailedISel: return "FailedISel";
94   case P::IsSSA: return "IsSSA";
95   case P::Legalized: return "Legalized";
96   case P::NoPHIs: return "NoPHIs";
97   case P::NoVRegs: return "NoVRegs";
98   case P::RegBankSelected: return "RegBankSelected";
99   case P::Selected: return "Selected";
100   case P::TracksLiveness: return "TracksLiveness";
101   }
102   llvm_unreachable("Invalid machine function property");
103 }
104 
105 // Pin the vtable to this file.
106 void MachineFunction::Delegate::anchor() {}
107 
108 void MachineFunctionProperties::print(raw_ostream &OS) const {
109   const char *Separator = "";
110   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
111     if (!Properties[I])
112       continue;
113     OS << Separator << getPropertyName(static_cast<Property>(I));
114     Separator = ", ";
115   }
116 }
117 
118 //===----------------------------------------------------------------------===//
119 // MachineFunction implementation
120 //===----------------------------------------------------------------------===//
121 
122 // Out-of-line virtual method.
123 MachineFunctionInfo::~MachineFunctionInfo() = default;
124 
125 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
126   MBB->getParent()->DeleteMachineBasicBlock(MBB);
127 }
128 
129 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
130                                            const Function &F) {
131   if (F.hasFnAttribute(Attribute::StackAlignment))
132     return F.getFnStackAlignment();
133   return STI->getFrameLowering()->getStackAlign().value();
134 }
135 
136 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
137                                  const TargetSubtargetInfo &STI,
138                                  unsigned FunctionNum, MachineModuleInfo &mmi)
139     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
140   FunctionNumber = FunctionNum;
141   init();
142 }
143 
144 void MachineFunction::handleInsertion(MachineInstr &MI) {
145   if (TheDelegate)
146     TheDelegate->MF_HandleInsertion(MI);
147 }
148 
149 void MachineFunction::handleRemoval(MachineInstr &MI) {
150   if (TheDelegate)
151     TheDelegate->MF_HandleRemoval(MI);
152 }
153 
154 void MachineFunction::init() {
155   // Assume the function starts in SSA form with correct liveness.
156   Properties.set(MachineFunctionProperties::Property::IsSSA);
157   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
158   if (STI->getRegisterInfo())
159     RegInfo = new (Allocator) MachineRegisterInfo(this);
160   else
161     RegInfo = nullptr;
162 
163   MFInfo = nullptr;
164   // We can realign the stack if the target supports it and the user hasn't
165   // explicitly asked us not to.
166   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
167                       !F.hasFnAttribute("no-realign-stack");
168   FrameInfo = new (Allocator) MachineFrameInfo(
169       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
170       /*ForcedRealign=*/CanRealignSP &&
171           F.hasFnAttribute(Attribute::StackAlignment));
172 
173   if (F.hasFnAttribute(Attribute::StackAlignment))
174     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
175 
176   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
177   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
178 
179   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
180   // FIXME: Use Function::hasOptSize().
181   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
182     Alignment = std::max(Alignment,
183                          STI->getTargetLowering()->getPrefFunctionAlignment());
184 
185   if (AlignAllFunctions)
186     Alignment = Align(1ULL << AlignAllFunctions);
187 
188   JumpTableInfo = nullptr;
189 
190   if (isFuncletEHPersonality(classifyEHPersonality(
191           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
192     WinEHInfo = new (Allocator) WinEHFuncInfo();
193   }
194 
195   if (isScopedEHPersonality(classifyEHPersonality(
196           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
197     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
198   }
199 
200   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
201          "Can't create a MachineFunction using a Module with a "
202          "Target-incompatible DataLayout attached\n");
203 
204   PSVManager =
205     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
206                                                   getInstrInfo()));
207 }
208 
209 MachineFunction::~MachineFunction() {
210   clear();
211 }
212 
213 void MachineFunction::clear() {
214   Properties.reset();
215   // Don't call destructors on MachineInstr and MachineOperand. All of their
216   // memory comes from the BumpPtrAllocator which is about to be purged.
217   //
218   // Do call MachineBasicBlock destructors, it contains std::vectors.
219   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
220     I->Insts.clearAndLeakNodesUnsafely();
221   MBBNumbering.clear();
222 
223   InstructionRecycler.clear(Allocator);
224   OperandRecycler.clear(Allocator);
225   BasicBlockRecycler.clear(Allocator);
226   CodeViewAnnotations.clear();
227   VariableDbgInfos.clear();
228   if (RegInfo) {
229     RegInfo->~MachineRegisterInfo();
230     Allocator.Deallocate(RegInfo);
231   }
232   if (MFInfo) {
233     MFInfo->~MachineFunctionInfo();
234     Allocator.Deallocate(MFInfo);
235   }
236 
237   FrameInfo->~MachineFrameInfo();
238   Allocator.Deallocate(FrameInfo);
239 
240   ConstantPool->~MachineConstantPool();
241   Allocator.Deallocate(ConstantPool);
242 
243   if (JumpTableInfo) {
244     JumpTableInfo->~MachineJumpTableInfo();
245     Allocator.Deallocate(JumpTableInfo);
246   }
247 
248   if (WinEHInfo) {
249     WinEHInfo->~WinEHFuncInfo();
250     Allocator.Deallocate(WinEHInfo);
251   }
252 
253   if (WasmEHInfo) {
254     WasmEHInfo->~WasmEHFuncInfo();
255     Allocator.Deallocate(WasmEHInfo);
256   }
257 }
258 
259 const DataLayout &MachineFunction::getDataLayout() const {
260   return F.getParent()->getDataLayout();
261 }
262 
263 /// Get the JumpTableInfo for this function.
264 /// If it does not already exist, allocate one.
265 MachineJumpTableInfo *MachineFunction::
266 getOrCreateJumpTableInfo(unsigned EntryKind) {
267   if (JumpTableInfo) return JumpTableInfo;
268 
269   JumpTableInfo = new (Allocator)
270     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
271   return JumpTableInfo;
272 }
273 
274 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
275   if (&FPType == &APFloat::IEEEsingle()) {
276     Attribute Attr = F.getFnAttribute("denormal-fp-math-f32");
277     StringRef Val = Attr.getValueAsString();
278     if (!Val.empty())
279       return parseDenormalFPAttribute(Val);
280 
281     // If the f32 variant of the attribute isn't specified, try to use the
282     // generic one.
283   }
284 
285   // TODO: Should probably avoid the connection to the IR and store directly
286   // in the MachineFunction.
287   Attribute Attr = F.getFnAttribute("denormal-fp-math");
288   return parseDenormalFPAttribute(Attr.getValueAsString());
289 }
290 
291 /// Should we be emitting segmented stack stuff for the function
292 bool MachineFunction::shouldSplitStack() const {
293   return getFunction().hasFnAttribute("split-stack");
294 }
295 
296 LLVM_NODISCARD unsigned
297 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
298   FrameInstructions.push_back(Inst);
299   return FrameInstructions.size() - 1;
300 }
301 
302 /// This discards all of the MachineBasicBlock numbers and recomputes them.
303 /// This guarantees that the MBB numbers are sequential, dense, and match the
304 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
305 /// is specified, only that block and those after it are renumbered.
306 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
307   if (empty()) { MBBNumbering.clear(); return; }
308   MachineFunction::iterator MBBI, E = end();
309   if (MBB == nullptr)
310     MBBI = begin();
311   else
312     MBBI = MBB->getIterator();
313 
314   // Figure out the block number this should have.
315   unsigned BlockNo = 0;
316   if (MBBI != begin())
317     BlockNo = std::prev(MBBI)->getNumber() + 1;
318 
319   for (; MBBI != E; ++MBBI, ++BlockNo) {
320     if (MBBI->getNumber() != (int)BlockNo) {
321       // Remove use of the old number.
322       if (MBBI->getNumber() != -1) {
323         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
324                "MBB number mismatch!");
325         MBBNumbering[MBBI->getNumber()] = nullptr;
326       }
327 
328       // If BlockNo is already taken, set that block's number to -1.
329       if (MBBNumbering[BlockNo])
330         MBBNumbering[BlockNo]->setNumber(-1);
331 
332       MBBNumbering[BlockNo] = &*MBBI;
333       MBBI->setNumber(BlockNo);
334     }
335   }
336 
337   // Okay, all the blocks are renumbered.  If we have compactified the block
338   // numbering, shrink MBBNumbering now.
339   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
340   MBBNumbering.resize(BlockNo);
341 }
342 
343 /// This is used with -fbasicblock-sections or -fbasicblock-labels option.
344 /// A unary encoding of basic block labels is done to keep ".strtab" sizes
345 /// small.
346 void MachineFunction::createBBLabels() {
347   const TargetInstrInfo *TII = getSubtarget().getInstrInfo();
348   this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a');
349   for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) {
350     assert(
351         (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) &&
352         "BasicBlock number was out of range!");
353     // 'a' - Normal block.
354     // 'r' - Return block.
355     // 'l' - Landing Pad.
356     // 'L' - Return and landing pad.
357     bool isEHPad = MBBI->isEHPad();
358     bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back());
359     char type = 'a';
360     if (isEHPad && isRetBlock)
361       type = 'L';
362     else if (isEHPad)
363       type = 'l';
364     else if (isRetBlock)
365       type = 'r';
366     BBSectionsSymbolPrefix[MBBI->getNumber()] = type;
367   }
368 }
369 
370 /// This method iterates over the basic blocks and assigns their IsBeginSection
371 /// and IsEndSection fields. This must be called after MBB layout is finalized
372 /// and the SectionID's are assigned to MBBs.
373 void MachineFunction::assignBeginEndSections() {
374   front().setIsBeginSection();
375   auto CurrentSectionID = front().getSectionID();
376   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
377     if (MBBI->getSectionID() == CurrentSectionID)
378       continue;
379     MBBI->setIsBeginSection();
380     std::prev(MBBI)->setIsEndSection();
381     CurrentSectionID = MBBI->getSectionID();
382   }
383   back().setIsEndSection();
384 }
385 
386 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
387 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
388                                                   const DebugLoc &DL,
389                                                   bool NoImp) {
390   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
391     MachineInstr(*this, MCID, DL, NoImp);
392 }
393 
394 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
395 /// identical in all ways except the instruction has no parent, prev, or next.
396 MachineInstr *
397 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
398   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
399              MachineInstr(*this, *Orig);
400 }
401 
402 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
403     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
404   MachineInstr *FirstClone = nullptr;
405   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
406   while (true) {
407     MachineInstr *Cloned = CloneMachineInstr(&*I);
408     MBB.insert(InsertBefore, Cloned);
409     if (FirstClone == nullptr) {
410       FirstClone = Cloned;
411     } else {
412       Cloned->bundleWithPred();
413     }
414 
415     if (!I->isBundledWithSucc())
416       break;
417     ++I;
418   }
419   // Copy over call site info to the cloned instruction if needed. If Orig is in
420   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
421   // the bundle.
422   if (Orig.shouldUpdateCallSiteInfo())
423     copyCallSiteInfo(&Orig, FirstClone);
424   return *FirstClone;
425 }
426 
427 /// Delete the given MachineInstr.
428 ///
429 /// This function also serves as the MachineInstr destructor - the real
430 /// ~MachineInstr() destructor must be empty.
431 void
432 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
433   // Verify that a call site info is at valid state. This assertion should
434   // be triggered during the implementation of support for the
435   // call site info of a new architecture. If the assertion is triggered,
436   // back trace will tell where to insert a call to updateCallSiteInfo().
437   assert((!MI->isCandidateForCallSiteEntry() ||
438           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
439          "Call site info was not updated!");
440   // Strip it for parts. The operand array and the MI object itself are
441   // independently recyclable.
442   if (MI->Operands)
443     deallocateOperandArray(MI->CapOperands, MI->Operands);
444   // Don't call ~MachineInstr() which must be trivial anyway because
445   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
446   // destructors.
447   InstructionRecycler.Deallocate(Allocator, MI);
448 }
449 
450 /// Allocate a new MachineBasicBlock. Use this instead of
451 /// `new MachineBasicBlock'.
452 MachineBasicBlock *
453 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
454   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
455              MachineBasicBlock(*this, bb);
456 }
457 
458 /// Delete the given MachineBasicBlock.
459 void
460 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
461   assert(MBB->getParent() == this && "MBB parent mismatch!");
462   MBB->~MachineBasicBlock();
463   BasicBlockRecycler.Deallocate(Allocator, MBB);
464 }
465 
466 MachineMemOperand *MachineFunction::getMachineMemOperand(
467     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
468     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
469     SyncScope::ID SSID, AtomicOrdering Ordering,
470     AtomicOrdering FailureOrdering) {
471   return new (Allocator)
472       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
473                         SSID, Ordering, FailureOrdering);
474 }
475 
476 MachineMemOperand *
477 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
478                                       int64_t Offset, uint64_t Size) {
479   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
480 
481   // If there is no pointer value, the offset isn't tracked so we need to adjust
482   // the base alignment.
483   Align Alignment = PtrInfo.V.isNull()
484                         ? commonAlignment(MMO->getBaseAlign(), Offset)
485                         : MMO->getBaseAlign();
486 
487   return new (Allocator)
488       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
489                         Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
490                         MMO->getOrdering(), MMO->getFailureOrdering());
491 }
492 
493 MachineMemOperand *
494 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
495                                       const AAMDNodes &AAInfo) {
496   MachinePointerInfo MPI = MMO->getValue() ?
497              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
498              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
499 
500   return new (Allocator) MachineMemOperand(
501       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
502       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(),
503       MMO->getFailureOrdering());
504 }
505 
506 MachineMemOperand *
507 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
508                                       MachineMemOperand::Flags Flags) {
509   return new (Allocator) MachineMemOperand(
510       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
511       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
512       MMO->getOrdering(), MMO->getFailureOrdering());
513 }
514 
515 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
516     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
517     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
518   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
519                                          PostInstrSymbol, HeapAllocMarker);
520 }
521 
522 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
523   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
524   llvm::copy(Name, Dest);
525   Dest[Name.size()] = 0;
526   return Dest;
527 }
528 
529 uint32_t *MachineFunction::allocateRegMask() {
530   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
531   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
532   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
533   memset(Mask, 0, Size * sizeof(Mask[0]));
534   return Mask;
535 }
536 
537 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
538   int* AllocMask = Allocator.Allocate<int>(Mask.size());
539   copy(Mask, AllocMask);
540   return {AllocMask, Mask.size()};
541 }
542 
543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
544 LLVM_DUMP_METHOD void MachineFunction::dump() const {
545   print(dbgs());
546 }
547 #endif
548 
549 StringRef MachineFunction::getName() const {
550   return getFunction().getName();
551 }
552 
553 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
554   OS << "# Machine code for function " << getName() << ": ";
555   getProperties().print(OS);
556   OS << '\n';
557 
558   // Print Frame Information
559   FrameInfo->print(*this, OS);
560 
561   // Print JumpTable Information
562   if (JumpTableInfo)
563     JumpTableInfo->print(OS);
564 
565   // Print Constant Pool
566   ConstantPool->print(OS);
567 
568   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
569 
570   if (RegInfo && !RegInfo->livein_empty()) {
571     OS << "Function Live Ins: ";
572     for (MachineRegisterInfo::livein_iterator
573          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
574       OS << printReg(I->first, TRI);
575       if (I->second)
576         OS << " in " << printReg(I->second, TRI);
577       if (std::next(I) != E)
578         OS << ", ";
579     }
580     OS << '\n';
581   }
582 
583   ModuleSlotTracker MST(getFunction().getParent());
584   MST.incorporateFunction(getFunction());
585   for (const auto &BB : *this) {
586     OS << '\n';
587     // If we print the whole function, print it at its most verbose level.
588     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
589   }
590 
591   OS << "\n# End machine code for function " << getName() << ".\n\n";
592 }
593 
594 /// True if this function needs frame moves for debug or exceptions.
595 bool MachineFunction::needsFrameMoves() const {
596   return getMMI().hasDebugInfo() ||
597          getTarget().Options.ForceDwarfFrameSection ||
598          F.needsUnwindTableEntry();
599 }
600 
601 namespace llvm {
602 
603   template<>
604   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
605     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
606 
607     static std::string getGraphName(const MachineFunction *F) {
608       return ("CFG for '" + F->getName() + "' function").str();
609     }
610 
611     std::string getNodeLabel(const MachineBasicBlock *Node,
612                              const MachineFunction *Graph) {
613       std::string OutStr;
614       {
615         raw_string_ostream OSS(OutStr);
616 
617         if (isSimple()) {
618           OSS << printMBBReference(*Node);
619           if (const BasicBlock *BB = Node->getBasicBlock())
620             OSS << ": " << BB->getName();
621         } else
622           Node->print(OSS);
623       }
624 
625       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
626 
627       // Process string output to make it nicer...
628       for (unsigned i = 0; i != OutStr.length(); ++i)
629         if (OutStr[i] == '\n') {                            // Left justify
630           OutStr[i] = '\\';
631           OutStr.insert(OutStr.begin()+i+1, 'l');
632         }
633       return OutStr;
634     }
635   };
636 
637 } // end namespace llvm
638 
639 void MachineFunction::viewCFG() const
640 {
641 #ifndef NDEBUG
642   ViewGraph(this, "mf" + getName());
643 #else
644   errs() << "MachineFunction::viewCFG is only available in debug builds on "
645          << "systems with Graphviz or gv!\n";
646 #endif // NDEBUG
647 }
648 
649 void MachineFunction::viewCFGOnly() const
650 {
651 #ifndef NDEBUG
652   ViewGraph(this, "mf" + getName(), true);
653 #else
654   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
655          << "systems with Graphviz or gv!\n";
656 #endif // NDEBUG
657 }
658 
659 /// Add the specified physical register as a live-in value and
660 /// create a corresponding virtual register for it.
661 Register MachineFunction::addLiveIn(MCRegister PReg,
662                                     const TargetRegisterClass *RC) {
663   MachineRegisterInfo &MRI = getRegInfo();
664   Register VReg = MRI.getLiveInVirtReg(PReg);
665   if (VReg) {
666     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
667     (void)VRegRC;
668     // A physical register can be added several times.
669     // Between two calls, the register class of the related virtual register
670     // may have been constrained to match some operation constraints.
671     // In that case, check that the current register class includes the
672     // physical register and is a sub class of the specified RC.
673     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
674                              RC->hasSubClassEq(VRegRC))) &&
675             "Register class mismatch!");
676     return VReg;
677   }
678   VReg = MRI.createVirtualRegister(RC);
679   MRI.addLiveIn(PReg, VReg);
680   return VReg;
681 }
682 
683 /// Return the MCSymbol for the specified non-empty jump table.
684 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
685 /// normal 'L' label is returned.
686 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
687                                         bool isLinkerPrivate) const {
688   const DataLayout &DL = getDataLayout();
689   assert(JumpTableInfo && "No jump tables");
690   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
691 
692   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
693                                      : DL.getPrivateGlobalPrefix();
694   SmallString<60> Name;
695   raw_svector_ostream(Name)
696     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
697   return Ctx.getOrCreateSymbol(Name);
698 }
699 
700 /// Return a function-local symbol to represent the PIC base.
701 MCSymbol *MachineFunction::getPICBaseSymbol() const {
702   const DataLayout &DL = getDataLayout();
703   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
704                                Twine(getFunctionNumber()) + "$pb");
705 }
706 
707 /// \name Exception Handling
708 /// \{
709 
710 LandingPadInfo &
711 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
712   unsigned N = LandingPads.size();
713   for (unsigned i = 0; i < N; ++i) {
714     LandingPadInfo &LP = LandingPads[i];
715     if (LP.LandingPadBlock == LandingPad)
716       return LP;
717   }
718 
719   LandingPads.push_back(LandingPadInfo(LandingPad));
720   return LandingPads[N];
721 }
722 
723 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
724                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
725   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
726   LP.BeginLabels.push_back(BeginLabel);
727   LP.EndLabels.push_back(EndLabel);
728 }
729 
730 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
731   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
732   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
733   LP.LandingPadLabel = LandingPadLabel;
734 
735   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
736   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
737     if (const auto *PF =
738             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
739       getMMI().addPersonality(PF);
740 
741     if (LPI->isCleanup())
742       addCleanup(LandingPad);
743 
744     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
745     //        correct, but we need to do it this way because of how the DWARF EH
746     //        emitter processes the clauses.
747     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
748       Value *Val = LPI->getClause(I - 1);
749       if (LPI->isCatch(I - 1)) {
750         addCatchTypeInfo(LandingPad,
751                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
752       } else {
753         // Add filters in a list.
754         auto *CVal = cast<Constant>(Val);
755         SmallVector<const GlobalValue *, 4> FilterList;
756         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
757              II != IE; ++II)
758           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
759 
760         addFilterTypeInfo(LandingPad, FilterList);
761       }
762     }
763 
764   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
765     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
766       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
767       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
768     }
769 
770   } else {
771     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
772   }
773 
774   return LandingPadLabel;
775 }
776 
777 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
778                                        ArrayRef<const GlobalValue *> TyInfo) {
779   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
780   for (unsigned N = TyInfo.size(); N; --N)
781     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
782 }
783 
784 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
785                                         ArrayRef<const GlobalValue *> TyInfo) {
786   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
787   std::vector<unsigned> IdsInFilter(TyInfo.size());
788   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
789     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
790   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
791 }
792 
793 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
794                                       bool TidyIfNoBeginLabels) {
795   for (unsigned i = 0; i != LandingPads.size(); ) {
796     LandingPadInfo &LandingPad = LandingPads[i];
797     if (LandingPad.LandingPadLabel &&
798         !LandingPad.LandingPadLabel->isDefined() &&
799         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
800       LandingPad.LandingPadLabel = nullptr;
801 
802     // Special case: we *should* emit LPs with null LP MBB. This indicates
803     // "nounwind" case.
804     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
805       LandingPads.erase(LandingPads.begin() + i);
806       continue;
807     }
808 
809     if (TidyIfNoBeginLabels) {
810       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
811         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
812         MCSymbol *EndLabel = LandingPad.EndLabels[j];
813         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
814             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
815           continue;
816 
817         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
818         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
819         --j;
820         --e;
821       }
822 
823       // Remove landing pads with no try-ranges.
824       if (LandingPads[i].BeginLabels.empty()) {
825         LandingPads.erase(LandingPads.begin() + i);
826         continue;
827       }
828     }
829 
830     // If there is no landing pad, ensure that the list of typeids is empty.
831     // If the only typeid is a cleanup, this is the same as having no typeids.
832     if (!LandingPad.LandingPadBlock ||
833         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
834       LandingPad.TypeIds.clear();
835     ++i;
836   }
837 }
838 
839 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
840   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
841   LP.TypeIds.push_back(0);
842 }
843 
844 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
845                                          const Function *Filter,
846                                          const BlockAddress *RecoverBA) {
847   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
848   SEHHandler Handler;
849   Handler.FilterOrFinally = Filter;
850   Handler.RecoverBA = RecoverBA;
851   LP.SEHHandlers.push_back(Handler);
852 }
853 
854 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
855                                            const Function *Cleanup) {
856   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
857   SEHHandler Handler;
858   Handler.FilterOrFinally = Cleanup;
859   Handler.RecoverBA = nullptr;
860   LP.SEHHandlers.push_back(Handler);
861 }
862 
863 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
864                                             ArrayRef<unsigned> Sites) {
865   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
866 }
867 
868 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
869   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
870     if (TypeInfos[i] == TI) return i + 1;
871 
872   TypeInfos.push_back(TI);
873   return TypeInfos.size();
874 }
875 
876 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
877   // If the new filter coincides with the tail of an existing filter, then
878   // re-use the existing filter.  Folding filters more than this requires
879   // re-ordering filters and/or their elements - probably not worth it.
880   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
881        E = FilterEnds.end(); I != E; ++I) {
882     unsigned i = *I, j = TyIds.size();
883 
884     while (i && j)
885       if (FilterIds[--i] != TyIds[--j])
886         goto try_next;
887 
888     if (!j)
889       // The new filter coincides with range [i, end) of the existing filter.
890       return -(1 + i);
891 
892 try_next:;
893   }
894 
895   // Add the new filter.
896   int FilterID = -(1 + FilterIds.size());
897   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
898   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
899   FilterEnds.push_back(FilterIds.size());
900   FilterIds.push_back(0); // terminator
901   return FilterID;
902 }
903 
904 MachineFunction::CallSiteInfoMap::iterator
905 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
906   assert(MI->isCandidateForCallSiteEntry() &&
907          "Call site info refers only to call (MI) candidates");
908 
909   if (!Target.Options.EmitCallSiteInfo)
910     return CallSitesInfo.end();
911   return CallSitesInfo.find(MI);
912 }
913 
914 /// Return the call machine instruction or find a call within bundle.
915 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
916   if (!MI->isBundle())
917     return MI;
918 
919   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
920                               getBundleEnd(MI->getIterator())))
921     if (BMI.isCandidateForCallSiteEntry())
922       return &BMI;
923 
924   llvm_unreachable("Unexpected bundle without a call site candidate");
925 }
926 
927 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
928   assert(MI->shouldUpdateCallSiteInfo() &&
929          "Call site info refers only to call (MI) candidates or "
930          "candidates inside bundles");
931 
932   const MachineInstr *CallMI = getCallInstr(MI);
933   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
934   if (CSIt == CallSitesInfo.end())
935     return;
936   CallSitesInfo.erase(CSIt);
937 }
938 
939 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
940                                        const MachineInstr *New) {
941   assert(Old->shouldUpdateCallSiteInfo() &&
942          "Call site info refers only to call (MI) candidates or "
943          "candidates inside bundles");
944 
945   if (!New->isCandidateForCallSiteEntry())
946     return eraseCallSiteInfo(Old);
947 
948   const MachineInstr *OldCallMI = getCallInstr(Old);
949   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
950   if (CSIt == CallSitesInfo.end())
951     return;
952 
953   CallSiteInfo CSInfo = CSIt->second;
954   CallSitesInfo[New] = CSInfo;
955 }
956 
957 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
958                                        const MachineInstr *New) {
959   assert(Old->shouldUpdateCallSiteInfo() &&
960          "Call site info refers only to call (MI) candidates or "
961          "candidates inside bundles");
962 
963   if (!New->isCandidateForCallSiteEntry())
964     return eraseCallSiteInfo(Old);
965 
966   const MachineInstr *OldCallMI = getCallInstr(Old);
967   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
968   if (CSIt == CallSitesInfo.end())
969     return;
970 
971   CallSiteInfo CSInfo = std::move(CSIt->second);
972   CallSitesInfo.erase(CSIt);
973   CallSitesInfo[New] = CSInfo;
974 }
975 
976 /// \}
977 
978 //===----------------------------------------------------------------------===//
979 //  MachineJumpTableInfo implementation
980 //===----------------------------------------------------------------------===//
981 
982 /// Return the size of each entry in the jump table.
983 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
984   // The size of a jump table entry is 4 bytes unless the entry is just the
985   // address of a block, in which case it is the pointer size.
986   switch (getEntryKind()) {
987   case MachineJumpTableInfo::EK_BlockAddress:
988     return TD.getPointerSize();
989   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
990     return 8;
991   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
992   case MachineJumpTableInfo::EK_LabelDifference32:
993   case MachineJumpTableInfo::EK_Custom32:
994     return 4;
995   case MachineJumpTableInfo::EK_Inline:
996     return 0;
997   }
998   llvm_unreachable("Unknown jump table encoding!");
999 }
1000 
1001 /// Return the alignment of each entry in the jump table.
1002 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1003   // The alignment of a jump table entry is the alignment of int32 unless the
1004   // entry is just the address of a block, in which case it is the pointer
1005   // alignment.
1006   switch (getEntryKind()) {
1007   case MachineJumpTableInfo::EK_BlockAddress:
1008     return TD.getPointerABIAlignment(0).value();
1009   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1010     return TD.getABIIntegerTypeAlignment(64).value();
1011   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1012   case MachineJumpTableInfo::EK_LabelDifference32:
1013   case MachineJumpTableInfo::EK_Custom32:
1014     return TD.getABIIntegerTypeAlignment(32).value();
1015   case MachineJumpTableInfo::EK_Inline:
1016     return 1;
1017   }
1018   llvm_unreachable("Unknown jump table encoding!");
1019 }
1020 
1021 /// Create a new jump table entry in the jump table info.
1022 unsigned MachineJumpTableInfo::createJumpTableIndex(
1023                                const std::vector<MachineBasicBlock*> &DestBBs) {
1024   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1025   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1026   return JumpTables.size()-1;
1027 }
1028 
1029 /// If Old is the target of any jump tables, update the jump tables to branch
1030 /// to New instead.
1031 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1032                                                   MachineBasicBlock *New) {
1033   assert(Old != New && "Not making a change?");
1034   bool MadeChange = false;
1035   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1036     ReplaceMBBInJumpTable(i, Old, New);
1037   return MadeChange;
1038 }
1039 
1040 /// If Old is a target of the jump tables, update the jump table to branch to
1041 /// New instead.
1042 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1043                                                  MachineBasicBlock *Old,
1044                                                  MachineBasicBlock *New) {
1045   assert(Old != New && "Not making a change?");
1046   bool MadeChange = false;
1047   MachineJumpTableEntry &JTE = JumpTables[Idx];
1048   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1049     if (JTE.MBBs[j] == Old) {
1050       JTE.MBBs[j] = New;
1051       MadeChange = true;
1052     }
1053   return MadeChange;
1054 }
1055 
1056 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1057   if (JumpTables.empty()) return;
1058 
1059   OS << "Jump Tables:\n";
1060 
1061   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1062     OS << printJumpTableEntryReference(i) << ':';
1063     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1064       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1065     if (i != e)
1066       OS << '\n';
1067   }
1068 
1069   OS << '\n';
1070 }
1071 
1072 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1073 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1074 #endif
1075 
1076 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1077   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1078 }
1079 
1080 //===----------------------------------------------------------------------===//
1081 //  MachineConstantPool implementation
1082 //===----------------------------------------------------------------------===//
1083 
1084 void MachineConstantPoolValue::anchor() {}
1085 
1086 Type *MachineConstantPoolEntry::getType() const {
1087   if (isMachineConstantPoolEntry())
1088     return Val.MachineCPVal->getType();
1089   return Val.ConstVal->getType();
1090 }
1091 
1092 bool MachineConstantPoolEntry::needsRelocation() const {
1093   if (isMachineConstantPoolEntry())
1094     return true;
1095   return Val.ConstVal->needsRelocation();
1096 }
1097 
1098 SectionKind
1099 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1100   if (needsRelocation())
1101     return SectionKind::getReadOnlyWithRel();
1102   switch (DL->getTypeAllocSize(getType())) {
1103   case 4:
1104     return SectionKind::getMergeableConst4();
1105   case 8:
1106     return SectionKind::getMergeableConst8();
1107   case 16:
1108     return SectionKind::getMergeableConst16();
1109   case 32:
1110     return SectionKind::getMergeableConst32();
1111   default:
1112     return SectionKind::getReadOnly();
1113   }
1114 }
1115 
1116 MachineConstantPool::~MachineConstantPool() {
1117   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1118   // so keep track of which we've deleted to avoid double deletions.
1119   DenseSet<MachineConstantPoolValue*> Deleted;
1120   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1121     if (Constants[i].isMachineConstantPoolEntry()) {
1122       Deleted.insert(Constants[i].Val.MachineCPVal);
1123       delete Constants[i].Val.MachineCPVal;
1124     }
1125   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1126        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1127        I != E; ++I) {
1128     if (Deleted.count(*I) == 0)
1129       delete *I;
1130   }
1131 }
1132 
1133 /// Test whether the given two constants can be allocated the same constant pool
1134 /// entry.
1135 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1136                                       const DataLayout &DL) {
1137   // Handle the trivial case quickly.
1138   if (A == B) return true;
1139 
1140   // If they have the same type but weren't the same constant, quickly
1141   // reject them.
1142   if (A->getType() == B->getType()) return false;
1143 
1144   // We can't handle structs or arrays.
1145   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1146       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1147     return false;
1148 
1149   // For now, only support constants with the same size.
1150   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1151   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1152     return false;
1153 
1154   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1155 
1156   // Try constant folding a bitcast of both instructions to an integer.  If we
1157   // get two identical ConstantInt's, then we are good to share them.  We use
1158   // the constant folding APIs to do this so that we get the benefit of
1159   // DataLayout.
1160   if (isa<PointerType>(A->getType()))
1161     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1162                                 const_cast<Constant *>(A), IntTy, DL);
1163   else if (A->getType() != IntTy)
1164     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1165                                 IntTy, DL);
1166   if (isa<PointerType>(B->getType()))
1167     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1168                                 const_cast<Constant *>(B), IntTy, DL);
1169   else if (B->getType() != IntTy)
1170     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1171                                 IntTy, DL);
1172 
1173   return A == B;
1174 }
1175 
1176 /// Create a new entry in the constant pool or return an existing one.
1177 /// User must specify the log2 of the minimum required alignment for the object.
1178 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1179                                                    Align Alignment) {
1180   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1181 
1182   // Check to see if we already have this constant.
1183   //
1184   // FIXME, this could be made much more efficient for large constant pools.
1185   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1186     if (!Constants[i].isMachineConstantPoolEntry() &&
1187         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1188       if (Constants[i].getAlign() < Alignment)
1189         Constants[i].Alignment = Alignment;
1190       return i;
1191     }
1192 
1193   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1194   return Constants.size()-1;
1195 }
1196 
1197 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1198                                                    Align Alignment) {
1199   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1200 
1201   // Check to see if we already have this constant.
1202   //
1203   // FIXME, this could be made much more efficient for large constant pools.
1204   int Idx = V->getExistingMachineCPValue(this, Alignment);
1205   if (Idx != -1) {
1206     MachineCPVsSharingEntries.insert(V);
1207     return (unsigned)Idx;
1208   }
1209 
1210   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1211   return Constants.size()-1;
1212 }
1213 
1214 void MachineConstantPool::print(raw_ostream &OS) const {
1215   if (Constants.empty()) return;
1216 
1217   OS << "Constant Pool:\n";
1218   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1219     OS << "  cp#" << i << ": ";
1220     if (Constants[i].isMachineConstantPoolEntry())
1221       Constants[i].Val.MachineCPVal->print(OS);
1222     else
1223       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1224     OS << ", align=" << Constants[i].getAlign().value();
1225     OS << "\n";
1226   }
1227 }
1228 
1229 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1230 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1231 #endif
1232