1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DebugInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 62 TM.Options.RealignStack); 63 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 64 Attribute::StackAlignment)) 65 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 66 getStackAlignment(AttributeSet::FunctionIndex)); 67 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 68 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 69 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 70 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 71 Attribute::OptimizeForSize)) 72 Alignment = std::max(Alignment, 73 TM.getTargetLowering()->getPrefFunctionAlignment()); 74 FunctionNumber = FunctionNum; 75 JumpTableInfo = 0; 76 } 77 78 MachineFunction::~MachineFunction() { 79 // Don't call destructors on MachineInstr and MachineOperand. All of their 80 // memory comes from the BumpPtrAllocator which is about to be purged. 81 // 82 // Do call MachineBasicBlock destructors, it contains std::vectors. 83 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 84 I->Insts.clearAndLeakNodesUnsafely(); 85 86 InstructionRecycler.clear(Allocator); 87 OperandRecycler.clear(Allocator); 88 BasicBlockRecycler.clear(Allocator); 89 if (RegInfo) { 90 RegInfo->~MachineRegisterInfo(); 91 Allocator.Deallocate(RegInfo); 92 } 93 if (MFInfo) { 94 MFInfo->~MachineFunctionInfo(); 95 Allocator.Deallocate(MFInfo); 96 } 97 98 FrameInfo->~MachineFrameInfo(); 99 Allocator.Deallocate(FrameInfo); 100 101 ConstantPool->~MachineConstantPool(); 102 Allocator.Deallocate(ConstantPool); 103 104 if (JumpTableInfo) { 105 JumpTableInfo->~MachineJumpTableInfo(); 106 Allocator.Deallocate(JumpTableInfo); 107 } 108 } 109 110 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 111 /// does already exist, allocate one. 112 MachineJumpTableInfo *MachineFunction:: 113 getOrCreateJumpTableInfo(unsigned EntryKind) { 114 if (JumpTableInfo) return JumpTableInfo; 115 116 JumpTableInfo = new (Allocator) 117 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 118 return JumpTableInfo; 119 } 120 121 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 122 /// recomputes them. This guarantees that the MBB numbers are sequential, 123 /// dense, and match the ordering of the blocks within the function. If a 124 /// specific MachineBasicBlock is specified, only that block and those after 125 /// it are renumbered. 126 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 127 if (empty()) { MBBNumbering.clear(); return; } 128 MachineFunction::iterator MBBI, E = end(); 129 if (MBB == 0) 130 MBBI = begin(); 131 else 132 MBBI = MBB; 133 134 // Figure out the block number this should have. 135 unsigned BlockNo = 0; 136 if (MBBI != begin()) 137 BlockNo = prior(MBBI)->getNumber()+1; 138 139 for (; MBBI != E; ++MBBI, ++BlockNo) { 140 if (MBBI->getNumber() != (int)BlockNo) { 141 // Remove use of the old number. 142 if (MBBI->getNumber() != -1) { 143 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 144 "MBB number mismatch!"); 145 MBBNumbering[MBBI->getNumber()] = 0; 146 } 147 148 // If BlockNo is already taken, set that block's number to -1. 149 if (MBBNumbering[BlockNo]) 150 MBBNumbering[BlockNo]->setNumber(-1); 151 152 MBBNumbering[BlockNo] = MBBI; 153 MBBI->setNumber(BlockNo); 154 } 155 } 156 157 // Okay, all the blocks are renumbered. If we have compactified the block 158 // numbering, shrink MBBNumbering now. 159 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 160 MBBNumbering.resize(BlockNo); 161 } 162 163 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 164 /// of `new MachineInstr'. 165 /// 166 MachineInstr * 167 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 168 DebugLoc DL, bool NoImp) { 169 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 170 MachineInstr(*this, MCID, DL, NoImp); 171 } 172 173 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 174 /// 'Orig' instruction, identical in all ways except the instruction 175 /// has no parent, prev, or next. 176 /// 177 MachineInstr * 178 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, *Orig); 181 } 182 183 /// DeleteMachineInstr - Delete the given MachineInstr. 184 /// 185 /// This function also serves as the MachineInstr destructor - the real 186 /// ~MachineInstr() destructor must be empty. 187 void 188 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 189 // Strip it for parts. The operand array and the MI object itself are 190 // independently recyclable. 191 if (MI->Operands) 192 deallocateOperandArray(MI->CapOperands, MI->Operands); 193 // Don't call ~MachineInstr() which must be trivial anyway because 194 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 195 // destructors. 196 InstructionRecycler.Deallocate(Allocator, MI); 197 } 198 199 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 200 /// instead of `new MachineBasicBlock'. 201 /// 202 MachineBasicBlock * 203 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 204 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 205 MachineBasicBlock(*this, bb); 206 } 207 208 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 209 /// 210 void 211 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 212 assert(MBB->getParent() == this && "MBB parent mismatch!"); 213 MBB->~MachineBasicBlock(); 214 BasicBlockRecycler.Deallocate(Allocator, MBB); 215 } 216 217 MachineMemOperand * 218 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 219 uint64_t s, unsigned base_alignment, 220 const MDNode *TBAAInfo, 221 const MDNode *Ranges) { 222 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 223 TBAAInfo, Ranges); 224 } 225 226 MachineMemOperand * 227 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 228 int64_t Offset, uint64_t Size) { 229 return new (Allocator) 230 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 231 MMO->getOffset()+Offset), 232 MMO->getFlags(), Size, 233 MMO->getBaseAlignment(), 0); 234 } 235 236 MachineInstr::mmo_iterator 237 MachineFunction::allocateMemRefsArray(unsigned long Num) { 238 return Allocator.Allocate<MachineMemOperand *>(Num); 239 } 240 241 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 242 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 243 MachineInstr::mmo_iterator End) { 244 // Count the number of load mem refs. 245 unsigned Num = 0; 246 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 247 if ((*I)->isLoad()) 248 ++Num; 249 250 // Allocate a new array and populate it with the load information. 251 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 252 unsigned Index = 0; 253 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 254 if ((*I)->isLoad()) { 255 if (!(*I)->isStore()) 256 // Reuse the MMO. 257 Result[Index] = *I; 258 else { 259 // Clone the MMO and unset the store flag. 260 MachineMemOperand *JustLoad = 261 getMachineMemOperand((*I)->getPointerInfo(), 262 (*I)->getFlags() & ~MachineMemOperand::MOStore, 263 (*I)->getSize(), (*I)->getBaseAlignment(), 264 (*I)->getTBAAInfo()); 265 Result[Index] = JustLoad; 266 } 267 ++Index; 268 } 269 } 270 return std::make_pair(Result, Result + Num); 271 } 272 273 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 274 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 275 MachineInstr::mmo_iterator End) { 276 // Count the number of load mem refs. 277 unsigned Num = 0; 278 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 279 if ((*I)->isStore()) 280 ++Num; 281 282 // Allocate a new array and populate it with the store information. 283 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 284 unsigned Index = 0; 285 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 286 if ((*I)->isStore()) { 287 if (!(*I)->isLoad()) 288 // Reuse the MMO. 289 Result[Index] = *I; 290 else { 291 // Clone the MMO and unset the load flag. 292 MachineMemOperand *JustStore = 293 getMachineMemOperand((*I)->getPointerInfo(), 294 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 295 (*I)->getSize(), (*I)->getBaseAlignment(), 296 (*I)->getTBAAInfo()); 297 Result[Index] = JustStore; 298 } 299 ++Index; 300 } 301 } 302 return std::make_pair(Result, Result + Num); 303 } 304 305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 306 void MachineFunction::dump() const { 307 print(dbgs()); 308 } 309 #endif 310 311 StringRef MachineFunction::getName() const { 312 assert(getFunction() && "No function!"); 313 return getFunction()->getName(); 314 } 315 316 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 317 OS << "# Machine code for function " << getName() << ": "; 318 if (RegInfo) { 319 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 320 if (!RegInfo->tracksLiveness()) 321 OS << ", not tracking liveness"; 322 } 323 OS << '\n'; 324 325 // Print Frame Information 326 FrameInfo->print(*this, OS); 327 328 // Print JumpTable Information 329 if (JumpTableInfo) 330 JumpTableInfo->print(OS); 331 332 // Print Constant Pool 333 ConstantPool->print(OS); 334 335 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 336 337 if (RegInfo && !RegInfo->livein_empty()) { 338 OS << "Function Live Ins: "; 339 for (MachineRegisterInfo::livein_iterator 340 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 341 OS << PrintReg(I->first, TRI); 342 if (I->second) 343 OS << " in " << PrintReg(I->second, TRI); 344 if (llvm::next(I) != E) 345 OS << ", "; 346 } 347 OS << '\n'; 348 } 349 350 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 351 OS << '\n'; 352 BB->print(OS, Indexes); 353 } 354 355 OS << "\n# End machine code for function " << getName() << ".\n\n"; 356 } 357 358 namespace llvm { 359 template<> 360 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 361 362 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 363 364 static std::string getGraphName(const MachineFunction *F) { 365 return "CFG for '" + F->getName().str() + "' function"; 366 } 367 368 std::string getNodeLabel(const MachineBasicBlock *Node, 369 const MachineFunction *Graph) { 370 std::string OutStr; 371 { 372 raw_string_ostream OSS(OutStr); 373 374 if (isSimple()) { 375 OSS << "BB#" << Node->getNumber(); 376 if (const BasicBlock *BB = Node->getBasicBlock()) 377 OSS << ": " << BB->getName(); 378 } else 379 Node->print(OSS); 380 } 381 382 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 383 384 // Process string output to make it nicer... 385 for (unsigned i = 0; i != OutStr.length(); ++i) 386 if (OutStr[i] == '\n') { // Left justify 387 OutStr[i] = '\\'; 388 OutStr.insert(OutStr.begin()+i+1, 'l'); 389 } 390 return OutStr; 391 } 392 }; 393 } 394 395 void MachineFunction::viewCFG() const 396 { 397 #ifndef NDEBUG 398 ViewGraph(this, "mf" + getName()); 399 #else 400 errs() << "MachineFunction::viewCFG is only available in debug builds on " 401 << "systems with Graphviz or gv!\n"; 402 #endif // NDEBUG 403 } 404 405 void MachineFunction::viewCFGOnly() const 406 { 407 #ifndef NDEBUG 408 ViewGraph(this, "mf" + getName(), true); 409 #else 410 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 411 << "systems with Graphviz or gv!\n"; 412 #endif // NDEBUG 413 } 414 415 /// addLiveIn - Add the specified physical register as a live-in value and 416 /// create a corresponding virtual register for it. 417 unsigned MachineFunction::addLiveIn(unsigned PReg, 418 const TargetRegisterClass *RC) { 419 MachineRegisterInfo &MRI = getRegInfo(); 420 unsigned VReg = MRI.getLiveInVirtReg(PReg); 421 if (VReg) { 422 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 423 return VReg; 424 } 425 VReg = MRI.createVirtualRegister(RC); 426 MRI.addLiveIn(PReg, VReg); 427 return VReg; 428 } 429 430 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 431 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 432 /// normal 'L' label is returned. 433 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 434 bool isLinkerPrivate) const { 435 assert(JumpTableInfo && "No jump tables"); 436 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 437 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 438 439 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 440 MAI.getPrivateGlobalPrefix(); 441 SmallString<60> Name; 442 raw_svector_ostream(Name) 443 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 444 return Ctx.GetOrCreateSymbol(Name.str()); 445 } 446 447 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 448 /// base. 449 MCSymbol *MachineFunction::getPICBaseSymbol() const { 450 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 451 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 452 Twine(getFunctionNumber())+"$pb"); 453 } 454 455 //===----------------------------------------------------------------------===// 456 // MachineFrameInfo implementation 457 //===----------------------------------------------------------------------===// 458 459 /// ensureMaxAlignment - Make sure the function is at least Align bytes 460 /// aligned. 461 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 462 if (!TFI.isStackRealignable() || !RealignOption) 463 assert(Align <= TFI.getStackAlignment() && 464 "For targets without stack realignment, Align is out of limit!"); 465 if (MaxAlignment < Align) MaxAlignment = Align; 466 } 467 468 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 469 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned PrefAlign, 470 unsigned MinAlign, unsigned StackAlign, 471 const AllocaInst *Alloca = 0) { 472 if (!ShouldClamp || PrefAlign <= StackAlign) 473 return PrefAlign; 474 if (Alloca && MinAlign > StackAlign) 475 Alloca->getParent()->getContext().emitWarning(Alloca, 476 "Requested alignment exceeds the stack alignment!"); 477 else 478 assert(MinAlign <= StackAlign && 479 "Requested alignment exceeds the stack alignment!"); 480 return StackAlign; 481 } 482 483 /// CreateStackObjectWithMinAlign - Create a new statically sized stack 484 /// object, returning a nonnegative identifier to represent it. This function 485 /// takes a preferred alignment and a minimal alignment. 486 /// 487 int MachineFrameInfo::CreateStackObjectWithMinAlign(uint64_t Size, 488 unsigned PrefAlignment, unsigned MinAlignment, 489 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 490 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 491 unsigned Alignment = clampStackAlignment( 492 !TFI.isStackRealignable() || !RealignOption, 493 PrefAlignment, MinAlignment, 494 TFI.getStackAlignment(), Alloca); 495 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 496 Alloca)); 497 int Index = (int)Objects.size() - NumFixedObjects - 1; 498 assert(Index >= 0 && "Bad frame index!"); 499 ensureMaxAlignment(Alignment); 500 return Index; 501 } 502 503 /// CreateSpillStackObject - Create a new statically sized stack object that 504 /// represents a spill slot, returning a nonnegative identifier to represent 505 /// it. 506 /// 507 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 508 unsigned Alignment) { 509 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 510 Alignment, 0, 511 TFI.getStackAlignment()); 512 CreateStackObject(Size, Alignment, true, false); 513 int Index = (int)Objects.size() - NumFixedObjects - 1; 514 ensureMaxAlignment(Alignment); 515 return Index; 516 } 517 518 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 519 /// variable sized object has been created. This must be created whenever a 520 /// variable sized object is created, whether or not the index returned is 521 /// actually used. 522 /// 523 int MachineFrameInfo::CreateVariableSizedObject(unsigned PrefAlignment, 524 unsigned MinAlignment, const AllocaInst *Alloca) { 525 HasVarSizedObjects = true; 526 unsigned Alignment = clampStackAlignment( 527 !TFI.isStackRealignable() || !RealignOption, 528 PrefAlignment, MinAlignment, 529 TFI.getStackAlignment(), Alloca); 530 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 531 ensureMaxAlignment(Alignment); 532 return (int)Objects.size()-NumFixedObjects-1; 533 } 534 535 /// CreateFixedObject - Create a new object at a fixed location on the stack. 536 /// All fixed objects should be created before other objects are created for 537 /// efficiency. By default, fixed objects are immutable. This returns an 538 /// index with a negative value. 539 /// 540 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 541 bool Immutable) { 542 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 543 // The alignment of the frame index can be determined from its offset from 544 // the incoming frame position. If the frame object is at offset 32 and 545 // the stack is guaranteed to be 16-byte aligned, then we know that the 546 // object is 16-byte aligned. 547 unsigned StackAlign = TFI.getStackAlignment(); 548 unsigned Align = MinAlign(SPOffset, StackAlign); 549 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 550 Align, 0, TFI.getStackAlignment()); 551 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 552 /*isSS*/ false, 553 /*NeedSP*/ false, 554 /*Alloca*/ 0)); 555 return -++NumFixedObjects; 556 } 557 558 559 BitVector 560 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 561 assert(MBB && "MBB must be valid"); 562 const MachineFunction *MF = MBB->getParent(); 563 assert(MF && "MBB must be part of a MachineFunction"); 564 const TargetMachine &TM = MF->getTarget(); 565 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 566 BitVector BV(TRI->getNumRegs()); 567 568 // Before CSI is calculated, no registers are considered pristine. They can be 569 // freely used and PEI will make sure they are saved. 570 if (!isCalleeSavedInfoValid()) 571 return BV; 572 573 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 574 BV.set(*CSR); 575 576 // The entry MBB always has all CSRs pristine. 577 if (MBB == &MF->front()) 578 return BV; 579 580 // On other MBBs the saved CSRs are not pristine. 581 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 582 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 583 E = CSI.end(); I != E; ++I) 584 BV.reset(I->getReg()); 585 586 return BV; 587 } 588 589 590 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 591 if (Objects.empty()) return; 592 593 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 594 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 595 596 OS << "Frame Objects:\n"; 597 598 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 599 const StackObject &SO = Objects[i]; 600 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 601 if (SO.Size == ~0ULL) { 602 OS << "dead\n"; 603 continue; 604 } 605 if (SO.Size == 0) 606 OS << "variable sized"; 607 else 608 OS << "size=" << SO.Size; 609 OS << ", align=" << SO.Alignment; 610 611 if (i < NumFixedObjects) 612 OS << ", fixed"; 613 if (i < NumFixedObjects || SO.SPOffset != -1) { 614 int64_t Off = SO.SPOffset - ValOffset; 615 OS << ", at location [SP"; 616 if (Off > 0) 617 OS << "+" << Off; 618 else if (Off < 0) 619 OS << Off; 620 OS << "]"; 621 } 622 OS << "\n"; 623 } 624 } 625 626 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 627 void MachineFrameInfo::dump(const MachineFunction &MF) const { 628 print(MF, dbgs()); 629 } 630 #endif 631 632 //===----------------------------------------------------------------------===// 633 // MachineJumpTableInfo implementation 634 //===----------------------------------------------------------------------===// 635 636 /// getEntrySize - Return the size of each entry in the jump table. 637 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 638 // The size of a jump table entry is 4 bytes unless the entry is just the 639 // address of a block, in which case it is the pointer size. 640 switch (getEntryKind()) { 641 case MachineJumpTableInfo::EK_BlockAddress: 642 return TD.getPointerSize(); 643 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 644 return 8; 645 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 646 case MachineJumpTableInfo::EK_LabelDifference32: 647 case MachineJumpTableInfo::EK_Custom32: 648 return 4; 649 case MachineJumpTableInfo::EK_Inline: 650 return 0; 651 } 652 llvm_unreachable("Unknown jump table encoding!"); 653 } 654 655 /// getEntryAlignment - Return the alignment of each entry in the jump table. 656 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 657 // The alignment of a jump table entry is the alignment of int32 unless the 658 // entry is just the address of a block, in which case it is the pointer 659 // alignment. 660 switch (getEntryKind()) { 661 case MachineJumpTableInfo::EK_BlockAddress: 662 return TD.getPointerABIAlignment(); 663 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 664 return TD.getABIIntegerTypeAlignment(64); 665 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 666 case MachineJumpTableInfo::EK_LabelDifference32: 667 case MachineJumpTableInfo::EK_Custom32: 668 return TD.getABIIntegerTypeAlignment(32); 669 case MachineJumpTableInfo::EK_Inline: 670 return 1; 671 } 672 llvm_unreachable("Unknown jump table encoding!"); 673 } 674 675 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 676 /// 677 unsigned MachineJumpTableInfo::createJumpTableIndex( 678 const std::vector<MachineBasicBlock*> &DestBBs) { 679 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 680 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 681 return JumpTables.size()-1; 682 } 683 684 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 685 /// the jump tables to branch to New instead. 686 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 687 MachineBasicBlock *New) { 688 assert(Old != New && "Not making a change?"); 689 bool MadeChange = false; 690 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 691 ReplaceMBBInJumpTable(i, Old, New); 692 return MadeChange; 693 } 694 695 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 696 /// the jump table to branch to New instead. 697 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 698 MachineBasicBlock *Old, 699 MachineBasicBlock *New) { 700 assert(Old != New && "Not making a change?"); 701 bool MadeChange = false; 702 MachineJumpTableEntry &JTE = JumpTables[Idx]; 703 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 704 if (JTE.MBBs[j] == Old) { 705 JTE.MBBs[j] = New; 706 MadeChange = true; 707 } 708 return MadeChange; 709 } 710 711 void MachineJumpTableInfo::print(raw_ostream &OS) const { 712 if (JumpTables.empty()) return; 713 714 OS << "Jump Tables:\n"; 715 716 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 717 OS << " jt#" << i << ": "; 718 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 719 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 720 } 721 722 OS << '\n'; 723 } 724 725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 726 void MachineJumpTableInfo::dump() const { print(dbgs()); } 727 #endif 728 729 730 //===----------------------------------------------------------------------===// 731 // MachineConstantPool implementation 732 //===----------------------------------------------------------------------===// 733 734 void MachineConstantPoolValue::anchor() { } 735 736 Type *MachineConstantPoolEntry::getType() const { 737 if (isMachineConstantPoolEntry()) 738 return Val.MachineCPVal->getType(); 739 return Val.ConstVal->getType(); 740 } 741 742 743 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 744 if (isMachineConstantPoolEntry()) 745 return Val.MachineCPVal->getRelocationInfo(); 746 return Val.ConstVal->getRelocationInfo(); 747 } 748 749 MachineConstantPool::~MachineConstantPool() { 750 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 751 if (Constants[i].isMachineConstantPoolEntry()) 752 delete Constants[i].Val.MachineCPVal; 753 for (DenseSet<MachineConstantPoolValue*>::iterator I = 754 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 755 I != E; ++I) 756 delete *I; 757 } 758 759 /// CanShareConstantPoolEntry - Test whether the given two constants 760 /// can be allocated the same constant pool entry. 761 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 762 const DataLayout *TD) { 763 // Handle the trivial case quickly. 764 if (A == B) return true; 765 766 // If they have the same type but weren't the same constant, quickly 767 // reject them. 768 if (A->getType() == B->getType()) return false; 769 770 // We can't handle structs or arrays. 771 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 772 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 773 return false; 774 775 // For now, only support constants with the same size. 776 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 777 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 778 StoreSize > 128) 779 return false; 780 781 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 782 783 // Try constant folding a bitcast of both instructions to an integer. If we 784 // get two identical ConstantInt's, then we are good to share them. We use 785 // the constant folding APIs to do this so that we get the benefit of 786 // DataLayout. 787 if (isa<PointerType>(A->getType())) 788 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 789 const_cast<Constant*>(A), TD); 790 else if (A->getType() != IntTy) 791 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 792 const_cast<Constant*>(A), TD); 793 if (isa<PointerType>(B->getType())) 794 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 795 const_cast<Constant*>(B), TD); 796 else if (B->getType() != IntTy) 797 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 798 const_cast<Constant*>(B), TD); 799 800 return A == B; 801 } 802 803 /// getConstantPoolIndex - Create a new entry in the constant pool or return 804 /// an existing one. User must specify the log2 of the minimum required 805 /// alignment for the object. 806 /// 807 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 808 unsigned Alignment) { 809 assert(Alignment && "Alignment must be specified!"); 810 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 811 812 // Check to see if we already have this constant. 813 // 814 // FIXME, this could be made much more efficient for large constant pools. 815 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 816 if (!Constants[i].isMachineConstantPoolEntry() && 817 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 818 if ((unsigned)Constants[i].getAlignment() < Alignment) 819 Constants[i].Alignment = Alignment; 820 return i; 821 } 822 823 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 824 return Constants.size()-1; 825 } 826 827 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 828 unsigned Alignment) { 829 assert(Alignment && "Alignment must be specified!"); 830 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 831 832 // Check to see if we already have this constant. 833 // 834 // FIXME, this could be made much more efficient for large constant pools. 835 int Idx = V->getExistingMachineCPValue(this, Alignment); 836 if (Idx != -1) { 837 MachineCPVsSharingEntries.insert(V); 838 return (unsigned)Idx; 839 } 840 841 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 842 return Constants.size()-1; 843 } 844 845 void MachineConstantPool::print(raw_ostream &OS) const { 846 if (Constants.empty()) return; 847 848 OS << "Constant Pool:\n"; 849 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 850 OS << " cp#" << i << ": "; 851 if (Constants[i].isMachineConstantPoolEntry()) 852 Constants[i].Val.MachineCPVal->print(OS); 853 else 854 OS << *(const Value*)Constants[i].Val.ConstVal; 855 OS << ", align=" << Constants[i].getAlignment(); 856 OS << "\n"; 857 } 858 } 859 860 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 861 void MachineConstantPool::dump() const { print(dbgs()); } 862 #endif 863