1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 } 102 llvm_unreachable("Invalid machine function property"); 103 } 104 105 // Pin the vtable to this file. 106 void MachineFunction::Delegate::anchor() {} 107 108 void MachineFunctionProperties::print(raw_ostream &OS) const { 109 const char *Separator = ""; 110 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 111 if (!Properties[I]) 112 continue; 113 OS << Separator << getPropertyName(static_cast<Property>(I)); 114 Separator = ", "; 115 } 116 } 117 118 //===----------------------------------------------------------------------===// 119 // MachineFunction implementation 120 //===----------------------------------------------------------------------===// 121 122 // Out-of-line virtual method. 123 MachineFunctionInfo::~MachineFunctionInfo() = default; 124 125 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 126 MBB->getParent()->DeleteMachineBasicBlock(MBB); 127 } 128 129 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 130 const Function &F) { 131 if (F.hasFnAttribute(Attribute::StackAlignment)) 132 return F.getFnStackAlignment(); 133 return STI->getFrameLowering()->getStackAlign().value(); 134 } 135 136 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 137 const TargetSubtargetInfo &STI, 138 unsigned FunctionNum, MachineModuleInfo &mmi) 139 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 140 FunctionNumber = FunctionNum; 141 init(); 142 } 143 144 void MachineFunction::handleInsertion(MachineInstr &MI) { 145 if (TheDelegate) 146 TheDelegate->MF_HandleInsertion(MI); 147 } 148 149 void MachineFunction::handleRemoval(MachineInstr &MI) { 150 if (TheDelegate) 151 TheDelegate->MF_HandleRemoval(MI); 152 } 153 154 void MachineFunction::init() { 155 // Assume the function starts in SSA form with correct liveness. 156 Properties.set(MachineFunctionProperties::Property::IsSSA); 157 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 158 if (STI->getRegisterInfo()) 159 RegInfo = new (Allocator) MachineRegisterInfo(this); 160 else 161 RegInfo = nullptr; 162 163 MFInfo = nullptr; 164 // We can realign the stack if the target supports it and the user hasn't 165 // explicitly asked us not to. 166 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 167 !F.hasFnAttribute("no-realign-stack"); 168 FrameInfo = new (Allocator) MachineFrameInfo( 169 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 170 /*ForcedRealign=*/CanRealignSP && 171 F.hasFnAttribute(Attribute::StackAlignment)); 172 173 if (F.hasFnAttribute(Attribute::StackAlignment)) 174 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 175 176 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 177 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 178 179 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 180 // FIXME: Use Function::hasOptSize(). 181 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 182 Alignment = std::max(Alignment, 183 STI->getTargetLowering()->getPrefFunctionAlignment()); 184 185 if (AlignAllFunctions) 186 Alignment = Align(1ULL << AlignAllFunctions); 187 188 JumpTableInfo = nullptr; 189 190 if (isFuncletEHPersonality(classifyEHPersonality( 191 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 192 WinEHInfo = new (Allocator) WinEHFuncInfo(); 193 } 194 195 if (isScopedEHPersonality(classifyEHPersonality( 196 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 197 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 198 } 199 200 assert(Target.isCompatibleDataLayout(getDataLayout()) && 201 "Can't create a MachineFunction using a Module with a " 202 "Target-incompatible DataLayout attached\n"); 203 204 PSVManager = 205 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 206 getInstrInfo())); 207 } 208 209 MachineFunction::~MachineFunction() { 210 clear(); 211 } 212 213 void MachineFunction::clear() { 214 Properties.reset(); 215 // Don't call destructors on MachineInstr and MachineOperand. All of their 216 // memory comes from the BumpPtrAllocator which is about to be purged. 217 // 218 // Do call MachineBasicBlock destructors, it contains std::vectors. 219 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 220 I->Insts.clearAndLeakNodesUnsafely(); 221 MBBNumbering.clear(); 222 223 InstructionRecycler.clear(Allocator); 224 OperandRecycler.clear(Allocator); 225 BasicBlockRecycler.clear(Allocator); 226 CodeViewAnnotations.clear(); 227 VariableDbgInfos.clear(); 228 if (RegInfo) { 229 RegInfo->~MachineRegisterInfo(); 230 Allocator.Deallocate(RegInfo); 231 } 232 if (MFInfo) { 233 MFInfo->~MachineFunctionInfo(); 234 Allocator.Deallocate(MFInfo); 235 } 236 237 FrameInfo->~MachineFrameInfo(); 238 Allocator.Deallocate(FrameInfo); 239 240 ConstantPool->~MachineConstantPool(); 241 Allocator.Deallocate(ConstantPool); 242 243 if (JumpTableInfo) { 244 JumpTableInfo->~MachineJumpTableInfo(); 245 Allocator.Deallocate(JumpTableInfo); 246 } 247 248 if (WinEHInfo) { 249 WinEHInfo->~WinEHFuncInfo(); 250 Allocator.Deallocate(WinEHInfo); 251 } 252 253 if (WasmEHInfo) { 254 WasmEHInfo->~WasmEHFuncInfo(); 255 Allocator.Deallocate(WasmEHInfo); 256 } 257 } 258 259 const DataLayout &MachineFunction::getDataLayout() const { 260 return F.getParent()->getDataLayout(); 261 } 262 263 /// Get the JumpTableInfo for this function. 264 /// If it does not already exist, allocate one. 265 MachineJumpTableInfo *MachineFunction:: 266 getOrCreateJumpTableInfo(unsigned EntryKind) { 267 if (JumpTableInfo) return JumpTableInfo; 268 269 JumpTableInfo = new (Allocator) 270 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 271 return JumpTableInfo; 272 } 273 274 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 275 if (&FPType == &APFloat::IEEEsingle()) { 276 Attribute Attr = F.getFnAttribute("denormal-fp-math-f32"); 277 StringRef Val = Attr.getValueAsString(); 278 if (!Val.empty()) 279 return parseDenormalFPAttribute(Val); 280 281 // If the f32 variant of the attribute isn't specified, try to use the 282 // generic one. 283 } 284 285 // TODO: Should probably avoid the connection to the IR and store directly 286 // in the MachineFunction. 287 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 288 return parseDenormalFPAttribute(Attr.getValueAsString()); 289 } 290 291 /// Should we be emitting segmented stack stuff for the function 292 bool MachineFunction::shouldSplitStack() const { 293 return getFunction().hasFnAttribute("split-stack"); 294 } 295 296 LLVM_NODISCARD unsigned 297 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 298 FrameInstructions.push_back(Inst); 299 return FrameInstructions.size() - 1; 300 } 301 302 /// This discards all of the MachineBasicBlock numbers and recomputes them. 303 /// This guarantees that the MBB numbers are sequential, dense, and match the 304 /// ordering of the blocks within the function. If a specific MachineBasicBlock 305 /// is specified, only that block and those after it are renumbered. 306 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 307 if (empty()) { MBBNumbering.clear(); return; } 308 MachineFunction::iterator MBBI, E = end(); 309 if (MBB == nullptr) 310 MBBI = begin(); 311 else 312 MBBI = MBB->getIterator(); 313 314 // Figure out the block number this should have. 315 unsigned BlockNo = 0; 316 if (MBBI != begin()) 317 BlockNo = std::prev(MBBI)->getNumber() + 1; 318 319 for (; MBBI != E; ++MBBI, ++BlockNo) { 320 if (MBBI->getNumber() != (int)BlockNo) { 321 // Remove use of the old number. 322 if (MBBI->getNumber() != -1) { 323 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 324 "MBB number mismatch!"); 325 MBBNumbering[MBBI->getNumber()] = nullptr; 326 } 327 328 // If BlockNo is already taken, set that block's number to -1. 329 if (MBBNumbering[BlockNo]) 330 MBBNumbering[BlockNo]->setNumber(-1); 331 332 MBBNumbering[BlockNo] = &*MBBI; 333 MBBI->setNumber(BlockNo); 334 } 335 } 336 337 // Okay, all the blocks are renumbered. If we have compactified the block 338 // numbering, shrink MBBNumbering now. 339 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 340 MBBNumbering.resize(BlockNo); 341 } 342 343 /// This sets the section ranges of cold or exception section with basic block 344 /// sections. 345 void MachineFunction::setSectionRange() { 346 // Compute the Section Range of cold and exception basic blocks. Find the 347 // first and last block of each range. 348 auto SectionRange = 349 ([&](llvm::MachineBasicBlockSection S) -> std::pair<int, int> { 350 auto MBBP = 351 std::find_if(begin(), end(), [&](MachineBasicBlock &MBB) -> bool { 352 return MBB.getSectionType() == S; 353 }); 354 if (MBBP == end()) 355 return std::make_pair(-1, -1); 356 357 auto MBBQ = 358 std::find_if(rbegin(), rend(), [&](MachineBasicBlock &MBB) -> bool { 359 return MBB.getSectionType() == S; 360 }); 361 assert(MBBQ != rend() && "Section end not found!"); 362 return std::make_pair(MBBP->getNumber(), MBBQ->getNumber()); 363 }); 364 365 ExceptionSectionRange = SectionRange(MBBS_Exception); 366 ColdSectionRange = SectionRange(llvm::MBBS_Cold); 367 } 368 369 /// This is used with -fbasicblock-sections or -fbasicblock-labels option. 370 /// A unary encoding of basic block labels is done to keep ".strtab" sizes 371 /// small. 372 void MachineFunction::createBBLabels() { 373 const TargetInstrInfo *TII = getSubtarget().getInstrInfo(); 374 this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a'); 375 for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) { 376 assert( 377 (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) && 378 "BasicBlock number was out of range!"); 379 // 'a' - Normal block. 380 // 'r' - Return block. 381 // 'l' - Landing Pad. 382 // 'L' - Return and landing pad. 383 bool isEHPad = MBBI->isEHPad(); 384 bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back()); 385 char type = 'a'; 386 if (isEHPad && isRetBlock) 387 type = 'L'; 388 else if (isEHPad) 389 type = 'l'; 390 else if (isRetBlock) 391 type = 'r'; 392 BBSectionsSymbolPrefix[MBBI->getNumber()] = type; 393 } 394 } 395 396 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 397 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 398 const DebugLoc &DL, 399 bool NoImp) { 400 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 401 MachineInstr(*this, MCID, DL, NoImp); 402 } 403 404 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 405 /// identical in all ways except the instruction has no parent, prev, or next. 406 MachineInstr * 407 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 408 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 409 MachineInstr(*this, *Orig); 410 } 411 412 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 413 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 414 MachineInstr *FirstClone = nullptr; 415 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 416 while (true) { 417 MachineInstr *Cloned = CloneMachineInstr(&*I); 418 MBB.insert(InsertBefore, Cloned); 419 if (FirstClone == nullptr) { 420 FirstClone = Cloned; 421 } else { 422 Cloned->bundleWithPred(); 423 } 424 425 if (!I->isBundledWithSucc()) 426 break; 427 ++I; 428 } 429 // Copy over call site info to the cloned instruction if needed. If Orig is in 430 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 431 // the bundle. 432 if (Orig.shouldUpdateCallSiteInfo()) 433 copyCallSiteInfo(&Orig, FirstClone); 434 return *FirstClone; 435 } 436 437 /// Delete the given MachineInstr. 438 /// 439 /// This function also serves as the MachineInstr destructor - the real 440 /// ~MachineInstr() destructor must be empty. 441 void 442 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 443 // Verify that a call site info is at valid state. This assertion should 444 // be triggered during the implementation of support for the 445 // call site info of a new architecture. If the assertion is triggered, 446 // back trace will tell where to insert a call to updateCallSiteInfo(). 447 assert((!MI->isCandidateForCallSiteEntry() || 448 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 449 "Call site info was not updated!"); 450 // Strip it for parts. The operand array and the MI object itself are 451 // independently recyclable. 452 if (MI->Operands) 453 deallocateOperandArray(MI->CapOperands, MI->Operands); 454 // Don't call ~MachineInstr() which must be trivial anyway because 455 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 456 // destructors. 457 InstructionRecycler.Deallocate(Allocator, MI); 458 } 459 460 /// Allocate a new MachineBasicBlock. Use this instead of 461 /// `new MachineBasicBlock'. 462 MachineBasicBlock * 463 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 464 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 465 MachineBasicBlock(*this, bb); 466 } 467 468 /// Delete the given MachineBasicBlock. 469 void 470 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 471 assert(MBB->getParent() == this && "MBB parent mismatch!"); 472 MBB->~MachineBasicBlock(); 473 BasicBlockRecycler.Deallocate(Allocator, MBB); 474 } 475 476 MachineMemOperand *MachineFunction::getMachineMemOperand( 477 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 478 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 479 SyncScope::ID SSID, AtomicOrdering Ordering, 480 AtomicOrdering FailureOrdering) { 481 return new (Allocator) 482 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 483 SSID, Ordering, FailureOrdering); 484 } 485 486 MachineMemOperand * 487 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 488 int64_t Offset, uint64_t Size) { 489 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 490 491 // If there is no pointer value, the offset isn't tracked so we need to adjust 492 // the base alignment. 493 Align Alignment = PtrInfo.V.isNull() 494 ? commonAlignment(MMO->getBaseAlign(), Offset) 495 : MMO->getBaseAlign(); 496 497 return new (Allocator) 498 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 499 Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 500 MMO->getOrdering(), MMO->getFailureOrdering()); 501 } 502 503 MachineMemOperand * 504 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 505 const AAMDNodes &AAInfo) { 506 MachinePointerInfo MPI = MMO->getValue() ? 507 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 508 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 509 510 return new (Allocator) MachineMemOperand( 511 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 512 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(), 513 MMO->getFailureOrdering()); 514 } 515 516 MachineMemOperand * 517 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 518 MachineMemOperand::Flags Flags) { 519 return new (Allocator) MachineMemOperand( 520 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 521 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 522 MMO->getOrdering(), MMO->getFailureOrdering()); 523 } 524 525 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 526 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 527 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 528 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 529 PostInstrSymbol, HeapAllocMarker); 530 } 531 532 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 533 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 534 llvm::copy(Name, Dest); 535 Dest[Name.size()] = 0; 536 return Dest; 537 } 538 539 uint32_t *MachineFunction::allocateRegMask() { 540 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 541 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 542 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 543 memset(Mask, 0, Size * sizeof(Mask[0])); 544 return Mask; 545 } 546 547 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 548 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 549 copy(Mask, AllocMask); 550 return {AllocMask, Mask.size()}; 551 } 552 553 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 554 LLVM_DUMP_METHOD void MachineFunction::dump() const { 555 print(dbgs()); 556 } 557 #endif 558 559 StringRef MachineFunction::getName() const { 560 return getFunction().getName(); 561 } 562 563 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 564 OS << "# Machine code for function " << getName() << ": "; 565 getProperties().print(OS); 566 OS << '\n'; 567 568 // Print Frame Information 569 FrameInfo->print(*this, OS); 570 571 // Print JumpTable Information 572 if (JumpTableInfo) 573 JumpTableInfo->print(OS); 574 575 // Print Constant Pool 576 ConstantPool->print(OS); 577 578 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 579 580 if (RegInfo && !RegInfo->livein_empty()) { 581 OS << "Function Live Ins: "; 582 for (MachineRegisterInfo::livein_iterator 583 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 584 OS << printReg(I->first, TRI); 585 if (I->second) 586 OS << " in " << printReg(I->second, TRI); 587 if (std::next(I) != E) 588 OS << ", "; 589 } 590 OS << '\n'; 591 } 592 593 ModuleSlotTracker MST(getFunction().getParent()); 594 MST.incorporateFunction(getFunction()); 595 for (const auto &BB : *this) { 596 OS << '\n'; 597 // If we print the whole function, print it at its most verbose level. 598 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 599 } 600 601 OS << "\n# End machine code for function " << getName() << ".\n\n"; 602 } 603 604 /// True if this function needs frame moves for debug or exceptions. 605 bool MachineFunction::needsFrameMoves() const { 606 return getMMI().hasDebugInfo() || 607 getTarget().Options.ForceDwarfFrameSection || 608 F.needsUnwindTableEntry(); 609 } 610 611 namespace llvm { 612 613 template<> 614 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 615 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 616 617 static std::string getGraphName(const MachineFunction *F) { 618 return ("CFG for '" + F->getName() + "' function").str(); 619 } 620 621 std::string getNodeLabel(const MachineBasicBlock *Node, 622 const MachineFunction *Graph) { 623 std::string OutStr; 624 { 625 raw_string_ostream OSS(OutStr); 626 627 if (isSimple()) { 628 OSS << printMBBReference(*Node); 629 if (const BasicBlock *BB = Node->getBasicBlock()) 630 OSS << ": " << BB->getName(); 631 } else 632 Node->print(OSS); 633 } 634 635 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 636 637 // Process string output to make it nicer... 638 for (unsigned i = 0; i != OutStr.length(); ++i) 639 if (OutStr[i] == '\n') { // Left justify 640 OutStr[i] = '\\'; 641 OutStr.insert(OutStr.begin()+i+1, 'l'); 642 } 643 return OutStr; 644 } 645 }; 646 647 } // end namespace llvm 648 649 void MachineFunction::viewCFG() const 650 { 651 #ifndef NDEBUG 652 ViewGraph(this, "mf" + getName()); 653 #else 654 errs() << "MachineFunction::viewCFG is only available in debug builds on " 655 << "systems with Graphviz or gv!\n"; 656 #endif // NDEBUG 657 } 658 659 void MachineFunction::viewCFGOnly() const 660 { 661 #ifndef NDEBUG 662 ViewGraph(this, "mf" + getName(), true); 663 #else 664 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 665 << "systems with Graphviz or gv!\n"; 666 #endif // NDEBUG 667 } 668 669 /// Add the specified physical register as a live-in value and 670 /// create a corresponding virtual register for it. 671 unsigned MachineFunction::addLiveIn(unsigned PReg, 672 const TargetRegisterClass *RC) { 673 MachineRegisterInfo &MRI = getRegInfo(); 674 unsigned VReg = MRI.getLiveInVirtReg(PReg); 675 if (VReg) { 676 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 677 (void)VRegRC; 678 // A physical register can be added several times. 679 // Between two calls, the register class of the related virtual register 680 // may have been constrained to match some operation constraints. 681 // In that case, check that the current register class includes the 682 // physical register and is a sub class of the specified RC. 683 assert((VRegRC == RC || (VRegRC->contains(PReg) && 684 RC->hasSubClassEq(VRegRC))) && 685 "Register class mismatch!"); 686 return VReg; 687 } 688 VReg = MRI.createVirtualRegister(RC); 689 MRI.addLiveIn(PReg, VReg); 690 return VReg; 691 } 692 693 /// Return the MCSymbol for the specified non-empty jump table. 694 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 695 /// normal 'L' label is returned. 696 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 697 bool isLinkerPrivate) const { 698 const DataLayout &DL = getDataLayout(); 699 assert(JumpTableInfo && "No jump tables"); 700 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 701 702 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 703 : DL.getPrivateGlobalPrefix(); 704 SmallString<60> Name; 705 raw_svector_ostream(Name) 706 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 707 return Ctx.getOrCreateSymbol(Name); 708 } 709 710 /// Return a function-local symbol to represent the PIC base. 711 MCSymbol *MachineFunction::getPICBaseSymbol() const { 712 const DataLayout &DL = getDataLayout(); 713 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 714 Twine(getFunctionNumber()) + "$pb"); 715 } 716 717 /// \name Exception Handling 718 /// \{ 719 720 LandingPadInfo & 721 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 722 unsigned N = LandingPads.size(); 723 for (unsigned i = 0; i < N; ++i) { 724 LandingPadInfo &LP = LandingPads[i]; 725 if (LP.LandingPadBlock == LandingPad) 726 return LP; 727 } 728 729 LandingPads.push_back(LandingPadInfo(LandingPad)); 730 return LandingPads[N]; 731 } 732 733 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 734 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 735 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 736 LP.BeginLabels.push_back(BeginLabel); 737 LP.EndLabels.push_back(EndLabel); 738 } 739 740 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 741 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 742 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 743 LP.LandingPadLabel = LandingPadLabel; 744 745 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 746 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 747 if (const auto *PF = 748 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 749 getMMI().addPersonality(PF); 750 751 if (LPI->isCleanup()) 752 addCleanup(LandingPad); 753 754 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 755 // correct, but we need to do it this way because of how the DWARF EH 756 // emitter processes the clauses. 757 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 758 Value *Val = LPI->getClause(I - 1); 759 if (LPI->isCatch(I - 1)) { 760 addCatchTypeInfo(LandingPad, 761 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 762 } else { 763 // Add filters in a list. 764 auto *CVal = cast<Constant>(Val); 765 SmallVector<const GlobalValue *, 4> FilterList; 766 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 767 II != IE; ++II) 768 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 769 770 addFilterTypeInfo(LandingPad, FilterList); 771 } 772 } 773 774 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 775 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 776 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 777 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 778 } 779 780 } else { 781 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 782 } 783 784 return LandingPadLabel; 785 } 786 787 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 788 ArrayRef<const GlobalValue *> TyInfo) { 789 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 790 for (unsigned N = TyInfo.size(); N; --N) 791 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 792 } 793 794 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 795 ArrayRef<const GlobalValue *> TyInfo) { 796 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 797 std::vector<unsigned> IdsInFilter(TyInfo.size()); 798 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 799 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 800 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 801 } 802 803 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 804 bool TidyIfNoBeginLabels) { 805 for (unsigned i = 0; i != LandingPads.size(); ) { 806 LandingPadInfo &LandingPad = LandingPads[i]; 807 if (LandingPad.LandingPadLabel && 808 !LandingPad.LandingPadLabel->isDefined() && 809 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 810 LandingPad.LandingPadLabel = nullptr; 811 812 // Special case: we *should* emit LPs with null LP MBB. This indicates 813 // "nounwind" case. 814 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 815 LandingPads.erase(LandingPads.begin() + i); 816 continue; 817 } 818 819 if (TidyIfNoBeginLabels) { 820 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 821 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 822 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 823 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 824 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 825 continue; 826 827 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 828 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 829 --j; 830 --e; 831 } 832 833 // Remove landing pads with no try-ranges. 834 if (LandingPads[i].BeginLabels.empty()) { 835 LandingPads.erase(LandingPads.begin() + i); 836 continue; 837 } 838 } 839 840 // If there is no landing pad, ensure that the list of typeids is empty. 841 // If the only typeid is a cleanup, this is the same as having no typeids. 842 if (!LandingPad.LandingPadBlock || 843 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 844 LandingPad.TypeIds.clear(); 845 ++i; 846 } 847 } 848 849 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 850 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 851 LP.TypeIds.push_back(0); 852 } 853 854 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 855 const Function *Filter, 856 const BlockAddress *RecoverBA) { 857 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 858 SEHHandler Handler; 859 Handler.FilterOrFinally = Filter; 860 Handler.RecoverBA = RecoverBA; 861 LP.SEHHandlers.push_back(Handler); 862 } 863 864 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 865 const Function *Cleanup) { 866 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 867 SEHHandler Handler; 868 Handler.FilterOrFinally = Cleanup; 869 Handler.RecoverBA = nullptr; 870 LP.SEHHandlers.push_back(Handler); 871 } 872 873 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 874 ArrayRef<unsigned> Sites) { 875 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 876 } 877 878 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 879 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 880 if (TypeInfos[i] == TI) return i + 1; 881 882 TypeInfos.push_back(TI); 883 return TypeInfos.size(); 884 } 885 886 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 887 // If the new filter coincides with the tail of an existing filter, then 888 // re-use the existing filter. Folding filters more than this requires 889 // re-ordering filters and/or their elements - probably not worth it. 890 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 891 E = FilterEnds.end(); I != E; ++I) { 892 unsigned i = *I, j = TyIds.size(); 893 894 while (i && j) 895 if (FilterIds[--i] != TyIds[--j]) 896 goto try_next; 897 898 if (!j) 899 // The new filter coincides with range [i, end) of the existing filter. 900 return -(1 + i); 901 902 try_next:; 903 } 904 905 // Add the new filter. 906 int FilterID = -(1 + FilterIds.size()); 907 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 908 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 909 FilterEnds.push_back(FilterIds.size()); 910 FilterIds.push_back(0); // terminator 911 return FilterID; 912 } 913 914 MachineFunction::CallSiteInfoMap::iterator 915 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 916 assert(MI->isCandidateForCallSiteEntry() && 917 "Call site info refers only to call (MI) candidates"); 918 919 if (!Target.Options.EmitCallSiteInfo) 920 return CallSitesInfo.end(); 921 return CallSitesInfo.find(MI); 922 } 923 924 /// Return the call machine instruction or find a call within bundle. 925 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 926 if (!MI->isBundle()) 927 return MI; 928 929 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 930 getBundleEnd(MI->getIterator()))) 931 if (BMI.isCandidateForCallSiteEntry()) 932 return &BMI; 933 934 llvm_unreachable("Unexpected bundle without a call site candidate"); 935 } 936 937 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 938 assert(MI->shouldUpdateCallSiteInfo() && 939 "Call site info refers only to call (MI) candidates or " 940 "candidates inside bundles"); 941 942 const MachineInstr *CallMI = getCallInstr(MI); 943 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 944 if (CSIt == CallSitesInfo.end()) 945 return; 946 CallSitesInfo.erase(CSIt); 947 } 948 949 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 950 const MachineInstr *New) { 951 assert(Old->shouldUpdateCallSiteInfo() && 952 "Call site info refers only to call (MI) candidates or " 953 "candidates inside bundles"); 954 955 if (!New->isCandidateForCallSiteEntry()) 956 return eraseCallSiteInfo(Old); 957 958 const MachineInstr *OldCallMI = getCallInstr(Old); 959 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 960 if (CSIt == CallSitesInfo.end()) 961 return; 962 963 CallSiteInfo CSInfo = CSIt->second; 964 CallSitesInfo[New] = CSInfo; 965 } 966 967 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 968 const MachineInstr *New) { 969 assert(Old->shouldUpdateCallSiteInfo() && 970 "Call site info refers only to call (MI) candidates or " 971 "candidates inside bundles"); 972 973 if (!New->isCandidateForCallSiteEntry()) 974 return eraseCallSiteInfo(Old); 975 976 const MachineInstr *OldCallMI = getCallInstr(Old); 977 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 978 if (CSIt == CallSitesInfo.end()) 979 return; 980 981 CallSiteInfo CSInfo = std::move(CSIt->second); 982 CallSitesInfo.erase(CSIt); 983 CallSitesInfo[New] = CSInfo; 984 } 985 986 /// \} 987 988 //===----------------------------------------------------------------------===// 989 // MachineJumpTableInfo implementation 990 //===----------------------------------------------------------------------===// 991 992 /// Return the size of each entry in the jump table. 993 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 994 // The size of a jump table entry is 4 bytes unless the entry is just the 995 // address of a block, in which case it is the pointer size. 996 switch (getEntryKind()) { 997 case MachineJumpTableInfo::EK_BlockAddress: 998 return TD.getPointerSize(); 999 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1000 return 8; 1001 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1002 case MachineJumpTableInfo::EK_LabelDifference32: 1003 case MachineJumpTableInfo::EK_Custom32: 1004 return 4; 1005 case MachineJumpTableInfo::EK_Inline: 1006 return 0; 1007 } 1008 llvm_unreachable("Unknown jump table encoding!"); 1009 } 1010 1011 /// Return the alignment of each entry in the jump table. 1012 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1013 // The alignment of a jump table entry is the alignment of int32 unless the 1014 // entry is just the address of a block, in which case it is the pointer 1015 // alignment. 1016 switch (getEntryKind()) { 1017 case MachineJumpTableInfo::EK_BlockAddress: 1018 return TD.getPointerABIAlignment(0).value(); 1019 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1020 return TD.getABIIntegerTypeAlignment(64).value(); 1021 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1022 case MachineJumpTableInfo::EK_LabelDifference32: 1023 case MachineJumpTableInfo::EK_Custom32: 1024 return TD.getABIIntegerTypeAlignment(32).value(); 1025 case MachineJumpTableInfo::EK_Inline: 1026 return 1; 1027 } 1028 llvm_unreachable("Unknown jump table encoding!"); 1029 } 1030 1031 /// Create a new jump table entry in the jump table info. 1032 unsigned MachineJumpTableInfo::createJumpTableIndex( 1033 const std::vector<MachineBasicBlock*> &DestBBs) { 1034 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1035 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1036 return JumpTables.size()-1; 1037 } 1038 1039 /// If Old is the target of any jump tables, update the jump tables to branch 1040 /// to New instead. 1041 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1042 MachineBasicBlock *New) { 1043 assert(Old != New && "Not making a change?"); 1044 bool MadeChange = false; 1045 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1046 ReplaceMBBInJumpTable(i, Old, New); 1047 return MadeChange; 1048 } 1049 1050 /// If Old is a target of the jump tables, update the jump table to branch to 1051 /// New instead. 1052 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1053 MachineBasicBlock *Old, 1054 MachineBasicBlock *New) { 1055 assert(Old != New && "Not making a change?"); 1056 bool MadeChange = false; 1057 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1058 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1059 if (JTE.MBBs[j] == Old) { 1060 JTE.MBBs[j] = New; 1061 MadeChange = true; 1062 } 1063 return MadeChange; 1064 } 1065 1066 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1067 if (JumpTables.empty()) return; 1068 1069 OS << "Jump Tables:\n"; 1070 1071 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1072 OS << printJumpTableEntryReference(i) << ':'; 1073 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1074 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1075 if (i != e) 1076 OS << '\n'; 1077 } 1078 1079 OS << '\n'; 1080 } 1081 1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1083 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1084 #endif 1085 1086 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1087 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1088 } 1089 1090 //===----------------------------------------------------------------------===// 1091 // MachineConstantPool implementation 1092 //===----------------------------------------------------------------------===// 1093 1094 void MachineConstantPoolValue::anchor() {} 1095 1096 Type *MachineConstantPoolEntry::getType() const { 1097 if (isMachineConstantPoolEntry()) 1098 return Val.MachineCPVal->getType(); 1099 return Val.ConstVal->getType(); 1100 } 1101 1102 bool MachineConstantPoolEntry::needsRelocation() const { 1103 if (isMachineConstantPoolEntry()) 1104 return true; 1105 return Val.ConstVal->needsRelocation(); 1106 } 1107 1108 SectionKind 1109 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1110 if (needsRelocation()) 1111 return SectionKind::getReadOnlyWithRel(); 1112 switch (DL->getTypeAllocSize(getType())) { 1113 case 4: 1114 return SectionKind::getMergeableConst4(); 1115 case 8: 1116 return SectionKind::getMergeableConst8(); 1117 case 16: 1118 return SectionKind::getMergeableConst16(); 1119 case 32: 1120 return SectionKind::getMergeableConst32(); 1121 default: 1122 return SectionKind::getReadOnly(); 1123 } 1124 } 1125 1126 MachineConstantPool::~MachineConstantPool() { 1127 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1128 // so keep track of which we've deleted to avoid double deletions. 1129 DenseSet<MachineConstantPoolValue*> Deleted; 1130 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1131 if (Constants[i].isMachineConstantPoolEntry()) { 1132 Deleted.insert(Constants[i].Val.MachineCPVal); 1133 delete Constants[i].Val.MachineCPVal; 1134 } 1135 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1136 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1137 I != E; ++I) { 1138 if (Deleted.count(*I) == 0) 1139 delete *I; 1140 } 1141 } 1142 1143 /// Test whether the given two constants can be allocated the same constant pool 1144 /// entry. 1145 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1146 const DataLayout &DL) { 1147 // Handle the trivial case quickly. 1148 if (A == B) return true; 1149 1150 // If they have the same type but weren't the same constant, quickly 1151 // reject them. 1152 if (A->getType() == B->getType()) return false; 1153 1154 // We can't handle structs or arrays. 1155 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1156 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1157 return false; 1158 1159 // For now, only support constants with the same size. 1160 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1161 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1162 return false; 1163 1164 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1165 1166 // Try constant folding a bitcast of both instructions to an integer. If we 1167 // get two identical ConstantInt's, then we are good to share them. We use 1168 // the constant folding APIs to do this so that we get the benefit of 1169 // DataLayout. 1170 if (isa<PointerType>(A->getType())) 1171 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1172 const_cast<Constant *>(A), IntTy, DL); 1173 else if (A->getType() != IntTy) 1174 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1175 IntTy, DL); 1176 if (isa<PointerType>(B->getType())) 1177 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1178 const_cast<Constant *>(B), IntTy, DL); 1179 else if (B->getType() != IntTy) 1180 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1181 IntTy, DL); 1182 1183 return A == B; 1184 } 1185 1186 /// Create a new entry in the constant pool or return an existing one. 1187 /// User must specify the log2 of the minimum required alignment for the object. 1188 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1189 unsigned Alignment) { 1190 assert(Alignment && "Alignment must be specified!"); 1191 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1192 1193 // Check to see if we already have this constant. 1194 // 1195 // FIXME, this could be made much more efficient for large constant pools. 1196 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1197 if (!Constants[i].isMachineConstantPoolEntry() && 1198 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1199 if ((unsigned)Constants[i].getAlignment() < Alignment) 1200 Constants[i].Alignment = Alignment; 1201 return i; 1202 } 1203 1204 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1205 return Constants.size()-1; 1206 } 1207 1208 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1209 unsigned Alignment) { 1210 assert(Alignment && "Alignment must be specified!"); 1211 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1212 1213 // Check to see if we already have this constant. 1214 // 1215 // FIXME, this could be made much more efficient for large constant pools. 1216 int Idx = V->getExistingMachineCPValue(this, Alignment); 1217 if (Idx != -1) { 1218 MachineCPVsSharingEntries.insert(V); 1219 return (unsigned)Idx; 1220 } 1221 1222 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1223 return Constants.size()-1; 1224 } 1225 1226 void MachineConstantPool::print(raw_ostream &OS) const { 1227 if (Constants.empty()) return; 1228 1229 OS << "Constant Pool:\n"; 1230 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1231 OS << " cp#" << i << ": "; 1232 if (Constants[i].isMachineConstantPoolEntry()) 1233 Constants[i].Val.MachineCPVal->print(OS); 1234 else 1235 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1236 OS << ", align=" << Constants[i].getAlignment(); 1237 OS << "\n"; 1238 } 1239 } 1240 1241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1242 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1243 #endif 1244