xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 48878ae579ada982eb35053cfe8d1c68c8e51c56)
1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "codegen"
49 
50 static cl::opt<unsigned>
51     AlignAllFunctions("align-all-functions",
52                       cl::desc("Force the alignment of all functions."),
53                       cl::init(0), cl::Hidden);
54 
55 void MachineFunctionInitializer::anchor() {}
56 
57 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
58   typedef MachineFunctionProperties::Property P;
59   switch(Prop) {
60   case P::FailedISel: return "FailedISel";
61   case P::IsSSA: return "IsSSA";
62   case P::Legalized: return "Legalized";
63   case P::NoPHIs: return "NoPHIs";
64   case P::NoVRegs: return "NoVRegs";
65   case P::RegBankSelected: return "RegBankSelected";
66   case P::Selected: return "Selected";
67   case P::TracksLiveness: return "TracksLiveness";
68   }
69   llvm_unreachable("Invalid machine function property");
70 }
71 
72 void MachineFunctionProperties::print(raw_ostream &OS) const {
73   const char *Separator = "";
74   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
75     if (!Properties[I])
76       continue;
77     OS << Separator << getPropertyName(static_cast<Property>(I));
78     Separator = ", ";
79   }
80 }
81 
82 //===----------------------------------------------------------------------===//
83 // MachineFunction implementation
84 //===----------------------------------------------------------------------===//
85 
86 // Out-of-line virtual method.
87 MachineFunctionInfo::~MachineFunctionInfo() {}
88 
89 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
90   MBB->getParent()->DeleteMachineBasicBlock(MBB);
91 }
92 
93 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
94                                            const Function *Fn) {
95   if (Fn->hasFnAttribute(Attribute::StackAlignment))
96     return Fn->getFnStackAlignment();
97   return STI->getFrameLowering()->getStackAlignment();
98 }
99 
100 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
101                                  unsigned FunctionNum, MachineModuleInfo &mmi)
102     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
103       MMI(mmi) {
104   FunctionNumber = FunctionNum;
105   init();
106 }
107 
108 void MachineFunction::init() {
109   // Assume the function starts in SSA form with correct liveness.
110   Properties.set(MachineFunctionProperties::Property::IsSSA);
111   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
112   if (STI->getRegisterInfo())
113     RegInfo = new (Allocator) MachineRegisterInfo(this);
114   else
115     RegInfo = nullptr;
116 
117   MFInfo = nullptr;
118   // We can realign the stack if the target supports it and the user hasn't
119   // explicitly asked us not to.
120   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
121                       !Fn->hasFnAttribute("no-realign-stack");
122   FrameInfo = new (Allocator) MachineFrameInfo(
123       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
124       /*ForceRealign=*/CanRealignSP &&
125           Fn->hasFnAttribute(Attribute::StackAlignment));
126 
127   if (Fn->hasFnAttribute(Attribute::StackAlignment))
128     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
129 
130   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
131   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
132 
133   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
134   // FIXME: Use Function::optForSize().
135   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
136     Alignment = std::max(Alignment,
137                          STI->getTargetLowering()->getPrefFunctionAlignment());
138 
139   if (AlignAllFunctions)
140     Alignment = AlignAllFunctions;
141 
142   JumpTableInfo = nullptr;
143 
144   if (isFuncletEHPersonality(classifyEHPersonality(
145           Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) {
146     WinEHInfo = new (Allocator) WinEHFuncInfo();
147   }
148 
149   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
150          "Can't create a MachineFunction using a Module with a "
151          "Target-incompatible DataLayout attached\n");
152 
153   PSVManager = llvm::make_unique<PseudoSourceValueManager>();
154 }
155 
156 MachineFunction::~MachineFunction() {
157   clear();
158 }
159 
160 void MachineFunction::clear() {
161   Properties.reset();
162   // Don't call destructors on MachineInstr and MachineOperand. All of their
163   // memory comes from the BumpPtrAllocator which is about to be purged.
164   //
165   // Do call MachineBasicBlock destructors, it contains std::vectors.
166   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
167     I->Insts.clearAndLeakNodesUnsafely();
168 
169   InstructionRecycler.clear(Allocator);
170   OperandRecycler.clear(Allocator);
171   BasicBlockRecycler.clear(Allocator);
172   if (RegInfo) {
173     RegInfo->~MachineRegisterInfo();
174     Allocator.Deallocate(RegInfo);
175   }
176   if (MFInfo) {
177     MFInfo->~MachineFunctionInfo();
178     Allocator.Deallocate(MFInfo);
179   }
180 
181   FrameInfo->~MachineFrameInfo();
182   Allocator.Deallocate(FrameInfo);
183 
184   ConstantPool->~MachineConstantPool();
185   Allocator.Deallocate(ConstantPool);
186 
187   if (JumpTableInfo) {
188     JumpTableInfo->~MachineJumpTableInfo();
189     Allocator.Deallocate(JumpTableInfo);
190   }
191 
192   if (WinEHInfo) {
193     WinEHInfo->~WinEHFuncInfo();
194     Allocator.Deallocate(WinEHInfo);
195   }
196 }
197 
198 const DataLayout &MachineFunction::getDataLayout() const {
199   return Fn->getParent()->getDataLayout();
200 }
201 
202 /// Get the JumpTableInfo for this function.
203 /// If it does not already exist, allocate one.
204 MachineJumpTableInfo *MachineFunction::
205 getOrCreateJumpTableInfo(unsigned EntryKind) {
206   if (JumpTableInfo) return JumpTableInfo;
207 
208   JumpTableInfo = new (Allocator)
209     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
210   return JumpTableInfo;
211 }
212 
213 /// Should we be emitting segmented stack stuff for the function
214 bool MachineFunction::shouldSplitStack() const {
215   return getFunction()->hasFnAttribute("split-stack");
216 }
217 
218 /// This discards all of the MachineBasicBlock numbers and recomputes them.
219 /// This guarantees that the MBB numbers are sequential, dense, and match the
220 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
221 /// is specified, only that block and those after it are renumbered.
222 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
223   if (empty()) { MBBNumbering.clear(); return; }
224   MachineFunction::iterator MBBI, E = end();
225   if (MBB == nullptr)
226     MBBI = begin();
227   else
228     MBBI = MBB->getIterator();
229 
230   // Figure out the block number this should have.
231   unsigned BlockNo = 0;
232   if (MBBI != begin())
233     BlockNo = std::prev(MBBI)->getNumber() + 1;
234 
235   for (; MBBI != E; ++MBBI, ++BlockNo) {
236     if (MBBI->getNumber() != (int)BlockNo) {
237       // Remove use of the old number.
238       if (MBBI->getNumber() != -1) {
239         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
240                "MBB number mismatch!");
241         MBBNumbering[MBBI->getNumber()] = nullptr;
242       }
243 
244       // If BlockNo is already taken, set that block's number to -1.
245       if (MBBNumbering[BlockNo])
246         MBBNumbering[BlockNo]->setNumber(-1);
247 
248       MBBNumbering[BlockNo] = &*MBBI;
249       MBBI->setNumber(BlockNo);
250     }
251   }
252 
253   // Okay, all the blocks are renumbered.  If we have compactified the block
254   // numbering, shrink MBBNumbering now.
255   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
256   MBBNumbering.resize(BlockNo);
257 }
258 
259 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
260 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
261                                                   const DebugLoc &DL,
262                                                   bool NoImp) {
263   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
264     MachineInstr(*this, MCID, DL, NoImp);
265 }
266 
267 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
268 /// identical in all ways except the instruction has no parent, prev, or next.
269 MachineInstr *
270 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
271   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
272              MachineInstr(*this, *Orig);
273 }
274 
275 /// Delete the given MachineInstr.
276 ///
277 /// This function also serves as the MachineInstr destructor - the real
278 /// ~MachineInstr() destructor must be empty.
279 void
280 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
281   // Strip it for parts. The operand array and the MI object itself are
282   // independently recyclable.
283   if (MI->Operands)
284     deallocateOperandArray(MI->CapOperands, MI->Operands);
285   // Don't call ~MachineInstr() which must be trivial anyway because
286   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
287   // destructors.
288   InstructionRecycler.Deallocate(Allocator, MI);
289 }
290 
291 /// Allocate a new MachineBasicBlock. Use this instead of
292 /// `new MachineBasicBlock'.
293 MachineBasicBlock *
294 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
295   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
296              MachineBasicBlock(*this, bb);
297 }
298 
299 /// Delete the given MachineBasicBlock.
300 void
301 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
302   assert(MBB->getParent() == this && "MBB parent mismatch!");
303   MBB->~MachineBasicBlock();
304   BasicBlockRecycler.Deallocate(Allocator, MBB);
305 }
306 
307 MachineMemOperand *MachineFunction::getMachineMemOperand(
308     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
309     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
310   return new (Allocator)
311       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
312 }
313 
314 MachineMemOperand *
315 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
316                                       int64_t Offset, uint64_t Size) {
317   if (MMO->getValue())
318     return new (Allocator)
319                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
320                                                     MMO->getOffset()+Offset),
321                                  MMO->getFlags(), Size,
322                                  MMO->getBaseAlignment());
323   return new (Allocator)
324              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
325                                                   MMO->getOffset()+Offset),
326                                MMO->getFlags(), Size,
327                                MMO->getBaseAlignment());
328 }
329 
330 MachineInstr::mmo_iterator
331 MachineFunction::allocateMemRefsArray(unsigned long Num) {
332   return Allocator.Allocate<MachineMemOperand *>(Num);
333 }
334 
335 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
336 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
337                                     MachineInstr::mmo_iterator End) {
338   // Count the number of load mem refs.
339   unsigned Num = 0;
340   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
341     if ((*I)->isLoad())
342       ++Num;
343 
344   // Allocate a new array and populate it with the load information.
345   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
346   unsigned Index = 0;
347   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
348     if ((*I)->isLoad()) {
349       if (!(*I)->isStore())
350         // Reuse the MMO.
351         Result[Index] = *I;
352       else {
353         // Clone the MMO and unset the store flag.
354         MachineMemOperand *JustLoad =
355           getMachineMemOperand((*I)->getPointerInfo(),
356                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
357                                (*I)->getSize(), (*I)->getBaseAlignment(),
358                                (*I)->getAAInfo());
359         Result[Index] = JustLoad;
360       }
361       ++Index;
362     }
363   }
364   return std::make_pair(Result, Result + Num);
365 }
366 
367 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
368 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
369                                      MachineInstr::mmo_iterator End) {
370   // Count the number of load mem refs.
371   unsigned Num = 0;
372   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
373     if ((*I)->isStore())
374       ++Num;
375 
376   // Allocate a new array and populate it with the store information.
377   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
378   unsigned Index = 0;
379   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
380     if ((*I)->isStore()) {
381       if (!(*I)->isLoad())
382         // Reuse the MMO.
383         Result[Index] = *I;
384       else {
385         // Clone the MMO and unset the load flag.
386         MachineMemOperand *JustStore =
387           getMachineMemOperand((*I)->getPointerInfo(),
388                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
389                                (*I)->getSize(), (*I)->getBaseAlignment(),
390                                (*I)->getAAInfo());
391         Result[Index] = JustStore;
392       }
393       ++Index;
394     }
395   }
396   return std::make_pair(Result, Result + Num);
397 }
398 
399 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
400   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
401   std::copy(Name.begin(), Name.end(), Dest);
402   Dest[Name.size()] = 0;
403   return Dest;
404 }
405 
406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
407 LLVM_DUMP_METHOD void MachineFunction::dump() const {
408   print(dbgs());
409 }
410 #endif
411 
412 StringRef MachineFunction::getName() const {
413   assert(getFunction() && "No function!");
414   return getFunction()->getName();
415 }
416 
417 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
418   OS << "# Machine code for function " << getName() << ": ";
419   getProperties().print(OS);
420   OS << '\n';
421 
422   // Print Frame Information
423   FrameInfo->print(*this, OS);
424 
425   // Print JumpTable Information
426   if (JumpTableInfo)
427     JumpTableInfo->print(OS);
428 
429   // Print Constant Pool
430   ConstantPool->print(OS);
431 
432   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
433 
434   if (RegInfo && !RegInfo->livein_empty()) {
435     OS << "Function Live Ins: ";
436     for (MachineRegisterInfo::livein_iterator
437          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
438       OS << PrintReg(I->first, TRI);
439       if (I->second)
440         OS << " in " << PrintReg(I->second, TRI);
441       if (std::next(I) != E)
442         OS << ", ";
443     }
444     OS << '\n';
445   }
446 
447   ModuleSlotTracker MST(getFunction()->getParent());
448   MST.incorporateFunction(*getFunction());
449   for (const auto &BB : *this) {
450     OS << '\n';
451     BB.print(OS, MST, Indexes);
452   }
453 
454   OS << "\n# End machine code for function " << getName() << ".\n\n";
455 }
456 
457 namespace llvm {
458   template<>
459   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
460 
461   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
462 
463     static std::string getGraphName(const MachineFunction *F) {
464       return ("CFG for '" + F->getName() + "' function").str();
465     }
466 
467     std::string getNodeLabel(const MachineBasicBlock *Node,
468                              const MachineFunction *Graph) {
469       std::string OutStr;
470       {
471         raw_string_ostream OSS(OutStr);
472 
473         if (isSimple()) {
474           OSS << "BB#" << Node->getNumber();
475           if (const BasicBlock *BB = Node->getBasicBlock())
476             OSS << ": " << BB->getName();
477         } else
478           Node->print(OSS);
479       }
480 
481       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
482 
483       // Process string output to make it nicer...
484       for (unsigned i = 0; i != OutStr.length(); ++i)
485         if (OutStr[i] == '\n') {                            // Left justify
486           OutStr[i] = '\\';
487           OutStr.insert(OutStr.begin()+i+1, 'l');
488         }
489       return OutStr;
490     }
491   };
492 }
493 
494 void MachineFunction::viewCFG() const
495 {
496 #ifndef NDEBUG
497   ViewGraph(this, "mf" + getName());
498 #else
499   errs() << "MachineFunction::viewCFG is only available in debug builds on "
500          << "systems with Graphviz or gv!\n";
501 #endif // NDEBUG
502 }
503 
504 void MachineFunction::viewCFGOnly() const
505 {
506 #ifndef NDEBUG
507   ViewGraph(this, "mf" + getName(), true);
508 #else
509   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
510          << "systems with Graphviz or gv!\n";
511 #endif // NDEBUG
512 }
513 
514 /// Add the specified physical register as a live-in value and
515 /// create a corresponding virtual register for it.
516 unsigned MachineFunction::addLiveIn(unsigned PReg,
517                                     const TargetRegisterClass *RC) {
518   MachineRegisterInfo &MRI = getRegInfo();
519   unsigned VReg = MRI.getLiveInVirtReg(PReg);
520   if (VReg) {
521     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
522     (void)VRegRC;
523     // A physical register can be added several times.
524     // Between two calls, the register class of the related virtual register
525     // may have been constrained to match some operation constraints.
526     // In that case, check that the current register class includes the
527     // physical register and is a sub class of the specified RC.
528     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
529                              RC->hasSubClassEq(VRegRC))) &&
530             "Register class mismatch!");
531     return VReg;
532   }
533   VReg = MRI.createVirtualRegister(RC);
534   MRI.addLiveIn(PReg, VReg);
535   return VReg;
536 }
537 
538 /// Return the MCSymbol for the specified non-empty jump table.
539 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
540 /// normal 'L' label is returned.
541 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
542                                         bool isLinkerPrivate) const {
543   const DataLayout &DL = getDataLayout();
544   assert(JumpTableInfo && "No jump tables");
545   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
546 
547   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
548                                      : DL.getPrivateGlobalPrefix();
549   SmallString<60> Name;
550   raw_svector_ostream(Name)
551     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
552   return Ctx.getOrCreateSymbol(Name);
553 }
554 
555 /// Return a function-local symbol to represent the PIC base.
556 MCSymbol *MachineFunction::getPICBaseSymbol() const {
557   const DataLayout &DL = getDataLayout();
558   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
559                                Twine(getFunctionNumber()) + "$pb");
560 }
561 
562 //===----------------------------------------------------------------------===//
563 //  MachineFrameInfo implementation
564 //===----------------------------------------------------------------------===//
565 
566 /// Make sure the function is at least Align bytes aligned.
567 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
568   if (!StackRealignable)
569     assert(Align <= StackAlignment &&
570            "For targets without stack realignment, Align is out of limit!");
571   if (MaxAlignment < Align) MaxAlignment = Align;
572 }
573 
574 /// Clamp the alignment if requested and emit a warning.
575 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
576                                            unsigned StackAlign) {
577   if (!ShouldClamp || Align <= StackAlign)
578     return Align;
579   DEBUG(dbgs() << "Warning: requested alignment " << Align
580                << " exceeds the stack alignment " << StackAlign
581                << " when stack realignment is off" << '\n');
582   return StackAlign;
583 }
584 
585 /// Create a new statically sized stack object, returning a nonnegative
586 /// identifier to represent it.
587 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
588                       bool isSS, const AllocaInst *Alloca) {
589   assert(Size != 0 && "Cannot allocate zero size stack objects!");
590   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
591   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
592                                 !isSS));
593   int Index = (int)Objects.size() - NumFixedObjects - 1;
594   assert(Index >= 0 && "Bad frame index!");
595   ensureMaxAlignment(Alignment);
596   return Index;
597 }
598 
599 /// Create a new statically sized stack object that represents a spill slot,
600 /// returning a nonnegative identifier to represent it.
601 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
602                                              unsigned Alignment) {
603   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
604   CreateStackObject(Size, Alignment, true);
605   int Index = (int)Objects.size() - NumFixedObjects - 1;
606   ensureMaxAlignment(Alignment);
607   return Index;
608 }
609 
610 /// Notify the MachineFrameInfo object that a variable sized object has been
611 /// created. This must be created whenever a variable sized object is created,
612 /// whether or not the index returned is actually used.
613 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
614                                                 const AllocaInst *Alloca) {
615   HasVarSizedObjects = true;
616   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
617   Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
618   ensureMaxAlignment(Alignment);
619   return (int)Objects.size()-NumFixedObjects-1;
620 }
621 
622 /// Create a new object at a fixed location on the stack.
623 /// All fixed objects should be created before other objects are created for
624 /// efficiency. By default, fixed objects are immutable. This returns an
625 /// index with a negative value.
626 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
627                                         bool Immutable, bool isAliased) {
628   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
629   // The alignment of the frame index can be determined from its offset from
630   // the incoming frame position.  If the frame object is at offset 32 and
631   // the stack is guaranteed to be 16-byte aligned, then we know that the
632   // object is 16-byte aligned. Note that unlike the non-fixed case, if the
633   // stack needs realignment, we can't assume that the stack will in fact be
634   // aligned.
635   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
636   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
637   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
638                                               /*isSS*/   false,
639                                               /*Alloca*/ nullptr, isAliased));
640   return -++NumFixedObjects;
641 }
642 
643 /// Create a spill slot at a fixed location on the stack.
644 /// Returns an index with a negative value.
645 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
646                                                   int64_t SPOffset,
647                                                   bool Immutable) {
648   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
649   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
650   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
651                                               /*isSS*/ true,
652                                               /*Alloca*/ nullptr,
653                                               /*isAliased*/ false));
654   return -++NumFixedObjects;
655 }
656 
657 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
658   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
659   BitVector BV(TRI->getNumRegs());
660 
661   // Before CSI is calculated, no registers are considered pristine. They can be
662   // freely used and PEI will make sure they are saved.
663   if (!isCalleeSavedInfoValid())
664     return BV;
665 
666   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
667     BV.set(*CSR);
668 
669   // Saved CSRs are not pristine.
670   for (auto &I : getCalleeSavedInfo())
671     for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
672       BV.reset(*S);
673 
674   return BV;
675 }
676 
677 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
678   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
679   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
680   unsigned MaxAlign = getMaxAlignment();
681   int Offset = 0;
682 
683   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
684   // It really should be refactored to share code. Until then, changes
685   // should keep in mind that there's tight coupling between the two.
686 
687   for (int i = getObjectIndexBegin(); i != 0; ++i) {
688     int FixedOff = -getObjectOffset(i);
689     if (FixedOff > Offset) Offset = FixedOff;
690   }
691   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
692     if (isDeadObjectIndex(i))
693       continue;
694     Offset += getObjectSize(i);
695     unsigned Align = getObjectAlignment(i);
696     // Adjust to alignment boundary
697     Offset = (Offset+Align-1)/Align*Align;
698 
699     MaxAlign = std::max(Align, MaxAlign);
700   }
701 
702   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
703     Offset += getMaxCallFrameSize();
704 
705   // Round up the size to a multiple of the alignment.  If the function has
706   // any calls or alloca's, align to the target's StackAlignment value to
707   // ensure that the callee's frame or the alloca data is suitably aligned;
708   // otherwise, for leaf functions, align to the TransientStackAlignment
709   // value.
710   unsigned StackAlign;
711   if (adjustsStack() || hasVarSizedObjects() ||
712       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
713     StackAlign = TFI->getStackAlignment();
714   else
715     StackAlign = TFI->getTransientStackAlignment();
716 
717   // If the frame pointer is eliminated, all frame offsets will be relative to
718   // SP not FP. Align to MaxAlign so this works.
719   StackAlign = std::max(StackAlign, MaxAlign);
720   unsigned AlignMask = StackAlign - 1;
721   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
722 
723   return (unsigned)Offset;
724 }
725 
726 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
727   if (Objects.empty()) return;
728 
729   const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
730   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
731 
732   OS << "Frame Objects:\n";
733 
734   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
735     const StackObject &SO = Objects[i];
736     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
737     if (SO.Size == ~0ULL) {
738       OS << "dead\n";
739       continue;
740     }
741     if (SO.Size == 0)
742       OS << "variable sized";
743     else
744       OS << "size=" << SO.Size;
745     OS << ", align=" << SO.Alignment;
746 
747     if (i < NumFixedObjects)
748       OS << ", fixed";
749     if (i < NumFixedObjects || SO.SPOffset != -1) {
750       int64_t Off = SO.SPOffset - ValOffset;
751       OS << ", at location [SP";
752       if (Off > 0)
753         OS << "+" << Off;
754       else if (Off < 0)
755         OS << Off;
756       OS << "]";
757     }
758     OS << "\n";
759   }
760 }
761 
762 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
763 void MachineFrameInfo::dump(const MachineFunction &MF) const {
764   print(MF, dbgs());
765 }
766 #endif
767 
768 //===----------------------------------------------------------------------===//
769 //  MachineJumpTableInfo implementation
770 //===----------------------------------------------------------------------===//
771 
772 /// Return the size of each entry in the jump table.
773 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
774   // The size of a jump table entry is 4 bytes unless the entry is just the
775   // address of a block, in which case it is the pointer size.
776   switch (getEntryKind()) {
777   case MachineJumpTableInfo::EK_BlockAddress:
778     return TD.getPointerSize();
779   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
780     return 8;
781   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
782   case MachineJumpTableInfo::EK_LabelDifference32:
783   case MachineJumpTableInfo::EK_Custom32:
784     return 4;
785   case MachineJumpTableInfo::EK_Inline:
786     return 0;
787   }
788   llvm_unreachable("Unknown jump table encoding!");
789 }
790 
791 /// Return the alignment of each entry in the jump table.
792 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
793   // The alignment of a jump table entry is the alignment of int32 unless the
794   // entry is just the address of a block, in which case it is the pointer
795   // alignment.
796   switch (getEntryKind()) {
797   case MachineJumpTableInfo::EK_BlockAddress:
798     return TD.getPointerABIAlignment();
799   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
800     return TD.getABIIntegerTypeAlignment(64);
801   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
802   case MachineJumpTableInfo::EK_LabelDifference32:
803   case MachineJumpTableInfo::EK_Custom32:
804     return TD.getABIIntegerTypeAlignment(32);
805   case MachineJumpTableInfo::EK_Inline:
806     return 1;
807   }
808   llvm_unreachable("Unknown jump table encoding!");
809 }
810 
811 /// Create a new jump table entry in the jump table info.
812 unsigned MachineJumpTableInfo::createJumpTableIndex(
813                                const std::vector<MachineBasicBlock*> &DestBBs) {
814   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
815   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
816   return JumpTables.size()-1;
817 }
818 
819 /// If Old is the target of any jump tables, update the jump tables to branch
820 /// to New instead.
821 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
822                                                   MachineBasicBlock *New) {
823   assert(Old != New && "Not making a change?");
824   bool MadeChange = false;
825   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
826     ReplaceMBBInJumpTable(i, Old, New);
827   return MadeChange;
828 }
829 
830 /// If Old is a target of the jump tables, update the jump table to branch to
831 /// New instead.
832 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
833                                                  MachineBasicBlock *Old,
834                                                  MachineBasicBlock *New) {
835   assert(Old != New && "Not making a change?");
836   bool MadeChange = false;
837   MachineJumpTableEntry &JTE = JumpTables[Idx];
838   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
839     if (JTE.MBBs[j] == Old) {
840       JTE.MBBs[j] = New;
841       MadeChange = true;
842     }
843   return MadeChange;
844 }
845 
846 void MachineJumpTableInfo::print(raw_ostream &OS) const {
847   if (JumpTables.empty()) return;
848 
849   OS << "Jump Tables:\n";
850 
851   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
852     OS << "  jt#" << i << ": ";
853     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
854       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
855   }
856 
857   OS << '\n';
858 }
859 
860 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
861 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
862 #endif
863 
864 
865 //===----------------------------------------------------------------------===//
866 //  MachineConstantPool implementation
867 //===----------------------------------------------------------------------===//
868 
869 void MachineConstantPoolValue::anchor() { }
870 
871 Type *MachineConstantPoolEntry::getType() const {
872   if (isMachineConstantPoolEntry())
873     return Val.MachineCPVal->getType();
874   return Val.ConstVal->getType();
875 }
876 
877 bool MachineConstantPoolEntry::needsRelocation() const {
878   if (isMachineConstantPoolEntry())
879     return true;
880   return Val.ConstVal->needsRelocation();
881 }
882 
883 SectionKind
884 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
885   if (needsRelocation())
886     return SectionKind::getReadOnlyWithRel();
887   switch (DL->getTypeAllocSize(getType())) {
888   case 4:
889     return SectionKind::getMergeableConst4();
890   case 8:
891     return SectionKind::getMergeableConst8();
892   case 16:
893     return SectionKind::getMergeableConst16();
894   case 32:
895     return SectionKind::getMergeableConst32();
896   default:
897     return SectionKind::getReadOnly();
898   }
899 }
900 
901 MachineConstantPool::~MachineConstantPool() {
902   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
903   // so keep track of which we've deleted to avoid double deletions.
904   DenseSet<MachineConstantPoolValue*> Deleted;
905   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
906     if (Constants[i].isMachineConstantPoolEntry()) {
907       Deleted.insert(Constants[i].Val.MachineCPVal);
908       delete Constants[i].Val.MachineCPVal;
909     }
910   for (DenseSet<MachineConstantPoolValue*>::iterator I =
911        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
912        I != E; ++I) {
913     if (Deleted.count(*I) == 0)
914       delete *I;
915   }
916 }
917 
918 /// Test whether the given two constants can be allocated the same constant pool
919 /// entry.
920 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
921                                       const DataLayout &DL) {
922   // Handle the trivial case quickly.
923   if (A == B) return true;
924 
925   // If they have the same type but weren't the same constant, quickly
926   // reject them.
927   if (A->getType() == B->getType()) return false;
928 
929   // We can't handle structs or arrays.
930   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
931       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
932     return false;
933 
934   // For now, only support constants with the same size.
935   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
936   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
937     return false;
938 
939   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
940 
941   // Try constant folding a bitcast of both instructions to an integer.  If we
942   // get two identical ConstantInt's, then we are good to share them.  We use
943   // the constant folding APIs to do this so that we get the benefit of
944   // DataLayout.
945   if (isa<PointerType>(A->getType()))
946     A = ConstantFoldCastOperand(Instruction::PtrToInt,
947                                 const_cast<Constant *>(A), IntTy, DL);
948   else if (A->getType() != IntTy)
949     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
950                                 IntTy, DL);
951   if (isa<PointerType>(B->getType()))
952     B = ConstantFoldCastOperand(Instruction::PtrToInt,
953                                 const_cast<Constant *>(B), IntTy, DL);
954   else if (B->getType() != IntTy)
955     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
956                                 IntTy, DL);
957 
958   return A == B;
959 }
960 
961 /// Create a new entry in the constant pool or return an existing one.
962 /// User must specify the log2 of the minimum required alignment for the object.
963 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
964                                                    unsigned Alignment) {
965   assert(Alignment && "Alignment must be specified!");
966   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
967 
968   // Check to see if we already have this constant.
969   //
970   // FIXME, this could be made much more efficient for large constant pools.
971   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
972     if (!Constants[i].isMachineConstantPoolEntry() &&
973         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
974       if ((unsigned)Constants[i].getAlignment() < Alignment)
975         Constants[i].Alignment = Alignment;
976       return i;
977     }
978 
979   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
980   return Constants.size()-1;
981 }
982 
983 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
984                                                    unsigned Alignment) {
985   assert(Alignment && "Alignment must be specified!");
986   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
987 
988   // Check to see if we already have this constant.
989   //
990   // FIXME, this could be made much more efficient for large constant pools.
991   int Idx = V->getExistingMachineCPValue(this, Alignment);
992   if (Idx != -1) {
993     MachineCPVsSharingEntries.insert(V);
994     return (unsigned)Idx;
995   }
996 
997   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
998   return Constants.size()-1;
999 }
1000 
1001 void MachineConstantPool::print(raw_ostream &OS) const {
1002   if (Constants.empty()) return;
1003 
1004   OS << "Constant Pool:\n";
1005   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1006     OS << "  cp#" << i << ": ";
1007     if (Constants[i].isMachineConstantPoolEntry())
1008       Constants[i].Val.MachineCPVal->print(OS);
1009     else
1010       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1011     OS << ", align=" << Constants[i].getAlignment();
1012     OS << "\n";
1013   }
1014 }
1015 
1016 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1017 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1018 #endif
1019