xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 47c3fe2a22cf753fd55d08d367fbd817b4dd4a1c)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   switch(Prop) {
93   case P::FailedISel: return "FailedISel";
94   case P::IsSSA: return "IsSSA";
95   case P::Legalized: return "Legalized";
96   case P::NoPHIs: return "NoPHIs";
97   case P::NoVRegs: return "NoVRegs";
98   case P::RegBankSelected: return "RegBankSelected";
99   case P::Selected: return "Selected";
100   case P::TracksLiveness: return "TracksLiveness";
101   case P::TiedOpsRewritten: return "TiedOpsRewritten";
102   }
103   llvm_unreachable("Invalid machine function property");
104 }
105 
106 // Pin the vtable to this file.
107 void MachineFunction::Delegate::anchor() {}
108 
109 void MachineFunctionProperties::print(raw_ostream &OS) const {
110   const char *Separator = "";
111   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
112     if (!Properties[I])
113       continue;
114     OS << Separator << getPropertyName(static_cast<Property>(I));
115     Separator = ", ";
116   }
117 }
118 
119 //===----------------------------------------------------------------------===//
120 // MachineFunction implementation
121 //===----------------------------------------------------------------------===//
122 
123 // Out-of-line virtual method.
124 MachineFunctionInfo::~MachineFunctionInfo() = default;
125 
126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
127   MBB->getParent()->DeleteMachineBasicBlock(MBB);
128 }
129 
130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
131                                            const Function &F) {
132   if (F.hasFnAttribute(Attribute::StackAlignment))
133     return F.getFnStackAlignment();
134   return STI->getFrameLowering()->getStackAlign().value();
135 }
136 
137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
138                                  const TargetSubtargetInfo &STI,
139                                  unsigned FunctionNum, MachineModuleInfo &mmi)
140     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141   FunctionNumber = FunctionNum;
142   init();
143 }
144 
145 void MachineFunction::handleInsertion(MachineInstr &MI) {
146   if (TheDelegate)
147     TheDelegate->MF_HandleInsertion(MI);
148 }
149 
150 void MachineFunction::handleRemoval(MachineInstr &MI) {
151   if (TheDelegate)
152     TheDelegate->MF_HandleRemoval(MI);
153 }
154 
155 void MachineFunction::init() {
156   // Assume the function starts in SSA form with correct liveness.
157   Properties.set(MachineFunctionProperties::Property::IsSSA);
158   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159   if (STI->getRegisterInfo())
160     RegInfo = new (Allocator) MachineRegisterInfo(this);
161   else
162     RegInfo = nullptr;
163 
164   MFInfo = nullptr;
165   // We can realign the stack if the target supports it and the user hasn't
166   // explicitly asked us not to.
167   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168                       !F.hasFnAttribute("no-realign-stack");
169   FrameInfo = new (Allocator) MachineFrameInfo(
170       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171       /*ForcedRealign=*/CanRealignSP &&
172           F.hasFnAttribute(Attribute::StackAlignment));
173 
174   if (F.hasFnAttribute(Attribute::StackAlignment))
175     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
176 
177   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
179 
180   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181   // FIXME: Use Function::hasOptSize().
182   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183     Alignment = std::max(Alignment,
184                          STI->getTargetLowering()->getPrefFunctionAlignment());
185 
186   if (AlignAllFunctions)
187     Alignment = Align(1ULL << AlignAllFunctions);
188 
189   JumpTableInfo = nullptr;
190 
191   if (isFuncletEHPersonality(classifyEHPersonality(
192           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193     WinEHInfo = new (Allocator) WinEHFuncInfo();
194   }
195 
196   if (isScopedEHPersonality(classifyEHPersonality(
197           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199   }
200 
201   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202          "Can't create a MachineFunction using a Module with a "
203          "Target-incompatible DataLayout attached\n");
204 
205   PSVManager =
206     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207                                                   getInstrInfo()));
208 }
209 
210 MachineFunction::~MachineFunction() {
211   clear();
212 }
213 
214 void MachineFunction::clear() {
215   Properties.reset();
216   // Don't call destructors on MachineInstr and MachineOperand. All of their
217   // memory comes from the BumpPtrAllocator which is about to be purged.
218   //
219   // Do call MachineBasicBlock destructors, it contains std::vectors.
220   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221     I->Insts.clearAndLeakNodesUnsafely();
222   MBBNumbering.clear();
223 
224   InstructionRecycler.clear(Allocator);
225   OperandRecycler.clear(Allocator);
226   BasicBlockRecycler.clear(Allocator);
227   CodeViewAnnotations.clear();
228   VariableDbgInfos.clear();
229   if (RegInfo) {
230     RegInfo->~MachineRegisterInfo();
231     Allocator.Deallocate(RegInfo);
232   }
233   if (MFInfo) {
234     MFInfo->~MachineFunctionInfo();
235     Allocator.Deallocate(MFInfo);
236   }
237 
238   FrameInfo->~MachineFrameInfo();
239   Allocator.Deallocate(FrameInfo);
240 
241   ConstantPool->~MachineConstantPool();
242   Allocator.Deallocate(ConstantPool);
243 
244   if (JumpTableInfo) {
245     JumpTableInfo->~MachineJumpTableInfo();
246     Allocator.Deallocate(JumpTableInfo);
247   }
248 
249   if (WinEHInfo) {
250     WinEHInfo->~WinEHFuncInfo();
251     Allocator.Deallocate(WinEHInfo);
252   }
253 
254   if (WasmEHInfo) {
255     WasmEHInfo->~WasmEHFuncInfo();
256     Allocator.Deallocate(WasmEHInfo);
257   }
258 }
259 
260 const DataLayout &MachineFunction::getDataLayout() const {
261   return F.getParent()->getDataLayout();
262 }
263 
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo *MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind) {
268   if (JumpTableInfo) return JumpTableInfo;
269 
270   JumpTableInfo = new (Allocator)
271     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272   return JumpTableInfo;
273 }
274 
275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276   return F.getDenormalMode(FPType);
277 }
278 
279 /// Should we be emitting segmented stack stuff for the function
280 bool MachineFunction::shouldSplitStack() const {
281   return getFunction().hasFnAttribute("split-stack");
282 }
283 
284 LLVM_NODISCARD unsigned
285 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
286   FrameInstructions.push_back(Inst);
287   return FrameInstructions.size() - 1;
288 }
289 
290 /// This discards all of the MachineBasicBlock numbers and recomputes them.
291 /// This guarantees that the MBB numbers are sequential, dense, and match the
292 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
293 /// is specified, only that block and those after it are renumbered.
294 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
295   if (empty()) { MBBNumbering.clear(); return; }
296   MachineFunction::iterator MBBI, E = end();
297   if (MBB == nullptr)
298     MBBI = begin();
299   else
300     MBBI = MBB->getIterator();
301 
302   // Figure out the block number this should have.
303   unsigned BlockNo = 0;
304   if (MBBI != begin())
305     BlockNo = std::prev(MBBI)->getNumber() + 1;
306 
307   for (; MBBI != E; ++MBBI, ++BlockNo) {
308     if (MBBI->getNumber() != (int)BlockNo) {
309       // Remove use of the old number.
310       if (MBBI->getNumber() != -1) {
311         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
312                "MBB number mismatch!");
313         MBBNumbering[MBBI->getNumber()] = nullptr;
314       }
315 
316       // If BlockNo is already taken, set that block's number to -1.
317       if (MBBNumbering[BlockNo])
318         MBBNumbering[BlockNo]->setNumber(-1);
319 
320       MBBNumbering[BlockNo] = &*MBBI;
321       MBBI->setNumber(BlockNo);
322     }
323   }
324 
325   // Okay, all the blocks are renumbered.  If we have compactified the block
326   // numbering, shrink MBBNumbering now.
327   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
328   MBBNumbering.resize(BlockNo);
329 }
330 
331 /// This method iterates over the basic blocks and assigns their IsBeginSection
332 /// and IsEndSection fields. This must be called after MBB layout is finalized
333 /// and the SectionID's are assigned to MBBs.
334 void MachineFunction::assignBeginEndSections() {
335   front().setIsBeginSection();
336   auto CurrentSectionID = front().getSectionID();
337   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
338     if (MBBI->getSectionID() == CurrentSectionID)
339       continue;
340     MBBI->setIsBeginSection();
341     std::prev(MBBI)->setIsEndSection();
342     CurrentSectionID = MBBI->getSectionID();
343   }
344   back().setIsEndSection();
345 }
346 
347 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
348 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
349                                                   const DebugLoc &DL,
350                                                   bool NoImplicit) {
351   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
352       MachineInstr(*this, MCID, DL, NoImplicit);
353 }
354 
355 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
356 /// identical in all ways except the instruction has no parent, prev, or next.
357 MachineInstr *
358 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
359   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
360              MachineInstr(*this, *Orig);
361 }
362 
363 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
364     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
365   MachineInstr *FirstClone = nullptr;
366   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
367   while (true) {
368     MachineInstr *Cloned = CloneMachineInstr(&*I);
369     MBB.insert(InsertBefore, Cloned);
370     if (FirstClone == nullptr) {
371       FirstClone = Cloned;
372     } else {
373       Cloned->bundleWithPred();
374     }
375 
376     if (!I->isBundledWithSucc())
377       break;
378     ++I;
379   }
380   // Copy over call site info to the cloned instruction if needed. If Orig is in
381   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
382   // the bundle.
383   if (Orig.shouldUpdateCallSiteInfo())
384     copyCallSiteInfo(&Orig, FirstClone);
385   return *FirstClone;
386 }
387 
388 /// Delete the given MachineInstr.
389 ///
390 /// This function also serves as the MachineInstr destructor - the real
391 /// ~MachineInstr() destructor must be empty.
392 void
393 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
394   // Verify that a call site info is at valid state. This assertion should
395   // be triggered during the implementation of support for the
396   // call site info of a new architecture. If the assertion is triggered,
397   // back trace will tell where to insert a call to updateCallSiteInfo().
398   assert((!MI->isCandidateForCallSiteEntry() ||
399           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
400          "Call site info was not updated!");
401   // Strip it for parts. The operand array and the MI object itself are
402   // independently recyclable.
403   if (MI->Operands)
404     deallocateOperandArray(MI->CapOperands, MI->Operands);
405   // Don't call ~MachineInstr() which must be trivial anyway because
406   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
407   // destructors.
408   InstructionRecycler.Deallocate(Allocator, MI);
409 }
410 
411 /// Allocate a new MachineBasicBlock. Use this instead of
412 /// `new MachineBasicBlock'.
413 MachineBasicBlock *
414 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
415   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
416              MachineBasicBlock(*this, bb);
417 }
418 
419 /// Delete the given MachineBasicBlock.
420 void
421 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
422   assert(MBB->getParent() == this && "MBB parent mismatch!");
423   // Clean up any references to MBB in jump tables before deleting it.
424   if (JumpTableInfo)
425     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
426   MBB->~MachineBasicBlock();
427   BasicBlockRecycler.Deallocate(Allocator, MBB);
428 }
429 
430 MachineMemOperand *MachineFunction::getMachineMemOperand(
431     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
432     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
433     SyncScope::ID SSID, AtomicOrdering Ordering,
434     AtomicOrdering FailureOrdering) {
435   return new (Allocator)
436       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
437                         SSID, Ordering, FailureOrdering);
438 }
439 
440 MachineMemOperand *MachineFunction::getMachineMemOperand(
441     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
442     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
443     SyncScope::ID SSID, AtomicOrdering Ordering,
444     AtomicOrdering FailureOrdering) {
445   return new (Allocator)
446       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
447                         Ordering, FailureOrdering);
448 }
449 
450 MachineMemOperand *MachineFunction::getMachineMemOperand(
451     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
452   return new (Allocator)
453       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
454                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
455                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
456 }
457 
458 MachineMemOperand *MachineFunction::getMachineMemOperand(
459     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
460   return new (Allocator)
461       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
462                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
463                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
464 }
465 
466 MachineMemOperand *
467 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
468                                       int64_t Offset, LLT Ty) {
469   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
470 
471   // If there is no pointer value, the offset isn't tracked so we need to adjust
472   // the base alignment.
473   Align Alignment = PtrInfo.V.isNull()
474                         ? commonAlignment(MMO->getBaseAlign(), Offset)
475                         : MMO->getBaseAlign();
476 
477   // Do not preserve ranges, since we don't necessarily know what the high bits
478   // are anymore.
479   return new (Allocator) MachineMemOperand(
480       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
481       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
482       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
483 }
484 
485 MachineMemOperand *
486 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
487                                       const AAMDNodes &AAInfo) {
488   MachinePointerInfo MPI = MMO->getValue() ?
489              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
490              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
491 
492   return new (Allocator) MachineMemOperand(
493       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
494       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
495       MMO->getFailureOrdering());
496 }
497 
498 MachineMemOperand *
499 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
500                                       MachineMemOperand::Flags Flags) {
501   return new (Allocator) MachineMemOperand(
502       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
503       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
504       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
505 }
506 
507 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
508     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
509     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
510   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
511                                          PostInstrSymbol, HeapAllocMarker);
512 }
513 
514 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
515   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
516   llvm::copy(Name, Dest);
517   Dest[Name.size()] = 0;
518   return Dest;
519 }
520 
521 uint32_t *MachineFunction::allocateRegMask() {
522   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
523   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
524   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
525   memset(Mask, 0, Size * sizeof(Mask[0]));
526   return Mask;
527 }
528 
529 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
530   int* AllocMask = Allocator.Allocate<int>(Mask.size());
531   copy(Mask, AllocMask);
532   return {AllocMask, Mask.size()};
533 }
534 
535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
536 LLVM_DUMP_METHOD void MachineFunction::dump() const {
537   print(dbgs());
538 }
539 #endif
540 
541 StringRef MachineFunction::getName() const {
542   return getFunction().getName();
543 }
544 
545 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
546   OS << "# Machine code for function " << getName() << ": ";
547   getProperties().print(OS);
548   OS << '\n';
549 
550   // Print Frame Information
551   FrameInfo->print(*this, OS);
552 
553   // Print JumpTable Information
554   if (JumpTableInfo)
555     JumpTableInfo->print(OS);
556 
557   // Print Constant Pool
558   ConstantPool->print(OS);
559 
560   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
561 
562   if (RegInfo && !RegInfo->livein_empty()) {
563     OS << "Function Live Ins: ";
564     for (MachineRegisterInfo::livein_iterator
565          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
566       OS << printReg(I->first, TRI);
567       if (I->second)
568         OS << " in " << printReg(I->second, TRI);
569       if (std::next(I) != E)
570         OS << ", ";
571     }
572     OS << '\n';
573   }
574 
575   ModuleSlotTracker MST(getFunction().getParent());
576   MST.incorporateFunction(getFunction());
577   for (const auto &BB : *this) {
578     OS << '\n';
579     // If we print the whole function, print it at its most verbose level.
580     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
581   }
582 
583   OS << "\n# End machine code for function " << getName() << ".\n\n";
584 }
585 
586 /// True if this function needs frame moves for debug or exceptions.
587 bool MachineFunction::needsFrameMoves() const {
588   return getMMI().hasDebugInfo() ||
589          getTarget().Options.ForceDwarfFrameSection ||
590          F.needsUnwindTableEntry();
591 }
592 
593 namespace llvm {
594 
595   template<>
596   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
597     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
598 
599     static std::string getGraphName(const MachineFunction *F) {
600       return ("CFG for '" + F->getName() + "' function").str();
601     }
602 
603     std::string getNodeLabel(const MachineBasicBlock *Node,
604                              const MachineFunction *Graph) {
605       std::string OutStr;
606       {
607         raw_string_ostream OSS(OutStr);
608 
609         if (isSimple()) {
610           OSS << printMBBReference(*Node);
611           if (const BasicBlock *BB = Node->getBasicBlock())
612             OSS << ": " << BB->getName();
613         } else
614           Node->print(OSS);
615       }
616 
617       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
618 
619       // Process string output to make it nicer...
620       for (unsigned i = 0; i != OutStr.length(); ++i)
621         if (OutStr[i] == '\n') {                            // Left justify
622           OutStr[i] = '\\';
623           OutStr.insert(OutStr.begin()+i+1, 'l');
624         }
625       return OutStr;
626     }
627   };
628 
629 } // end namespace llvm
630 
631 void MachineFunction::viewCFG() const
632 {
633 #ifndef NDEBUG
634   ViewGraph(this, "mf" + getName());
635 #else
636   errs() << "MachineFunction::viewCFG is only available in debug builds on "
637          << "systems with Graphviz or gv!\n";
638 #endif // NDEBUG
639 }
640 
641 void MachineFunction::viewCFGOnly() const
642 {
643 #ifndef NDEBUG
644   ViewGraph(this, "mf" + getName(), true);
645 #else
646   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
647          << "systems with Graphviz or gv!\n";
648 #endif // NDEBUG
649 }
650 
651 /// Add the specified physical register as a live-in value and
652 /// create a corresponding virtual register for it.
653 Register MachineFunction::addLiveIn(MCRegister PReg,
654                                     const TargetRegisterClass *RC) {
655   MachineRegisterInfo &MRI = getRegInfo();
656   Register VReg = MRI.getLiveInVirtReg(PReg);
657   if (VReg) {
658     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
659     (void)VRegRC;
660     // A physical register can be added several times.
661     // Between two calls, the register class of the related virtual register
662     // may have been constrained to match some operation constraints.
663     // In that case, check that the current register class includes the
664     // physical register and is a sub class of the specified RC.
665     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
666                              RC->hasSubClassEq(VRegRC))) &&
667             "Register class mismatch!");
668     return VReg;
669   }
670   VReg = MRI.createVirtualRegister(RC);
671   MRI.addLiveIn(PReg, VReg);
672   return VReg;
673 }
674 
675 /// Return the MCSymbol for the specified non-empty jump table.
676 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
677 /// normal 'L' label is returned.
678 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
679                                         bool isLinkerPrivate) const {
680   const DataLayout &DL = getDataLayout();
681   assert(JumpTableInfo && "No jump tables");
682   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
683 
684   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
685                                      : DL.getPrivateGlobalPrefix();
686   SmallString<60> Name;
687   raw_svector_ostream(Name)
688     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
689   return Ctx.getOrCreateSymbol(Name);
690 }
691 
692 /// Return a function-local symbol to represent the PIC base.
693 MCSymbol *MachineFunction::getPICBaseSymbol() const {
694   const DataLayout &DL = getDataLayout();
695   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
696                                Twine(getFunctionNumber()) + "$pb");
697 }
698 
699 /// \name Exception Handling
700 /// \{
701 
702 LandingPadInfo &
703 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
704   unsigned N = LandingPads.size();
705   for (unsigned i = 0; i < N; ++i) {
706     LandingPadInfo &LP = LandingPads[i];
707     if (LP.LandingPadBlock == LandingPad)
708       return LP;
709   }
710 
711   LandingPads.push_back(LandingPadInfo(LandingPad));
712   return LandingPads[N];
713 }
714 
715 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
716                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
717   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
718   LP.BeginLabels.push_back(BeginLabel);
719   LP.EndLabels.push_back(EndLabel);
720 }
721 
722 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
723   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
724   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
725   LP.LandingPadLabel = LandingPadLabel;
726 
727   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
728   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
729     if (const auto *PF =
730             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
731       getMMI().addPersonality(PF);
732 
733     if (LPI->isCleanup())
734       addCleanup(LandingPad);
735 
736     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
737     //        correct, but we need to do it this way because of how the DWARF EH
738     //        emitter processes the clauses.
739     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
740       Value *Val = LPI->getClause(I - 1);
741       if (LPI->isCatch(I - 1)) {
742         addCatchTypeInfo(LandingPad,
743                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
744       } else {
745         // Add filters in a list.
746         auto *CVal = cast<Constant>(Val);
747         SmallVector<const GlobalValue *, 4> FilterList;
748         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
749              II != IE; ++II)
750           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
751 
752         addFilterTypeInfo(LandingPad, FilterList);
753       }
754     }
755 
756   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
757     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
758       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
759       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
760     }
761 
762   } else {
763     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
764   }
765 
766   return LandingPadLabel;
767 }
768 
769 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
770                                        ArrayRef<const GlobalValue *> TyInfo) {
771   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
772   for (unsigned N = TyInfo.size(); N; --N)
773     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
774 }
775 
776 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
777                                         ArrayRef<const GlobalValue *> TyInfo) {
778   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779   std::vector<unsigned> IdsInFilter(TyInfo.size());
780   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
781     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
782   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
783 }
784 
785 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
786                                       bool TidyIfNoBeginLabels) {
787   for (unsigned i = 0; i != LandingPads.size(); ) {
788     LandingPadInfo &LandingPad = LandingPads[i];
789     if (LandingPad.LandingPadLabel &&
790         !LandingPad.LandingPadLabel->isDefined() &&
791         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
792       LandingPad.LandingPadLabel = nullptr;
793 
794     // Special case: we *should* emit LPs with null LP MBB. This indicates
795     // "nounwind" case.
796     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
797       LandingPads.erase(LandingPads.begin() + i);
798       continue;
799     }
800 
801     if (TidyIfNoBeginLabels) {
802       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
803         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
804         MCSymbol *EndLabel = LandingPad.EndLabels[j];
805         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
806             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
807           continue;
808 
809         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
810         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
811         --j;
812         --e;
813       }
814 
815       // Remove landing pads with no try-ranges.
816       if (LandingPads[i].BeginLabels.empty()) {
817         LandingPads.erase(LandingPads.begin() + i);
818         continue;
819       }
820     }
821 
822     // If there is no landing pad, ensure that the list of typeids is empty.
823     // If the only typeid is a cleanup, this is the same as having no typeids.
824     if (!LandingPad.LandingPadBlock ||
825         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
826       LandingPad.TypeIds.clear();
827     ++i;
828   }
829 }
830 
831 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
832   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
833   LP.TypeIds.push_back(0);
834 }
835 
836 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
837                                          const Function *Filter,
838                                          const BlockAddress *RecoverBA) {
839   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
840   SEHHandler Handler;
841   Handler.FilterOrFinally = Filter;
842   Handler.RecoverBA = RecoverBA;
843   LP.SEHHandlers.push_back(Handler);
844 }
845 
846 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
847                                            const Function *Cleanup) {
848   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
849   SEHHandler Handler;
850   Handler.FilterOrFinally = Cleanup;
851   Handler.RecoverBA = nullptr;
852   LP.SEHHandlers.push_back(Handler);
853 }
854 
855 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
856                                             ArrayRef<unsigned> Sites) {
857   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
858 }
859 
860 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
861   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
862     if (TypeInfos[i] == TI) return i + 1;
863 
864   TypeInfos.push_back(TI);
865   return TypeInfos.size();
866 }
867 
868 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
869   // If the new filter coincides with the tail of an existing filter, then
870   // re-use the existing filter.  Folding filters more than this requires
871   // re-ordering filters and/or their elements - probably not worth it.
872   for (unsigned i : FilterEnds) {
873     unsigned j = TyIds.size();
874 
875     while (i && j)
876       if (FilterIds[--i] != TyIds[--j])
877         goto try_next;
878 
879     if (!j)
880       // The new filter coincides with range [i, end) of the existing filter.
881       return -(1 + i);
882 
883 try_next:;
884   }
885 
886   // Add the new filter.
887   int FilterID = -(1 + FilterIds.size());
888   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
889   llvm::append_range(FilterIds, TyIds);
890   FilterEnds.push_back(FilterIds.size());
891   FilterIds.push_back(0); // terminator
892   return FilterID;
893 }
894 
895 MachineFunction::CallSiteInfoMap::iterator
896 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
897   assert(MI->isCandidateForCallSiteEntry() &&
898          "Call site info refers only to call (MI) candidates");
899 
900   if (!Target.Options.EmitCallSiteInfo)
901     return CallSitesInfo.end();
902   return CallSitesInfo.find(MI);
903 }
904 
905 /// Return the call machine instruction or find a call within bundle.
906 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
907   if (!MI->isBundle())
908     return MI;
909 
910   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
911                               getBundleEnd(MI->getIterator())))
912     if (BMI.isCandidateForCallSiteEntry())
913       return &BMI;
914 
915   llvm_unreachable("Unexpected bundle without a call site candidate");
916 }
917 
918 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
919   assert(MI->shouldUpdateCallSiteInfo() &&
920          "Call site info refers only to call (MI) candidates or "
921          "candidates inside bundles");
922 
923   const MachineInstr *CallMI = getCallInstr(MI);
924   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
925   if (CSIt == CallSitesInfo.end())
926     return;
927   CallSitesInfo.erase(CSIt);
928 }
929 
930 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
931                                        const MachineInstr *New) {
932   assert(Old->shouldUpdateCallSiteInfo() &&
933          "Call site info refers only to call (MI) candidates or "
934          "candidates inside bundles");
935 
936   if (!New->isCandidateForCallSiteEntry())
937     return eraseCallSiteInfo(Old);
938 
939   const MachineInstr *OldCallMI = getCallInstr(Old);
940   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
941   if (CSIt == CallSitesInfo.end())
942     return;
943 
944   CallSiteInfo CSInfo = CSIt->second;
945   CallSitesInfo[New] = CSInfo;
946 }
947 
948 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
949                                        const MachineInstr *New) {
950   assert(Old->shouldUpdateCallSiteInfo() &&
951          "Call site info refers only to call (MI) candidates or "
952          "candidates inside bundles");
953 
954   if (!New->isCandidateForCallSiteEntry())
955     return eraseCallSiteInfo(Old);
956 
957   const MachineInstr *OldCallMI = getCallInstr(Old);
958   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
959   if (CSIt == CallSitesInfo.end())
960     return;
961 
962   CallSiteInfo CSInfo = std::move(CSIt->second);
963   CallSitesInfo.erase(CSIt);
964   CallSitesInfo[New] = CSInfo;
965 }
966 
967 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
968   DebugInstrNumberingCount = Num;
969 }
970 
971 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
972                                                  DebugInstrOperandPair B,
973                                                  unsigned Subreg) {
974   // Catch any accidental self-loops.
975   assert(A.first != B.first);
976   auto Result = DebugValueSubstitutions.insert({A, {B, Subreg}});
977   (void)Result;
978   assert(Result.second && "Substitution for an already substituted value?");
979 }
980 
981 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
982                                                    MachineInstr &New,
983                                                    unsigned MaxOperand) {
984   // If the Old instruction wasn't tracked at all, there is no work to do.
985   unsigned OldInstrNum = Old.peekDebugInstrNum();
986   if (!OldInstrNum)
987     return;
988 
989   // Iterate over all operands looking for defs to create substitutions for.
990   // Avoid creating new instr numbers unless we create a new substitution.
991   // While this has no functional effect, it risks confusing someone reading
992   // MIR output.
993   // Examine all the operands, or the first N specified by the caller.
994   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
995   for (unsigned int I = 0; I < Old.getNumOperands(); ++I) {
996     const auto &OldMO = Old.getOperand(I);
997     auto &NewMO = New.getOperand(I);
998     (void)NewMO;
999 
1000     if (!OldMO.isReg() || !OldMO.isDef())
1001       continue;
1002     assert(NewMO.isDef());
1003 
1004     unsigned NewInstrNum = New.getDebugInstrNum();
1005     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1006                                std::make_pair(NewInstrNum, I));
1007   }
1008 }
1009 
1010 /// \}
1011 
1012 //===----------------------------------------------------------------------===//
1013 //  MachineJumpTableInfo implementation
1014 //===----------------------------------------------------------------------===//
1015 
1016 /// Return the size of each entry in the jump table.
1017 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1018   // The size of a jump table entry is 4 bytes unless the entry is just the
1019   // address of a block, in which case it is the pointer size.
1020   switch (getEntryKind()) {
1021   case MachineJumpTableInfo::EK_BlockAddress:
1022     return TD.getPointerSize();
1023   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1024     return 8;
1025   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1026   case MachineJumpTableInfo::EK_LabelDifference32:
1027   case MachineJumpTableInfo::EK_Custom32:
1028     return 4;
1029   case MachineJumpTableInfo::EK_Inline:
1030     return 0;
1031   }
1032   llvm_unreachable("Unknown jump table encoding!");
1033 }
1034 
1035 /// Return the alignment of each entry in the jump table.
1036 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1037   // The alignment of a jump table entry is the alignment of int32 unless the
1038   // entry is just the address of a block, in which case it is the pointer
1039   // alignment.
1040   switch (getEntryKind()) {
1041   case MachineJumpTableInfo::EK_BlockAddress:
1042     return TD.getPointerABIAlignment(0).value();
1043   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1044     return TD.getABIIntegerTypeAlignment(64).value();
1045   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1046   case MachineJumpTableInfo::EK_LabelDifference32:
1047   case MachineJumpTableInfo::EK_Custom32:
1048     return TD.getABIIntegerTypeAlignment(32).value();
1049   case MachineJumpTableInfo::EK_Inline:
1050     return 1;
1051   }
1052   llvm_unreachable("Unknown jump table encoding!");
1053 }
1054 
1055 /// Create a new jump table entry in the jump table info.
1056 unsigned MachineJumpTableInfo::createJumpTableIndex(
1057                                const std::vector<MachineBasicBlock*> &DestBBs) {
1058   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1059   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1060   return JumpTables.size()-1;
1061 }
1062 
1063 /// If Old is the target of any jump tables, update the jump tables to branch
1064 /// to New instead.
1065 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1066                                                   MachineBasicBlock *New) {
1067   assert(Old != New && "Not making a change?");
1068   bool MadeChange = false;
1069   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1070     ReplaceMBBInJumpTable(i, Old, New);
1071   return MadeChange;
1072 }
1073 
1074 /// If MBB is present in any jump tables, remove it.
1075 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1076   bool MadeChange = false;
1077   for (MachineJumpTableEntry &JTE : JumpTables) {
1078     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1079     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1080     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1081   }
1082   return MadeChange;
1083 }
1084 
1085 /// If Old is a target of the jump tables, update the jump table to branch to
1086 /// New instead.
1087 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1088                                                  MachineBasicBlock *Old,
1089                                                  MachineBasicBlock *New) {
1090   assert(Old != New && "Not making a change?");
1091   bool MadeChange = false;
1092   MachineJumpTableEntry &JTE = JumpTables[Idx];
1093   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1094     if (JTE.MBBs[j] == Old) {
1095       JTE.MBBs[j] = New;
1096       MadeChange = true;
1097     }
1098   return MadeChange;
1099 }
1100 
1101 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1102   if (JumpTables.empty()) return;
1103 
1104   OS << "Jump Tables:\n";
1105 
1106   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1107     OS << printJumpTableEntryReference(i) << ':';
1108     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1109       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1110     if (i != e)
1111       OS << '\n';
1112   }
1113 
1114   OS << '\n';
1115 }
1116 
1117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1118 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1119 #endif
1120 
1121 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1122   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 //  MachineConstantPool implementation
1127 //===----------------------------------------------------------------------===//
1128 
1129 void MachineConstantPoolValue::anchor() {}
1130 
1131 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1132   return DL.getTypeAllocSize(Ty);
1133 }
1134 
1135 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1136   if (isMachineConstantPoolEntry())
1137     return Val.MachineCPVal->getSizeInBytes(DL);
1138   return DL.getTypeAllocSize(Val.ConstVal->getType());
1139 }
1140 
1141 bool MachineConstantPoolEntry::needsRelocation() const {
1142   if (isMachineConstantPoolEntry())
1143     return true;
1144   return Val.ConstVal->needsDynamicRelocation();
1145 }
1146 
1147 SectionKind
1148 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1149   if (needsRelocation())
1150     return SectionKind::getReadOnlyWithRel();
1151   switch (getSizeInBytes(*DL)) {
1152   case 4:
1153     return SectionKind::getMergeableConst4();
1154   case 8:
1155     return SectionKind::getMergeableConst8();
1156   case 16:
1157     return SectionKind::getMergeableConst16();
1158   case 32:
1159     return SectionKind::getMergeableConst32();
1160   default:
1161     return SectionKind::getReadOnly();
1162   }
1163 }
1164 
1165 MachineConstantPool::~MachineConstantPool() {
1166   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1167   // so keep track of which we've deleted to avoid double deletions.
1168   DenseSet<MachineConstantPoolValue*> Deleted;
1169   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1170     if (Constants[i].isMachineConstantPoolEntry()) {
1171       Deleted.insert(Constants[i].Val.MachineCPVal);
1172       delete Constants[i].Val.MachineCPVal;
1173     }
1174   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1175     if (Deleted.count(CPV) == 0)
1176       delete CPV;
1177   }
1178 }
1179 
1180 /// Test whether the given two constants can be allocated the same constant pool
1181 /// entry.
1182 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1183                                       const DataLayout &DL) {
1184   // Handle the trivial case quickly.
1185   if (A == B) return true;
1186 
1187   // If they have the same type but weren't the same constant, quickly
1188   // reject them.
1189   if (A->getType() == B->getType()) return false;
1190 
1191   // We can't handle structs or arrays.
1192   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1193       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1194     return false;
1195 
1196   // For now, only support constants with the same size.
1197   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1198   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1199     return false;
1200 
1201   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1202 
1203   // Try constant folding a bitcast of both instructions to an integer.  If we
1204   // get two identical ConstantInt's, then we are good to share them.  We use
1205   // the constant folding APIs to do this so that we get the benefit of
1206   // DataLayout.
1207   if (isa<PointerType>(A->getType()))
1208     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1209                                 const_cast<Constant *>(A), IntTy, DL);
1210   else if (A->getType() != IntTy)
1211     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1212                                 IntTy, DL);
1213   if (isa<PointerType>(B->getType()))
1214     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1215                                 const_cast<Constant *>(B), IntTy, DL);
1216   else if (B->getType() != IntTy)
1217     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1218                                 IntTy, DL);
1219 
1220   return A == B;
1221 }
1222 
1223 /// Create a new entry in the constant pool or return an existing one.
1224 /// User must specify the log2 of the minimum required alignment for the object.
1225 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1226                                                    Align Alignment) {
1227   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1228 
1229   // Check to see if we already have this constant.
1230   //
1231   // FIXME, this could be made much more efficient for large constant pools.
1232   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1233     if (!Constants[i].isMachineConstantPoolEntry() &&
1234         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1235       if (Constants[i].getAlign() < Alignment)
1236         Constants[i].Alignment = Alignment;
1237       return i;
1238     }
1239 
1240   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1241   return Constants.size()-1;
1242 }
1243 
1244 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1245                                                    Align Alignment) {
1246   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1247 
1248   // Check to see if we already have this constant.
1249   //
1250   // FIXME, this could be made much more efficient for large constant pools.
1251   int Idx = V->getExistingMachineCPValue(this, Alignment);
1252   if (Idx != -1) {
1253     MachineCPVsSharingEntries.insert(V);
1254     return (unsigned)Idx;
1255   }
1256 
1257   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1258   return Constants.size()-1;
1259 }
1260 
1261 void MachineConstantPool::print(raw_ostream &OS) const {
1262   if (Constants.empty()) return;
1263 
1264   OS << "Constant Pool:\n";
1265   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1266     OS << "  cp#" << i << ": ";
1267     if (Constants[i].isMachineConstantPoolEntry())
1268       Constants[i].Val.MachineCPVal->print(OS);
1269     else
1270       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1271     OS << ", align=" << Constants[i].getAlign().value();
1272     OS << "\n";
1273   }
1274 }
1275 
1276 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1277 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1278 #endif
1279