xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 46f838f3707183682fe0cd78601e85e089c35aa3)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/DOTGraphTraits.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "codegen"
79 
80 static cl::opt<unsigned>
81 AlignAllFunctions("align-all-functions",
82                   cl::desc("Force the alignment of all functions."),
83                   cl::init(0), cl::Hidden);
84 
85 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
86   using P = MachineFunctionProperties::Property;
87 
88   switch(Prop) {
89   case P::FailedISel: return "FailedISel";
90   case P::IsSSA: return "IsSSA";
91   case P::Legalized: return "Legalized";
92   case P::NoPHIs: return "NoPHIs";
93   case P::NoVRegs: return "NoVRegs";
94   case P::RegBankSelected: return "RegBankSelected";
95   case P::Selected: return "Selected";
96   case P::TracksLiveness: return "TracksLiveness";
97   }
98   llvm_unreachable("Invalid machine function property");
99 }
100 
101 void MachineFunctionProperties::print(raw_ostream &OS) const {
102   const char *Separator = "";
103   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
104     if (!Properties[I])
105       continue;
106     OS << Separator << getPropertyName(static_cast<Property>(I));
107     Separator = ", ";
108   }
109 }
110 
111 //===----------------------------------------------------------------------===//
112 // MachineFunction implementation
113 //===----------------------------------------------------------------------===//
114 
115 // Out-of-line virtual method.
116 MachineFunctionInfo::~MachineFunctionInfo() = default;
117 
118 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
119   MBB->getParent()->DeleteMachineBasicBlock(MBB);
120 }
121 
122 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
123                                            const Function &F) {
124   if (F.hasFnAttribute(Attribute::StackAlignment))
125     return F.getFnStackAlignment();
126   return STI->getFrameLowering()->getStackAlignment();
127 }
128 
129 MachineFunction::MachineFunction(const Function &F, const TargetMachine &Target,
130                                  const TargetSubtargetInfo &STI,
131                                  unsigned FunctionNum, MachineModuleInfo &mmi)
132     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
133   FunctionNumber = FunctionNum;
134   init();
135 }
136 
137 void MachineFunction::init() {
138   // Assume the function starts in SSA form with correct liveness.
139   Properties.set(MachineFunctionProperties::Property::IsSSA);
140   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
141   if (STI->getRegisterInfo())
142     RegInfo = new (Allocator) MachineRegisterInfo(this);
143   else
144     RegInfo = nullptr;
145 
146   MFInfo = nullptr;
147   // We can realign the stack if the target supports it and the user hasn't
148   // explicitly asked us not to.
149   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
150                       !F.hasFnAttribute("no-realign-stack");
151   FrameInfo = new (Allocator) MachineFrameInfo(
152       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
153       /*ForceRealign=*/CanRealignSP &&
154           F.hasFnAttribute(Attribute::StackAlignment));
155 
156   if (F.hasFnAttribute(Attribute::StackAlignment))
157     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
158 
159   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
160   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
161 
162   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
163   // FIXME: Use Function::optForSize().
164   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
165     Alignment = std::max(Alignment,
166                          STI->getTargetLowering()->getPrefFunctionAlignment());
167 
168   if (AlignAllFunctions)
169     Alignment = AlignAllFunctions;
170 
171   JumpTableInfo = nullptr;
172 
173   if (isFuncletEHPersonality(classifyEHPersonality(
174           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
175     WinEHInfo = new (Allocator) WinEHFuncInfo();
176   }
177 
178   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
179          "Can't create a MachineFunction using a Module with a "
180          "Target-incompatible DataLayout attached\n");
181 
182   PSVManager =
183     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
184                                                   getInstrInfo()));
185 }
186 
187 MachineFunction::~MachineFunction() {
188   clear();
189 }
190 
191 void MachineFunction::clear() {
192   Properties.reset();
193   // Don't call destructors on MachineInstr and MachineOperand. All of their
194   // memory comes from the BumpPtrAllocator which is about to be purged.
195   //
196   // Do call MachineBasicBlock destructors, it contains std::vectors.
197   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
198     I->Insts.clearAndLeakNodesUnsafely();
199   MBBNumbering.clear();
200 
201   InstructionRecycler.clear(Allocator);
202   OperandRecycler.clear(Allocator);
203   BasicBlockRecycler.clear(Allocator);
204   CodeViewAnnotations.clear();
205   VariableDbgInfos.clear();
206   if (RegInfo) {
207     RegInfo->~MachineRegisterInfo();
208     Allocator.Deallocate(RegInfo);
209   }
210   if (MFInfo) {
211     MFInfo->~MachineFunctionInfo();
212     Allocator.Deallocate(MFInfo);
213   }
214 
215   FrameInfo->~MachineFrameInfo();
216   Allocator.Deallocate(FrameInfo);
217 
218   ConstantPool->~MachineConstantPool();
219   Allocator.Deallocate(ConstantPool);
220 
221   if (JumpTableInfo) {
222     JumpTableInfo->~MachineJumpTableInfo();
223     Allocator.Deallocate(JumpTableInfo);
224   }
225 
226   if (WinEHInfo) {
227     WinEHInfo->~WinEHFuncInfo();
228     Allocator.Deallocate(WinEHInfo);
229   }
230 }
231 
232 const DataLayout &MachineFunction::getDataLayout() const {
233   return F.getParent()->getDataLayout();
234 }
235 
236 /// Get the JumpTableInfo for this function.
237 /// If it does not already exist, allocate one.
238 MachineJumpTableInfo *MachineFunction::
239 getOrCreateJumpTableInfo(unsigned EntryKind) {
240   if (JumpTableInfo) return JumpTableInfo;
241 
242   JumpTableInfo = new (Allocator)
243     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
244   return JumpTableInfo;
245 }
246 
247 /// Should we be emitting segmented stack stuff for the function
248 bool MachineFunction::shouldSplitStack() const {
249   return getFunction().hasFnAttribute("split-stack");
250 }
251 
252 /// This discards all of the MachineBasicBlock numbers and recomputes them.
253 /// This guarantees that the MBB numbers are sequential, dense, and match the
254 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
255 /// is specified, only that block and those after it are renumbered.
256 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
257   if (empty()) { MBBNumbering.clear(); return; }
258   MachineFunction::iterator MBBI, E = end();
259   if (MBB == nullptr)
260     MBBI = begin();
261   else
262     MBBI = MBB->getIterator();
263 
264   // Figure out the block number this should have.
265   unsigned BlockNo = 0;
266   if (MBBI != begin())
267     BlockNo = std::prev(MBBI)->getNumber() + 1;
268 
269   for (; MBBI != E; ++MBBI, ++BlockNo) {
270     if (MBBI->getNumber() != (int)BlockNo) {
271       // Remove use of the old number.
272       if (MBBI->getNumber() != -1) {
273         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
274                "MBB number mismatch!");
275         MBBNumbering[MBBI->getNumber()] = nullptr;
276       }
277 
278       // If BlockNo is already taken, set that block's number to -1.
279       if (MBBNumbering[BlockNo])
280         MBBNumbering[BlockNo]->setNumber(-1);
281 
282       MBBNumbering[BlockNo] = &*MBBI;
283       MBBI->setNumber(BlockNo);
284     }
285   }
286 
287   // Okay, all the blocks are renumbered.  If we have compactified the block
288   // numbering, shrink MBBNumbering now.
289   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
290   MBBNumbering.resize(BlockNo);
291 }
292 
293 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
294 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
295                                                   const DebugLoc &DL,
296                                                   bool NoImp) {
297   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
298     MachineInstr(*this, MCID, DL, NoImp);
299 }
300 
301 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
302 /// identical in all ways except the instruction has no parent, prev, or next.
303 MachineInstr *
304 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
305   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
306              MachineInstr(*this, *Orig);
307 }
308 
309 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
310     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
311   MachineInstr *FirstClone = nullptr;
312   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
313   while (true) {
314     MachineInstr *Cloned = CloneMachineInstr(&*I);
315     MBB.insert(InsertBefore, Cloned);
316     if (FirstClone == nullptr) {
317       FirstClone = Cloned;
318     } else {
319       Cloned->bundleWithPred();
320     }
321 
322     if (!I->isBundledWithSucc())
323       break;
324     ++I;
325   }
326   return *FirstClone;
327 }
328 
329 /// Delete the given MachineInstr.
330 ///
331 /// This function also serves as the MachineInstr destructor - the real
332 /// ~MachineInstr() destructor must be empty.
333 void
334 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
335   // Strip it for parts. The operand array and the MI object itself are
336   // independently recyclable.
337   if (MI->Operands)
338     deallocateOperandArray(MI->CapOperands, MI->Operands);
339   // Don't call ~MachineInstr() which must be trivial anyway because
340   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
341   // destructors.
342   InstructionRecycler.Deallocate(Allocator, MI);
343 }
344 
345 /// Allocate a new MachineBasicBlock. Use this instead of
346 /// `new MachineBasicBlock'.
347 MachineBasicBlock *
348 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
349   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
350              MachineBasicBlock(*this, bb);
351 }
352 
353 /// Delete the given MachineBasicBlock.
354 void
355 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
356   assert(MBB->getParent() == this && "MBB parent mismatch!");
357   MBB->~MachineBasicBlock();
358   BasicBlockRecycler.Deallocate(Allocator, MBB);
359 }
360 
361 MachineMemOperand *MachineFunction::getMachineMemOperand(
362     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
363     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
364     SyncScope::ID SSID, AtomicOrdering Ordering,
365     AtomicOrdering FailureOrdering) {
366   return new (Allocator)
367       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
368                         SSID, Ordering, FailureOrdering);
369 }
370 
371 MachineMemOperand *
372 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
373                                       int64_t Offset, uint64_t Size) {
374   if (MMO->getValue())
375     return new (Allocator)
376                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
377                                                     MMO->getOffset()+Offset),
378                                  MMO->getFlags(), Size, MMO->getBaseAlignment(),
379                                  AAMDNodes(), nullptr, MMO->getSyncScopeID(),
380                                  MMO->getOrdering(), MMO->getFailureOrdering());
381   return new (Allocator)
382              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
383                                                   MMO->getOffset()+Offset),
384                                MMO->getFlags(), Size, MMO->getBaseAlignment(),
385                                AAMDNodes(), nullptr, MMO->getSyncScopeID(),
386                                MMO->getOrdering(), MMO->getFailureOrdering());
387 }
388 
389 MachineMemOperand *
390 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
391                                       const AAMDNodes &AAInfo) {
392   MachinePointerInfo MPI = MMO->getValue() ?
393              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
394              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
395 
396   return new (Allocator)
397              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
398                                MMO->getBaseAlignment(), AAInfo,
399                                MMO->getRanges(), MMO->getSyncScopeID(),
400                                MMO->getOrdering(), MMO->getFailureOrdering());
401 }
402 
403 MachineInstr::mmo_iterator
404 MachineFunction::allocateMemRefsArray(unsigned long Num) {
405   return Allocator.Allocate<MachineMemOperand *>(Num);
406 }
407 
408 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
409 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
410                                     MachineInstr::mmo_iterator End) {
411   // Count the number of load mem refs.
412   unsigned Num = 0;
413   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
414     if ((*I)->isLoad())
415       ++Num;
416 
417   // Allocate a new array and populate it with the load information.
418   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
419   unsigned Index = 0;
420   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
421     if ((*I)->isLoad()) {
422       if (!(*I)->isStore())
423         // Reuse the MMO.
424         Result[Index] = *I;
425       else {
426         // Clone the MMO and unset the store flag.
427         MachineMemOperand *JustLoad =
428           getMachineMemOperand((*I)->getPointerInfo(),
429                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
430                                (*I)->getSize(), (*I)->getBaseAlignment(),
431                                (*I)->getAAInfo(), nullptr,
432                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
433                                (*I)->getFailureOrdering());
434         Result[Index] = JustLoad;
435       }
436       ++Index;
437     }
438   }
439   return std::make_pair(Result, Result + Num);
440 }
441 
442 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
443 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
444                                      MachineInstr::mmo_iterator End) {
445   // Count the number of load mem refs.
446   unsigned Num = 0;
447   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
448     if ((*I)->isStore())
449       ++Num;
450 
451   // Allocate a new array and populate it with the store information.
452   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
453   unsigned Index = 0;
454   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
455     if ((*I)->isStore()) {
456       if (!(*I)->isLoad())
457         // Reuse the MMO.
458         Result[Index] = *I;
459       else {
460         // Clone the MMO and unset the load flag.
461         MachineMemOperand *JustStore =
462           getMachineMemOperand((*I)->getPointerInfo(),
463                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
464                                (*I)->getSize(), (*I)->getBaseAlignment(),
465                                (*I)->getAAInfo(), nullptr,
466                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
467                                (*I)->getFailureOrdering());
468         Result[Index] = JustStore;
469       }
470       ++Index;
471     }
472   }
473   return std::make_pair(Result, Result + Num);
474 }
475 
476 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
477   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
478   std::copy(Name.begin(), Name.end(), Dest);
479   Dest[Name.size()] = 0;
480   return Dest;
481 }
482 
483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
484 LLVM_DUMP_METHOD void MachineFunction::dump() const {
485   print(dbgs());
486 }
487 #endif
488 
489 StringRef MachineFunction::getName() const {
490   return getFunction().getName();
491 }
492 
493 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
494   OS << "# Machine code for function " << getName() << ": ";
495   getProperties().print(OS);
496   OS << '\n';
497 
498   // Print Frame Information
499   FrameInfo->print(*this, OS);
500 
501   // Print JumpTable Information
502   if (JumpTableInfo)
503     JumpTableInfo->print(OS);
504 
505   // Print Constant Pool
506   ConstantPool->print(OS);
507 
508   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
509 
510   if (RegInfo && !RegInfo->livein_empty()) {
511     OS << "Function Live Ins: ";
512     for (MachineRegisterInfo::livein_iterator
513          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
514       OS << printReg(I->first, TRI);
515       if (I->second)
516         OS << " in " << printReg(I->second, TRI);
517       if (std::next(I) != E)
518         OS << ", ";
519     }
520     OS << '\n';
521   }
522 
523   ModuleSlotTracker MST(getFunction().getParent());
524   MST.incorporateFunction(getFunction());
525   for (const auto &BB : *this) {
526     OS << '\n';
527     // If we print the whole function, print it at its most verbose level.
528     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
529   }
530 
531   OS << "\n# End machine code for function " << getName() << ".\n\n";
532 }
533 
534 namespace llvm {
535 
536   template<>
537   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
538     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
539 
540     static std::string getGraphName(const MachineFunction *F) {
541       return ("CFG for '" + F->getName() + "' function").str();
542     }
543 
544     std::string getNodeLabel(const MachineBasicBlock *Node,
545                              const MachineFunction *Graph) {
546       std::string OutStr;
547       {
548         raw_string_ostream OSS(OutStr);
549 
550         if (isSimple()) {
551           OSS << printMBBReference(*Node);
552           if (const BasicBlock *BB = Node->getBasicBlock())
553             OSS << ": " << BB->getName();
554         } else
555           Node->print(OSS);
556       }
557 
558       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
559 
560       // Process string output to make it nicer...
561       for (unsigned i = 0; i != OutStr.length(); ++i)
562         if (OutStr[i] == '\n') {                            // Left justify
563           OutStr[i] = '\\';
564           OutStr.insert(OutStr.begin()+i+1, 'l');
565         }
566       return OutStr;
567     }
568   };
569 
570 } // end namespace llvm
571 
572 void MachineFunction::viewCFG() const
573 {
574 #ifndef NDEBUG
575   ViewGraph(this, "mf" + getName());
576 #else
577   errs() << "MachineFunction::viewCFG is only available in debug builds on "
578          << "systems with Graphviz or gv!\n";
579 #endif // NDEBUG
580 }
581 
582 void MachineFunction::viewCFGOnly() const
583 {
584 #ifndef NDEBUG
585   ViewGraph(this, "mf" + getName(), true);
586 #else
587   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
588          << "systems with Graphviz or gv!\n";
589 #endif // NDEBUG
590 }
591 
592 /// Add the specified physical register as a live-in value and
593 /// create a corresponding virtual register for it.
594 unsigned MachineFunction::addLiveIn(unsigned PReg,
595                                     const TargetRegisterClass *RC) {
596   MachineRegisterInfo &MRI = getRegInfo();
597   unsigned VReg = MRI.getLiveInVirtReg(PReg);
598   if (VReg) {
599     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
600     (void)VRegRC;
601     // A physical register can be added several times.
602     // Between two calls, the register class of the related virtual register
603     // may have been constrained to match some operation constraints.
604     // In that case, check that the current register class includes the
605     // physical register and is a sub class of the specified RC.
606     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
607                              RC->hasSubClassEq(VRegRC))) &&
608             "Register class mismatch!");
609     return VReg;
610   }
611   VReg = MRI.createVirtualRegister(RC);
612   MRI.addLiveIn(PReg, VReg);
613   return VReg;
614 }
615 
616 /// Return the MCSymbol for the specified non-empty jump table.
617 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
618 /// normal 'L' label is returned.
619 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
620                                         bool isLinkerPrivate) const {
621   const DataLayout &DL = getDataLayout();
622   assert(JumpTableInfo && "No jump tables");
623   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
624 
625   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
626                                      : DL.getPrivateGlobalPrefix();
627   SmallString<60> Name;
628   raw_svector_ostream(Name)
629     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
630   return Ctx.getOrCreateSymbol(Name);
631 }
632 
633 /// Return a function-local symbol to represent the PIC base.
634 MCSymbol *MachineFunction::getPICBaseSymbol() const {
635   const DataLayout &DL = getDataLayout();
636   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
637                                Twine(getFunctionNumber()) + "$pb");
638 }
639 
640 /// \name Exception Handling
641 /// \{
642 
643 LandingPadInfo &
644 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
645   unsigned N = LandingPads.size();
646   for (unsigned i = 0; i < N; ++i) {
647     LandingPadInfo &LP = LandingPads[i];
648     if (LP.LandingPadBlock == LandingPad)
649       return LP;
650   }
651 
652   LandingPads.push_back(LandingPadInfo(LandingPad));
653   return LandingPads[N];
654 }
655 
656 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
657                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
658   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
659   LP.BeginLabels.push_back(BeginLabel);
660   LP.EndLabels.push_back(EndLabel);
661 }
662 
663 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
664   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
665   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
666   LP.LandingPadLabel = LandingPadLabel;
667   return LandingPadLabel;
668 }
669 
670 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
671                                        ArrayRef<const GlobalValue *> TyInfo) {
672   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
673   for (unsigned N = TyInfo.size(); N; --N)
674     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
675 }
676 
677 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
678                                         ArrayRef<const GlobalValue *> TyInfo) {
679   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
680   std::vector<unsigned> IdsInFilter(TyInfo.size());
681   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
682     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
683   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
684 }
685 
686 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
687   for (unsigned i = 0; i != LandingPads.size(); ) {
688     LandingPadInfo &LandingPad = LandingPads[i];
689     if (LandingPad.LandingPadLabel &&
690         !LandingPad.LandingPadLabel->isDefined() &&
691         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
692       LandingPad.LandingPadLabel = nullptr;
693 
694     // Special case: we *should* emit LPs with null LP MBB. This indicates
695     // "nounwind" case.
696     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
697       LandingPads.erase(LandingPads.begin() + i);
698       continue;
699     }
700 
701     for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
702       MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
703       MCSymbol *EndLabel = LandingPad.EndLabels[j];
704       if ((BeginLabel->isDefined() ||
705            (LPMap && (*LPMap)[BeginLabel] != 0)) &&
706           (EndLabel->isDefined() ||
707            (LPMap && (*LPMap)[EndLabel] != 0))) continue;
708 
709       LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
710       LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
711       --j;
712       --e;
713     }
714 
715     // Remove landing pads with no try-ranges.
716     if (LandingPads[i].BeginLabels.empty()) {
717       LandingPads.erase(LandingPads.begin() + i);
718       continue;
719     }
720 
721     // If there is no landing pad, ensure that the list of typeids is empty.
722     // If the only typeid is a cleanup, this is the same as having no typeids.
723     if (!LandingPad.LandingPadBlock ||
724         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
725       LandingPad.TypeIds.clear();
726     ++i;
727   }
728 }
729 
730 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
731   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
732   LP.TypeIds.push_back(0);
733 }
734 
735 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
736                                          const Function *Filter,
737                                          const BlockAddress *RecoverBA) {
738   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
739   SEHHandler Handler;
740   Handler.FilterOrFinally = Filter;
741   Handler.RecoverBA = RecoverBA;
742   LP.SEHHandlers.push_back(Handler);
743 }
744 
745 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
746                                            const Function *Cleanup) {
747   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
748   SEHHandler Handler;
749   Handler.FilterOrFinally = Cleanup;
750   Handler.RecoverBA = nullptr;
751   LP.SEHHandlers.push_back(Handler);
752 }
753 
754 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
755                                             ArrayRef<unsigned> Sites) {
756   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
757 }
758 
759 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
760   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
761     if (TypeInfos[i] == TI) return i + 1;
762 
763   TypeInfos.push_back(TI);
764   return TypeInfos.size();
765 }
766 
767 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
768   // If the new filter coincides with the tail of an existing filter, then
769   // re-use the existing filter.  Folding filters more than this requires
770   // re-ordering filters and/or their elements - probably not worth it.
771   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
772        E = FilterEnds.end(); I != E; ++I) {
773     unsigned i = *I, j = TyIds.size();
774 
775     while (i && j)
776       if (FilterIds[--i] != TyIds[--j])
777         goto try_next;
778 
779     if (!j)
780       // The new filter coincides with range [i, end) of the existing filter.
781       return -(1 + i);
782 
783 try_next:;
784   }
785 
786   // Add the new filter.
787   int FilterID = -(1 + FilterIds.size());
788   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
789   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
790   FilterEnds.push_back(FilterIds.size());
791   FilterIds.push_back(0); // terminator
792   return FilterID;
793 }
794 
795 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
796   MachineFunction &MF = *MBB.getParent();
797   if (const auto *PF = dyn_cast<Function>(
798           I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
799     MF.getMMI().addPersonality(PF);
800 
801   if (I.isCleanup())
802     MF.addCleanup(&MBB);
803 
804   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
805   //        but we need to do it this way because of how the DWARF EH emitter
806   //        processes the clauses.
807   for (unsigned i = I.getNumClauses(); i != 0; --i) {
808     Value *Val = I.getClause(i - 1);
809     if (I.isCatch(i - 1)) {
810       MF.addCatchTypeInfo(&MBB,
811                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
812     } else {
813       // Add filters in a list.
814       Constant *CVal = cast<Constant>(Val);
815       SmallVector<const GlobalValue *, 4> FilterList;
816       for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
817            II != IE; ++II)
818         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
819 
820       MF.addFilterTypeInfo(&MBB, FilterList);
821     }
822   }
823 }
824 
825 /// \}
826 
827 //===----------------------------------------------------------------------===//
828 //  MachineJumpTableInfo implementation
829 //===----------------------------------------------------------------------===//
830 
831 /// Return the size of each entry in the jump table.
832 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
833   // The size of a jump table entry is 4 bytes unless the entry is just the
834   // address of a block, in which case it is the pointer size.
835   switch (getEntryKind()) {
836   case MachineJumpTableInfo::EK_BlockAddress:
837     return TD.getPointerSize();
838   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
839     return 8;
840   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
841   case MachineJumpTableInfo::EK_LabelDifference32:
842   case MachineJumpTableInfo::EK_Custom32:
843     return 4;
844   case MachineJumpTableInfo::EK_Inline:
845     return 0;
846   }
847   llvm_unreachable("Unknown jump table encoding!");
848 }
849 
850 /// Return the alignment of each entry in the jump table.
851 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
852   // The alignment of a jump table entry is the alignment of int32 unless the
853   // entry is just the address of a block, in which case it is the pointer
854   // alignment.
855   switch (getEntryKind()) {
856   case MachineJumpTableInfo::EK_BlockAddress:
857     return TD.getPointerABIAlignment(0);
858   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
859     return TD.getABIIntegerTypeAlignment(64);
860   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
861   case MachineJumpTableInfo::EK_LabelDifference32:
862   case MachineJumpTableInfo::EK_Custom32:
863     return TD.getABIIntegerTypeAlignment(32);
864   case MachineJumpTableInfo::EK_Inline:
865     return 1;
866   }
867   llvm_unreachable("Unknown jump table encoding!");
868 }
869 
870 /// Create a new jump table entry in the jump table info.
871 unsigned MachineJumpTableInfo::createJumpTableIndex(
872                                const std::vector<MachineBasicBlock*> &DestBBs) {
873   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
874   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
875   return JumpTables.size()-1;
876 }
877 
878 /// If Old is the target of any jump tables, update the jump tables to branch
879 /// to New instead.
880 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
881                                                   MachineBasicBlock *New) {
882   assert(Old != New && "Not making a change?");
883   bool MadeChange = false;
884   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
885     ReplaceMBBInJumpTable(i, Old, New);
886   return MadeChange;
887 }
888 
889 /// If Old is a target of the jump tables, update the jump table to branch to
890 /// New instead.
891 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
892                                                  MachineBasicBlock *Old,
893                                                  MachineBasicBlock *New) {
894   assert(Old != New && "Not making a change?");
895   bool MadeChange = false;
896   MachineJumpTableEntry &JTE = JumpTables[Idx];
897   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
898     if (JTE.MBBs[j] == Old) {
899       JTE.MBBs[j] = New;
900       MadeChange = true;
901     }
902   return MadeChange;
903 }
904 
905 void MachineJumpTableInfo::print(raw_ostream &OS) const {
906   if (JumpTables.empty()) return;
907 
908   OS << "Jump Tables:\n";
909 
910   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
911     OS << printJumpTableEntryReference(i) << ": ";
912     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
913       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
914   }
915 
916   OS << '\n';
917 }
918 
919 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
920 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
921 #endif
922 
923 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
924   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
925 }
926 
927 //===----------------------------------------------------------------------===//
928 //  MachineConstantPool implementation
929 //===----------------------------------------------------------------------===//
930 
931 void MachineConstantPoolValue::anchor() {}
932 
933 Type *MachineConstantPoolEntry::getType() const {
934   if (isMachineConstantPoolEntry())
935     return Val.MachineCPVal->getType();
936   return Val.ConstVal->getType();
937 }
938 
939 bool MachineConstantPoolEntry::needsRelocation() const {
940   if (isMachineConstantPoolEntry())
941     return true;
942   return Val.ConstVal->needsRelocation();
943 }
944 
945 SectionKind
946 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
947   if (needsRelocation())
948     return SectionKind::getReadOnlyWithRel();
949   switch (DL->getTypeAllocSize(getType())) {
950   case 4:
951     return SectionKind::getMergeableConst4();
952   case 8:
953     return SectionKind::getMergeableConst8();
954   case 16:
955     return SectionKind::getMergeableConst16();
956   case 32:
957     return SectionKind::getMergeableConst32();
958   default:
959     return SectionKind::getReadOnly();
960   }
961 }
962 
963 MachineConstantPool::~MachineConstantPool() {
964   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
965   // so keep track of which we've deleted to avoid double deletions.
966   DenseSet<MachineConstantPoolValue*> Deleted;
967   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
968     if (Constants[i].isMachineConstantPoolEntry()) {
969       Deleted.insert(Constants[i].Val.MachineCPVal);
970       delete Constants[i].Val.MachineCPVal;
971     }
972   for (DenseSet<MachineConstantPoolValue*>::iterator I =
973        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
974        I != E; ++I) {
975     if (Deleted.count(*I) == 0)
976       delete *I;
977   }
978 }
979 
980 /// Test whether the given two constants can be allocated the same constant pool
981 /// entry.
982 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
983                                       const DataLayout &DL) {
984   // Handle the trivial case quickly.
985   if (A == B) return true;
986 
987   // If they have the same type but weren't the same constant, quickly
988   // reject them.
989   if (A->getType() == B->getType()) return false;
990 
991   // We can't handle structs or arrays.
992   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
993       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
994     return false;
995 
996   // For now, only support constants with the same size.
997   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
998   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
999     return false;
1000 
1001   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1002 
1003   // Try constant folding a bitcast of both instructions to an integer.  If we
1004   // get two identical ConstantInt's, then we are good to share them.  We use
1005   // the constant folding APIs to do this so that we get the benefit of
1006   // DataLayout.
1007   if (isa<PointerType>(A->getType()))
1008     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1009                                 const_cast<Constant *>(A), IntTy, DL);
1010   else if (A->getType() != IntTy)
1011     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1012                                 IntTy, DL);
1013   if (isa<PointerType>(B->getType()))
1014     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1015                                 const_cast<Constant *>(B), IntTy, DL);
1016   else if (B->getType() != IntTy)
1017     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1018                                 IntTy, DL);
1019 
1020   return A == B;
1021 }
1022 
1023 /// Create a new entry in the constant pool or return an existing one.
1024 /// User must specify the log2 of the minimum required alignment for the object.
1025 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1026                                                    unsigned Alignment) {
1027   assert(Alignment && "Alignment must be specified!");
1028   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1029 
1030   // Check to see if we already have this constant.
1031   //
1032   // FIXME, this could be made much more efficient for large constant pools.
1033   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1034     if (!Constants[i].isMachineConstantPoolEntry() &&
1035         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1036       if ((unsigned)Constants[i].getAlignment() < Alignment)
1037         Constants[i].Alignment = Alignment;
1038       return i;
1039     }
1040 
1041   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1042   return Constants.size()-1;
1043 }
1044 
1045 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1046                                                    unsigned Alignment) {
1047   assert(Alignment && "Alignment must be specified!");
1048   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1049 
1050   // Check to see if we already have this constant.
1051   //
1052   // FIXME, this could be made much more efficient for large constant pools.
1053   int Idx = V->getExistingMachineCPValue(this, Alignment);
1054   if (Idx != -1) {
1055     MachineCPVsSharingEntries.insert(V);
1056     return (unsigned)Idx;
1057   }
1058 
1059   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1060   return Constants.size()-1;
1061 }
1062 
1063 void MachineConstantPool::print(raw_ostream &OS) const {
1064   if (Constants.empty()) return;
1065 
1066   OS << "Constant Pool:\n";
1067   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1068     OS << "  cp#" << i << ": ";
1069     if (Constants[i].isMachineConstantPoolEntry())
1070       Constants[i].Val.MachineCPVal->print(OS);
1071     else
1072       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1073     OS << ", align=" << Constants[i].getAlignment();
1074     OS << "\n";
1075   }
1076 }
1077 
1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1079 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1080 #endif
1081