xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 3ec3fcb97a6b5a42d89032d44d81bbe711d188a4)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   switch(Prop) {
93   case P::FailedISel: return "FailedISel";
94   case P::IsSSA: return "IsSSA";
95   case P::Legalized: return "Legalized";
96   case P::NoPHIs: return "NoPHIs";
97   case P::NoVRegs: return "NoVRegs";
98   case P::RegBankSelected: return "RegBankSelected";
99   case P::Selected: return "Selected";
100   case P::TracksLiveness: return "TracksLiveness";
101   case P::TiedOpsRewritten: return "TiedOpsRewritten";
102   }
103   llvm_unreachable("Invalid machine function property");
104 }
105 
106 // Pin the vtable to this file.
107 void MachineFunction::Delegate::anchor() {}
108 
109 void MachineFunctionProperties::print(raw_ostream &OS) const {
110   const char *Separator = "";
111   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
112     if (!Properties[I])
113       continue;
114     OS << Separator << getPropertyName(static_cast<Property>(I));
115     Separator = ", ";
116   }
117 }
118 
119 //===----------------------------------------------------------------------===//
120 // MachineFunction implementation
121 //===----------------------------------------------------------------------===//
122 
123 // Out-of-line virtual method.
124 MachineFunctionInfo::~MachineFunctionInfo() = default;
125 
126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
127   MBB->getParent()->DeleteMachineBasicBlock(MBB);
128 }
129 
130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
131                                            const Function &F) {
132   if (F.hasFnAttribute(Attribute::StackAlignment))
133     return F.getFnStackAlignment();
134   return STI->getFrameLowering()->getStackAlign().value();
135 }
136 
137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
138                                  const TargetSubtargetInfo &STI,
139                                  unsigned FunctionNum, MachineModuleInfo &mmi)
140     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141   FunctionNumber = FunctionNum;
142   init();
143 }
144 
145 void MachineFunction::handleInsertion(MachineInstr &MI) {
146   if (TheDelegate)
147     TheDelegate->MF_HandleInsertion(MI);
148 }
149 
150 void MachineFunction::handleRemoval(MachineInstr &MI) {
151   if (TheDelegate)
152     TheDelegate->MF_HandleRemoval(MI);
153 }
154 
155 void MachineFunction::init() {
156   // Assume the function starts in SSA form with correct liveness.
157   Properties.set(MachineFunctionProperties::Property::IsSSA);
158   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159   if (STI->getRegisterInfo())
160     RegInfo = new (Allocator) MachineRegisterInfo(this);
161   else
162     RegInfo = nullptr;
163 
164   MFInfo = nullptr;
165   // We can realign the stack if the target supports it and the user hasn't
166   // explicitly asked us not to.
167   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168                       !F.hasFnAttribute("no-realign-stack");
169   FrameInfo = new (Allocator) MachineFrameInfo(
170       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171       /*ForcedRealign=*/CanRealignSP &&
172           F.hasFnAttribute(Attribute::StackAlignment));
173 
174   if (F.hasFnAttribute(Attribute::StackAlignment))
175     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
176 
177   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
179 
180   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181   // FIXME: Use Function::hasOptSize().
182   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183     Alignment = std::max(Alignment,
184                          STI->getTargetLowering()->getPrefFunctionAlignment());
185 
186   if (AlignAllFunctions)
187     Alignment = Align(1ULL << AlignAllFunctions);
188 
189   JumpTableInfo = nullptr;
190 
191   if (isFuncletEHPersonality(classifyEHPersonality(
192           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193     WinEHInfo = new (Allocator) WinEHFuncInfo();
194   }
195 
196   if (isScopedEHPersonality(classifyEHPersonality(
197           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199   }
200 
201   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202          "Can't create a MachineFunction using a Module with a "
203          "Target-incompatible DataLayout attached\n");
204 
205   PSVManager =
206     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207                                                   getInstrInfo()));
208 }
209 
210 MachineFunction::~MachineFunction() {
211   clear();
212 }
213 
214 void MachineFunction::clear() {
215   Properties.reset();
216   // Don't call destructors on MachineInstr and MachineOperand. All of their
217   // memory comes from the BumpPtrAllocator which is about to be purged.
218   //
219   // Do call MachineBasicBlock destructors, it contains std::vectors.
220   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221     I->Insts.clearAndLeakNodesUnsafely();
222   MBBNumbering.clear();
223 
224   InstructionRecycler.clear(Allocator);
225   OperandRecycler.clear(Allocator);
226   BasicBlockRecycler.clear(Allocator);
227   CodeViewAnnotations.clear();
228   VariableDbgInfos.clear();
229   if (RegInfo) {
230     RegInfo->~MachineRegisterInfo();
231     Allocator.Deallocate(RegInfo);
232   }
233   if (MFInfo) {
234     MFInfo->~MachineFunctionInfo();
235     Allocator.Deallocate(MFInfo);
236   }
237 
238   FrameInfo->~MachineFrameInfo();
239   Allocator.Deallocate(FrameInfo);
240 
241   ConstantPool->~MachineConstantPool();
242   Allocator.Deallocate(ConstantPool);
243 
244   if (JumpTableInfo) {
245     JumpTableInfo->~MachineJumpTableInfo();
246     Allocator.Deallocate(JumpTableInfo);
247   }
248 
249   if (WinEHInfo) {
250     WinEHInfo->~WinEHFuncInfo();
251     Allocator.Deallocate(WinEHInfo);
252   }
253 
254   if (WasmEHInfo) {
255     WasmEHInfo->~WasmEHFuncInfo();
256     Allocator.Deallocate(WasmEHInfo);
257   }
258 }
259 
260 const DataLayout &MachineFunction::getDataLayout() const {
261   return F.getParent()->getDataLayout();
262 }
263 
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo *MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind) {
268   if (JumpTableInfo) return JumpTableInfo;
269 
270   JumpTableInfo = new (Allocator)
271     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272   return JumpTableInfo;
273 }
274 
275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276   if (&FPType == &APFloat::IEEEsingle()) {
277     Attribute Attr = F.getFnAttribute("denormal-fp-math-f32");
278     StringRef Val = Attr.getValueAsString();
279     if (!Val.empty())
280       return parseDenormalFPAttribute(Val);
281 
282     // If the f32 variant of the attribute isn't specified, try to use the
283     // generic one.
284   }
285 
286   // TODO: Should probably avoid the connection to the IR and store directly
287   // in the MachineFunction.
288   Attribute Attr = F.getFnAttribute("denormal-fp-math");
289   return parseDenormalFPAttribute(Attr.getValueAsString());
290 }
291 
292 /// Should we be emitting segmented stack stuff for the function
293 bool MachineFunction::shouldSplitStack() const {
294   return getFunction().hasFnAttribute("split-stack");
295 }
296 
297 LLVM_NODISCARD unsigned
298 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
299   FrameInstructions.push_back(Inst);
300   return FrameInstructions.size() - 1;
301 }
302 
303 /// This discards all of the MachineBasicBlock numbers and recomputes them.
304 /// This guarantees that the MBB numbers are sequential, dense, and match the
305 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
306 /// is specified, only that block and those after it are renumbered.
307 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
308   if (empty()) { MBBNumbering.clear(); return; }
309   MachineFunction::iterator MBBI, E = end();
310   if (MBB == nullptr)
311     MBBI = begin();
312   else
313     MBBI = MBB->getIterator();
314 
315   // Figure out the block number this should have.
316   unsigned BlockNo = 0;
317   if (MBBI != begin())
318     BlockNo = std::prev(MBBI)->getNumber() + 1;
319 
320   for (; MBBI != E; ++MBBI, ++BlockNo) {
321     if (MBBI->getNumber() != (int)BlockNo) {
322       // Remove use of the old number.
323       if (MBBI->getNumber() != -1) {
324         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
325                "MBB number mismatch!");
326         MBBNumbering[MBBI->getNumber()] = nullptr;
327       }
328 
329       // If BlockNo is already taken, set that block's number to -1.
330       if (MBBNumbering[BlockNo])
331         MBBNumbering[BlockNo]->setNumber(-1);
332 
333       MBBNumbering[BlockNo] = &*MBBI;
334       MBBI->setNumber(BlockNo);
335     }
336   }
337 
338   // Okay, all the blocks are renumbered.  If we have compactified the block
339   // numbering, shrink MBBNumbering now.
340   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
341   MBBNumbering.resize(BlockNo);
342 }
343 
344 /// This is used with -fbasic-block-sections or -fbasicblock-labels option.
345 /// A unary encoding of basic block labels is done to keep ".strtab" sizes
346 /// small.
347 void MachineFunction::createBBLabels() {
348   const TargetInstrInfo *TII = getSubtarget().getInstrInfo();
349   this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a');
350   for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) {
351     assert(
352         (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) &&
353         "BasicBlock number was out of range!");
354     // 'a' - Normal block.
355     // 'r' - Return block.
356     // 'l' - Landing Pad.
357     // 'L' - Return and landing pad.
358     bool isEHPad = MBBI->isEHPad();
359     bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back());
360     char type = 'a';
361     if (isEHPad && isRetBlock)
362       type = 'L';
363     else if (isEHPad)
364       type = 'l';
365     else if (isRetBlock)
366       type = 'r';
367     BBSectionsSymbolPrefix[MBBI->getNumber()] = type;
368   }
369 }
370 
371 /// This method iterates over the basic blocks and assigns their IsBeginSection
372 /// and IsEndSection fields. This must be called after MBB layout is finalized
373 /// and the SectionID's are assigned to MBBs.
374 void MachineFunction::assignBeginEndSections() {
375   front().setIsBeginSection();
376   auto CurrentSectionID = front().getSectionID();
377   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
378     if (MBBI->getSectionID() == CurrentSectionID)
379       continue;
380     MBBI->setIsBeginSection();
381     std::prev(MBBI)->setIsEndSection();
382     CurrentSectionID = MBBI->getSectionID();
383   }
384   back().setIsEndSection();
385 }
386 
387 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
388 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
389                                                   const DebugLoc &DL,
390                                                   bool NoImp) {
391   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
392     MachineInstr(*this, MCID, DL, NoImp);
393 }
394 
395 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
396 /// identical in all ways except the instruction has no parent, prev, or next.
397 MachineInstr *
398 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
399   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
400              MachineInstr(*this, *Orig);
401 }
402 
403 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
404     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
405   MachineInstr *FirstClone = nullptr;
406   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
407   while (true) {
408     MachineInstr *Cloned = CloneMachineInstr(&*I);
409     MBB.insert(InsertBefore, Cloned);
410     if (FirstClone == nullptr) {
411       FirstClone = Cloned;
412     } else {
413       Cloned->bundleWithPred();
414     }
415 
416     if (!I->isBundledWithSucc())
417       break;
418     ++I;
419   }
420   // Copy over call site info to the cloned instruction if needed. If Orig is in
421   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
422   // the bundle.
423   if (Orig.shouldUpdateCallSiteInfo())
424     copyCallSiteInfo(&Orig, FirstClone);
425   return *FirstClone;
426 }
427 
428 /// Delete the given MachineInstr.
429 ///
430 /// This function also serves as the MachineInstr destructor - the real
431 /// ~MachineInstr() destructor must be empty.
432 void
433 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
434   // Verify that a call site info is at valid state. This assertion should
435   // be triggered during the implementation of support for the
436   // call site info of a new architecture. If the assertion is triggered,
437   // back trace will tell where to insert a call to updateCallSiteInfo().
438   assert((!MI->isCandidateForCallSiteEntry() ||
439           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
440          "Call site info was not updated!");
441   // Strip it for parts. The operand array and the MI object itself are
442   // independently recyclable.
443   if (MI->Operands)
444     deallocateOperandArray(MI->CapOperands, MI->Operands);
445   // Don't call ~MachineInstr() which must be trivial anyway because
446   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
447   // destructors.
448   InstructionRecycler.Deallocate(Allocator, MI);
449 }
450 
451 /// Allocate a new MachineBasicBlock. Use this instead of
452 /// `new MachineBasicBlock'.
453 MachineBasicBlock *
454 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
455   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
456              MachineBasicBlock(*this, bb);
457 }
458 
459 /// Delete the given MachineBasicBlock.
460 void
461 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
462   assert(MBB->getParent() == this && "MBB parent mismatch!");
463   MBB->~MachineBasicBlock();
464   BasicBlockRecycler.Deallocate(Allocator, MBB);
465 }
466 
467 MachineMemOperand *MachineFunction::getMachineMemOperand(
468     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
469     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
470     SyncScope::ID SSID, AtomicOrdering Ordering,
471     AtomicOrdering FailureOrdering) {
472   return new (Allocator)
473       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
474                         SSID, Ordering, FailureOrdering);
475 }
476 
477 MachineMemOperand *MachineFunction::getMachineMemOperand(
478     const MachineMemOperand *MMO, MachinePointerInfo &PtrInfo, uint64_t Size) {
479   return new (Allocator) MachineMemOperand(
480       PtrInfo, MMO->getFlags(), Size, Alignment, AAMDNodes(), nullptr,
481       MMO->getSyncScopeID(), MMO->getOrdering(), MMO->getFailureOrdering());
482 }
483 
484 MachineMemOperand *
485 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
486                                       int64_t Offset, uint64_t Size) {
487   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
488 
489   // If there is no pointer value, the offset isn't tracked so we need to adjust
490   // the base alignment.
491   Align Alignment = PtrInfo.V.isNull()
492                         ? commonAlignment(MMO->getBaseAlign(), Offset)
493                         : MMO->getBaseAlign();
494 
495   return new (Allocator)
496       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
497                         Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
498                         MMO->getOrdering(), MMO->getFailureOrdering());
499 }
500 
501 MachineMemOperand *
502 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
503                                       const AAMDNodes &AAInfo) {
504   MachinePointerInfo MPI = MMO->getValue() ?
505              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
506              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
507 
508   return new (Allocator) MachineMemOperand(
509       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
510       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(),
511       MMO->getFailureOrdering());
512 }
513 
514 MachineMemOperand *
515 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
516                                       MachineMemOperand::Flags Flags) {
517   return new (Allocator) MachineMemOperand(
518       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
519       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
520       MMO->getOrdering(), MMO->getFailureOrdering());
521 }
522 
523 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
524     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
525     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
526   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
527                                          PostInstrSymbol, HeapAllocMarker);
528 }
529 
530 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
531   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
532   llvm::copy(Name, Dest);
533   Dest[Name.size()] = 0;
534   return Dest;
535 }
536 
537 uint32_t *MachineFunction::allocateRegMask() {
538   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
539   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
540   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
541   memset(Mask, 0, Size * sizeof(Mask[0]));
542   return Mask;
543 }
544 
545 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
546   int* AllocMask = Allocator.Allocate<int>(Mask.size());
547   copy(Mask, AllocMask);
548   return {AllocMask, Mask.size()};
549 }
550 
551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
552 LLVM_DUMP_METHOD void MachineFunction::dump() const {
553   print(dbgs());
554 }
555 #endif
556 
557 StringRef MachineFunction::getName() const {
558   return getFunction().getName();
559 }
560 
561 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
562   OS << "# Machine code for function " << getName() << ": ";
563   getProperties().print(OS);
564   OS << '\n';
565 
566   // Print Frame Information
567   FrameInfo->print(*this, OS);
568 
569   // Print JumpTable Information
570   if (JumpTableInfo)
571     JumpTableInfo->print(OS);
572 
573   // Print Constant Pool
574   ConstantPool->print(OS);
575 
576   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
577 
578   if (RegInfo && !RegInfo->livein_empty()) {
579     OS << "Function Live Ins: ";
580     for (MachineRegisterInfo::livein_iterator
581          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
582       OS << printReg(I->first, TRI);
583       if (I->second)
584         OS << " in " << printReg(I->second, TRI);
585       if (std::next(I) != E)
586         OS << ", ";
587     }
588     OS << '\n';
589   }
590 
591   ModuleSlotTracker MST(getFunction().getParent());
592   MST.incorporateFunction(getFunction());
593   for (const auto &BB : *this) {
594     OS << '\n';
595     // If we print the whole function, print it at its most verbose level.
596     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
597   }
598 
599   OS << "\n# End machine code for function " << getName() << ".\n\n";
600 }
601 
602 /// True if this function needs frame moves for debug or exceptions.
603 bool MachineFunction::needsFrameMoves() const {
604   return getMMI().hasDebugInfo() ||
605          getTarget().Options.ForceDwarfFrameSection ||
606          F.needsUnwindTableEntry();
607 }
608 
609 namespace llvm {
610 
611   template<>
612   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
613     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
614 
615     static std::string getGraphName(const MachineFunction *F) {
616       return ("CFG for '" + F->getName() + "' function").str();
617     }
618 
619     std::string getNodeLabel(const MachineBasicBlock *Node,
620                              const MachineFunction *Graph) {
621       std::string OutStr;
622       {
623         raw_string_ostream OSS(OutStr);
624 
625         if (isSimple()) {
626           OSS << printMBBReference(*Node);
627           if (const BasicBlock *BB = Node->getBasicBlock())
628             OSS << ": " << BB->getName();
629         } else
630           Node->print(OSS);
631       }
632 
633       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
634 
635       // Process string output to make it nicer...
636       for (unsigned i = 0; i != OutStr.length(); ++i)
637         if (OutStr[i] == '\n') {                            // Left justify
638           OutStr[i] = '\\';
639           OutStr.insert(OutStr.begin()+i+1, 'l');
640         }
641       return OutStr;
642     }
643   };
644 
645 } // end namespace llvm
646 
647 void MachineFunction::viewCFG() const
648 {
649 #ifndef NDEBUG
650   ViewGraph(this, "mf" + getName());
651 #else
652   errs() << "MachineFunction::viewCFG is only available in debug builds on "
653          << "systems with Graphviz or gv!\n";
654 #endif // NDEBUG
655 }
656 
657 void MachineFunction::viewCFGOnly() const
658 {
659 #ifndef NDEBUG
660   ViewGraph(this, "mf" + getName(), true);
661 #else
662   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
663          << "systems with Graphviz or gv!\n";
664 #endif // NDEBUG
665 }
666 
667 /// Add the specified physical register as a live-in value and
668 /// create a corresponding virtual register for it.
669 Register MachineFunction::addLiveIn(MCRegister PReg,
670                                     const TargetRegisterClass *RC) {
671   MachineRegisterInfo &MRI = getRegInfo();
672   Register VReg = MRI.getLiveInVirtReg(PReg);
673   if (VReg) {
674     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
675     (void)VRegRC;
676     // A physical register can be added several times.
677     // Between two calls, the register class of the related virtual register
678     // may have been constrained to match some operation constraints.
679     // In that case, check that the current register class includes the
680     // physical register and is a sub class of the specified RC.
681     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
682                              RC->hasSubClassEq(VRegRC))) &&
683             "Register class mismatch!");
684     return VReg;
685   }
686   VReg = MRI.createVirtualRegister(RC);
687   MRI.addLiveIn(PReg, VReg);
688   return VReg;
689 }
690 
691 /// Return the MCSymbol for the specified non-empty jump table.
692 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
693 /// normal 'L' label is returned.
694 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
695                                         bool isLinkerPrivate) const {
696   const DataLayout &DL = getDataLayout();
697   assert(JumpTableInfo && "No jump tables");
698   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
699 
700   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
701                                      : DL.getPrivateGlobalPrefix();
702   SmallString<60> Name;
703   raw_svector_ostream(Name)
704     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
705   return Ctx.getOrCreateSymbol(Name);
706 }
707 
708 /// Return a function-local symbol to represent the PIC base.
709 MCSymbol *MachineFunction::getPICBaseSymbol() const {
710   const DataLayout &DL = getDataLayout();
711   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
712                                Twine(getFunctionNumber()) + "$pb");
713 }
714 
715 /// \name Exception Handling
716 /// \{
717 
718 LandingPadInfo &
719 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
720   unsigned N = LandingPads.size();
721   for (unsigned i = 0; i < N; ++i) {
722     LandingPadInfo &LP = LandingPads[i];
723     if (LP.LandingPadBlock == LandingPad)
724       return LP;
725   }
726 
727   LandingPads.push_back(LandingPadInfo(LandingPad));
728   return LandingPads[N];
729 }
730 
731 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
732                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
733   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
734   LP.BeginLabels.push_back(BeginLabel);
735   LP.EndLabels.push_back(EndLabel);
736 }
737 
738 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
739   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
740   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
741   LP.LandingPadLabel = LandingPadLabel;
742 
743   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
744   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
745     if (const auto *PF =
746             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
747       getMMI().addPersonality(PF);
748 
749     if (LPI->isCleanup())
750       addCleanup(LandingPad);
751 
752     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
753     //        correct, but we need to do it this way because of how the DWARF EH
754     //        emitter processes the clauses.
755     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
756       Value *Val = LPI->getClause(I - 1);
757       if (LPI->isCatch(I - 1)) {
758         addCatchTypeInfo(LandingPad,
759                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
760       } else {
761         // Add filters in a list.
762         auto *CVal = cast<Constant>(Val);
763         SmallVector<const GlobalValue *, 4> FilterList;
764         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
765              II != IE; ++II)
766           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
767 
768         addFilterTypeInfo(LandingPad, FilterList);
769       }
770     }
771 
772   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
773     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
774       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
775       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
776     }
777 
778   } else {
779     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
780   }
781 
782   return LandingPadLabel;
783 }
784 
785 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
786                                        ArrayRef<const GlobalValue *> TyInfo) {
787   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
788   for (unsigned N = TyInfo.size(); N; --N)
789     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
790 }
791 
792 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
793                                         ArrayRef<const GlobalValue *> TyInfo) {
794   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
795   std::vector<unsigned> IdsInFilter(TyInfo.size());
796   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
797     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
798   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
799 }
800 
801 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
802                                       bool TidyIfNoBeginLabels) {
803   for (unsigned i = 0; i != LandingPads.size(); ) {
804     LandingPadInfo &LandingPad = LandingPads[i];
805     if (LandingPad.LandingPadLabel &&
806         !LandingPad.LandingPadLabel->isDefined() &&
807         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
808       LandingPad.LandingPadLabel = nullptr;
809 
810     // Special case: we *should* emit LPs with null LP MBB. This indicates
811     // "nounwind" case.
812     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
813       LandingPads.erase(LandingPads.begin() + i);
814       continue;
815     }
816 
817     if (TidyIfNoBeginLabels) {
818       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
819         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
820         MCSymbol *EndLabel = LandingPad.EndLabels[j];
821         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
822             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
823           continue;
824 
825         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
826         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
827         --j;
828         --e;
829       }
830 
831       // Remove landing pads with no try-ranges.
832       if (LandingPads[i].BeginLabels.empty()) {
833         LandingPads.erase(LandingPads.begin() + i);
834         continue;
835       }
836     }
837 
838     // If there is no landing pad, ensure that the list of typeids is empty.
839     // If the only typeid is a cleanup, this is the same as having no typeids.
840     if (!LandingPad.LandingPadBlock ||
841         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
842       LandingPad.TypeIds.clear();
843     ++i;
844   }
845 }
846 
847 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
848   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
849   LP.TypeIds.push_back(0);
850 }
851 
852 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
853                                          const Function *Filter,
854                                          const BlockAddress *RecoverBA) {
855   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
856   SEHHandler Handler;
857   Handler.FilterOrFinally = Filter;
858   Handler.RecoverBA = RecoverBA;
859   LP.SEHHandlers.push_back(Handler);
860 }
861 
862 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
863                                            const Function *Cleanup) {
864   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
865   SEHHandler Handler;
866   Handler.FilterOrFinally = Cleanup;
867   Handler.RecoverBA = nullptr;
868   LP.SEHHandlers.push_back(Handler);
869 }
870 
871 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
872                                             ArrayRef<unsigned> Sites) {
873   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
874 }
875 
876 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
877   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
878     if (TypeInfos[i] == TI) return i + 1;
879 
880   TypeInfos.push_back(TI);
881   return TypeInfos.size();
882 }
883 
884 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
885   // If the new filter coincides with the tail of an existing filter, then
886   // re-use the existing filter.  Folding filters more than this requires
887   // re-ordering filters and/or their elements - probably not worth it.
888   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
889        E = FilterEnds.end(); I != E; ++I) {
890     unsigned i = *I, j = TyIds.size();
891 
892     while (i && j)
893       if (FilterIds[--i] != TyIds[--j])
894         goto try_next;
895 
896     if (!j)
897       // The new filter coincides with range [i, end) of the existing filter.
898       return -(1 + i);
899 
900 try_next:;
901   }
902 
903   // Add the new filter.
904   int FilterID = -(1 + FilterIds.size());
905   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
906   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
907   FilterEnds.push_back(FilterIds.size());
908   FilterIds.push_back(0); // terminator
909   return FilterID;
910 }
911 
912 MachineFunction::CallSiteInfoMap::iterator
913 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
914   assert(MI->isCandidateForCallSiteEntry() &&
915          "Call site info refers only to call (MI) candidates");
916 
917   if (!Target.Options.EmitCallSiteInfo)
918     return CallSitesInfo.end();
919   return CallSitesInfo.find(MI);
920 }
921 
922 /// Return the call machine instruction or find a call within bundle.
923 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
924   if (!MI->isBundle())
925     return MI;
926 
927   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
928                               getBundleEnd(MI->getIterator())))
929     if (BMI.isCandidateForCallSiteEntry())
930       return &BMI;
931 
932   llvm_unreachable("Unexpected bundle without a call site candidate");
933 }
934 
935 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
936   assert(MI->shouldUpdateCallSiteInfo() &&
937          "Call site info refers only to call (MI) candidates or "
938          "candidates inside bundles");
939 
940   const MachineInstr *CallMI = getCallInstr(MI);
941   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
942   if (CSIt == CallSitesInfo.end())
943     return;
944   CallSitesInfo.erase(CSIt);
945 }
946 
947 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
948                                        const MachineInstr *New) {
949   assert(Old->shouldUpdateCallSiteInfo() &&
950          "Call site info refers only to call (MI) candidates or "
951          "candidates inside bundles");
952 
953   if (!New->isCandidateForCallSiteEntry())
954     return eraseCallSiteInfo(Old);
955 
956   const MachineInstr *OldCallMI = getCallInstr(Old);
957   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
958   if (CSIt == CallSitesInfo.end())
959     return;
960 
961   CallSiteInfo CSInfo = CSIt->second;
962   CallSitesInfo[New] = CSInfo;
963 }
964 
965 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
966                                        const MachineInstr *New) {
967   assert(Old->shouldUpdateCallSiteInfo() &&
968          "Call site info refers only to call (MI) candidates or "
969          "candidates inside bundles");
970 
971   if (!New->isCandidateForCallSiteEntry())
972     return eraseCallSiteInfo(Old);
973 
974   const MachineInstr *OldCallMI = getCallInstr(Old);
975   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
976   if (CSIt == CallSitesInfo.end())
977     return;
978 
979   CallSiteInfo CSInfo = std::move(CSIt->second);
980   CallSitesInfo.erase(CSIt);
981   CallSitesInfo[New] = CSInfo;
982 }
983 
984 /// \}
985 
986 //===----------------------------------------------------------------------===//
987 //  MachineJumpTableInfo implementation
988 //===----------------------------------------------------------------------===//
989 
990 /// Return the size of each entry in the jump table.
991 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
992   // The size of a jump table entry is 4 bytes unless the entry is just the
993   // address of a block, in which case it is the pointer size.
994   switch (getEntryKind()) {
995   case MachineJumpTableInfo::EK_BlockAddress:
996     return TD.getPointerSize();
997   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
998     return 8;
999   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1000   case MachineJumpTableInfo::EK_LabelDifference32:
1001   case MachineJumpTableInfo::EK_Custom32:
1002     return 4;
1003   case MachineJumpTableInfo::EK_Inline:
1004     return 0;
1005   }
1006   llvm_unreachable("Unknown jump table encoding!");
1007 }
1008 
1009 /// Return the alignment of each entry in the jump table.
1010 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1011   // The alignment of a jump table entry is the alignment of int32 unless the
1012   // entry is just the address of a block, in which case it is the pointer
1013   // alignment.
1014   switch (getEntryKind()) {
1015   case MachineJumpTableInfo::EK_BlockAddress:
1016     return TD.getPointerABIAlignment(0).value();
1017   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1018     return TD.getABIIntegerTypeAlignment(64).value();
1019   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1020   case MachineJumpTableInfo::EK_LabelDifference32:
1021   case MachineJumpTableInfo::EK_Custom32:
1022     return TD.getABIIntegerTypeAlignment(32).value();
1023   case MachineJumpTableInfo::EK_Inline:
1024     return 1;
1025   }
1026   llvm_unreachable("Unknown jump table encoding!");
1027 }
1028 
1029 /// Create a new jump table entry in the jump table info.
1030 unsigned MachineJumpTableInfo::createJumpTableIndex(
1031                                const std::vector<MachineBasicBlock*> &DestBBs) {
1032   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1033   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1034   return JumpTables.size()-1;
1035 }
1036 
1037 /// If Old is the target of any jump tables, update the jump tables to branch
1038 /// to New instead.
1039 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1040                                                   MachineBasicBlock *New) {
1041   assert(Old != New && "Not making a change?");
1042   bool MadeChange = false;
1043   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1044     ReplaceMBBInJumpTable(i, Old, New);
1045   return MadeChange;
1046 }
1047 
1048 /// If Old is a target of the jump tables, update the jump table to branch to
1049 /// New instead.
1050 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1051                                                  MachineBasicBlock *Old,
1052                                                  MachineBasicBlock *New) {
1053   assert(Old != New && "Not making a change?");
1054   bool MadeChange = false;
1055   MachineJumpTableEntry &JTE = JumpTables[Idx];
1056   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1057     if (JTE.MBBs[j] == Old) {
1058       JTE.MBBs[j] = New;
1059       MadeChange = true;
1060     }
1061   return MadeChange;
1062 }
1063 
1064 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1065   if (JumpTables.empty()) return;
1066 
1067   OS << "Jump Tables:\n";
1068 
1069   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1070     OS << printJumpTableEntryReference(i) << ':';
1071     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1072       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1073     if (i != e)
1074       OS << '\n';
1075   }
1076 
1077   OS << '\n';
1078 }
1079 
1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1081 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1082 #endif
1083 
1084 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1085   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //  MachineConstantPool implementation
1090 //===----------------------------------------------------------------------===//
1091 
1092 void MachineConstantPoolValue::anchor() {}
1093 
1094 Type *MachineConstantPoolEntry::getType() const {
1095   if (isMachineConstantPoolEntry())
1096     return Val.MachineCPVal->getType();
1097   return Val.ConstVal->getType();
1098 }
1099 
1100 bool MachineConstantPoolEntry::needsRelocation() const {
1101   if (isMachineConstantPoolEntry())
1102     return true;
1103   return Val.ConstVal->needsRelocation();
1104 }
1105 
1106 SectionKind
1107 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1108   if (needsRelocation())
1109     return SectionKind::getReadOnlyWithRel();
1110   switch (DL->getTypeAllocSize(getType())) {
1111   case 4:
1112     return SectionKind::getMergeableConst4();
1113   case 8:
1114     return SectionKind::getMergeableConst8();
1115   case 16:
1116     return SectionKind::getMergeableConst16();
1117   case 32:
1118     return SectionKind::getMergeableConst32();
1119   default:
1120     return SectionKind::getReadOnly();
1121   }
1122 }
1123 
1124 MachineConstantPool::~MachineConstantPool() {
1125   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1126   // so keep track of which we've deleted to avoid double deletions.
1127   DenseSet<MachineConstantPoolValue*> Deleted;
1128   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1129     if (Constants[i].isMachineConstantPoolEntry()) {
1130       Deleted.insert(Constants[i].Val.MachineCPVal);
1131       delete Constants[i].Val.MachineCPVal;
1132     }
1133   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1134        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1135        I != E; ++I) {
1136     if (Deleted.count(*I) == 0)
1137       delete *I;
1138   }
1139 }
1140 
1141 /// Test whether the given two constants can be allocated the same constant pool
1142 /// entry.
1143 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1144                                       const DataLayout &DL) {
1145   // Handle the trivial case quickly.
1146   if (A == B) return true;
1147 
1148   // If they have the same type but weren't the same constant, quickly
1149   // reject them.
1150   if (A->getType() == B->getType()) return false;
1151 
1152   // We can't handle structs or arrays.
1153   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1154       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1155     return false;
1156 
1157   // For now, only support constants with the same size.
1158   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1159   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1160     return false;
1161 
1162   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1163 
1164   // Try constant folding a bitcast of both instructions to an integer.  If we
1165   // get two identical ConstantInt's, then we are good to share them.  We use
1166   // the constant folding APIs to do this so that we get the benefit of
1167   // DataLayout.
1168   if (isa<PointerType>(A->getType()))
1169     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1170                                 const_cast<Constant *>(A), IntTy, DL);
1171   else if (A->getType() != IntTy)
1172     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1173                                 IntTy, DL);
1174   if (isa<PointerType>(B->getType()))
1175     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1176                                 const_cast<Constant *>(B), IntTy, DL);
1177   else if (B->getType() != IntTy)
1178     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1179                                 IntTy, DL);
1180 
1181   return A == B;
1182 }
1183 
1184 /// Create a new entry in the constant pool or return an existing one.
1185 /// User must specify the log2 of the minimum required alignment for the object.
1186 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1187                                                    Align Alignment) {
1188   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1189 
1190   // Check to see if we already have this constant.
1191   //
1192   // FIXME, this could be made much more efficient for large constant pools.
1193   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1194     if (!Constants[i].isMachineConstantPoolEntry() &&
1195         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1196       if (Constants[i].getAlign() < Alignment)
1197         Constants[i].Alignment = Alignment;
1198       return i;
1199     }
1200 
1201   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1202   return Constants.size()-1;
1203 }
1204 
1205 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1206                                                    Align Alignment) {
1207   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1208 
1209   // Check to see if we already have this constant.
1210   //
1211   // FIXME, this could be made much more efficient for large constant pools.
1212   int Idx = V->getExistingMachineCPValue(this, Alignment);
1213   if (Idx != -1) {
1214     MachineCPVsSharingEntries.insert(V);
1215     return (unsigned)Idx;
1216   }
1217 
1218   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1219   return Constants.size()-1;
1220 }
1221 
1222 void MachineConstantPool::print(raw_ostream &OS) const {
1223   if (Constants.empty()) return;
1224 
1225   OS << "Constant Pool:\n";
1226   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1227     OS << "  cp#" << i << ": ";
1228     if (Constants[i].isMachineConstantPoolEntry())
1229       Constants[i].Val.MachineCPVal->print(OS);
1230     else
1231       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1232     OS << ", align=" << Constants[i].getAlign().value();
1233     OS << "\n";
1234   }
1235 }
1236 
1237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1238 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1239 #endif
1240