1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/DerivedTypes.h" 17 #include "llvm/Function.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Config/config.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetFrameInfo.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // MachineFunction implementation 45 //===----------------------------------------------------------------------===// 46 47 // Out of line virtual method. 48 MachineFunctionInfo::~MachineFunctionInfo() {} 49 50 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 51 MBB->getParent()->DeleteMachineBasicBlock(MBB); 52 } 53 54 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 55 unsigned FunctionNum, MachineModuleInfo &mmi, 56 GCModuleInfo* gmi) 57 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 58 if (TM.getRegisterInfo()) 59 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 60 else 61 RegInfo = 0; 62 MFInfo = 0; 63 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameInfo()); 64 if (Fn->hasFnAttr(Attribute::StackAlignment)) 65 FrameInfo->setMaxAlignment(Attribute::getStackAlignmentFromAttrs( 66 Fn->getAttributes().getFnAttributes())); 67 ConstantPool = new (Allocator) MachineConstantPool(TM.getTargetData()); 68 Alignment = TM.getTargetLowering()->getFunctionAlignment(F); 69 FunctionNumber = FunctionNum; 70 JumpTableInfo = 0; 71 } 72 73 MachineFunction::~MachineFunction() { 74 BasicBlocks.clear(); 75 InstructionRecycler.clear(Allocator); 76 BasicBlockRecycler.clear(Allocator); 77 if (RegInfo) { 78 RegInfo->~MachineRegisterInfo(); 79 Allocator.Deallocate(RegInfo); 80 } 81 if (MFInfo) { 82 MFInfo->~MachineFunctionInfo(); 83 Allocator.Deallocate(MFInfo); 84 } 85 FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo); 86 ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool); 87 88 if (JumpTableInfo) { 89 JumpTableInfo->~MachineJumpTableInfo(); 90 Allocator.Deallocate(JumpTableInfo); 91 } 92 } 93 94 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 95 /// does already exist, allocate one. 96 MachineJumpTableInfo *MachineFunction:: 97 getOrCreateJumpTableInfo(unsigned EntryKind) { 98 if (JumpTableInfo) return JumpTableInfo; 99 100 JumpTableInfo = new (Allocator) 101 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 102 return JumpTableInfo; 103 } 104 105 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 106 /// recomputes them. This guarantees that the MBB numbers are sequential, 107 /// dense, and match the ordering of the blocks within the function. If a 108 /// specific MachineBasicBlock is specified, only that block and those after 109 /// it are renumbered. 110 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 111 if (empty()) { MBBNumbering.clear(); return; } 112 MachineFunction::iterator MBBI, E = end(); 113 if (MBB == 0) 114 MBBI = begin(); 115 else 116 MBBI = MBB; 117 118 // Figure out the block number this should have. 119 unsigned BlockNo = 0; 120 if (MBBI != begin()) 121 BlockNo = prior(MBBI)->getNumber()+1; 122 123 for (; MBBI != E; ++MBBI, ++BlockNo) { 124 if (MBBI->getNumber() != (int)BlockNo) { 125 // Remove use of the old number. 126 if (MBBI->getNumber() != -1) { 127 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 128 "MBB number mismatch!"); 129 MBBNumbering[MBBI->getNumber()] = 0; 130 } 131 132 // If BlockNo is already taken, set that block's number to -1. 133 if (MBBNumbering[BlockNo]) 134 MBBNumbering[BlockNo]->setNumber(-1); 135 136 MBBNumbering[BlockNo] = MBBI; 137 MBBI->setNumber(BlockNo); 138 } 139 } 140 141 // Okay, all the blocks are renumbered. If we have compactified the block 142 // numbering, shrink MBBNumbering now. 143 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 144 MBBNumbering.resize(BlockNo); 145 } 146 147 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 148 /// of `new MachineInstr'. 149 /// 150 MachineInstr * 151 MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, 152 DebugLoc DL, bool NoImp) { 153 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 154 MachineInstr(TID, DL, NoImp); 155 } 156 157 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 158 /// 'Orig' instruction, identical in all ways except the instruction 159 /// has no parent, prev, or next. 160 /// 161 MachineInstr * 162 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 163 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 164 MachineInstr(*this, *Orig); 165 } 166 167 /// DeleteMachineInstr - Delete the given MachineInstr. 168 /// 169 void 170 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 171 MI->~MachineInstr(); 172 InstructionRecycler.Deallocate(Allocator, MI); 173 } 174 175 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 176 /// instead of `new MachineBasicBlock'. 177 /// 178 MachineBasicBlock * 179 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 180 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 181 MachineBasicBlock(*this, bb); 182 } 183 184 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 185 /// 186 void 187 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 188 assert(MBB->getParent() == this && "MBB parent mismatch!"); 189 MBB->~MachineBasicBlock(); 190 BasicBlockRecycler.Deallocate(Allocator, MBB); 191 } 192 193 MachineMemOperand * 194 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 195 uint64_t s, unsigned base_alignment, 196 const MDNode *TBAAInfo) { 197 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 198 TBAAInfo); 199 } 200 201 MachineMemOperand * 202 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 203 int64_t Offset, uint64_t Size) { 204 return new (Allocator) 205 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 206 MMO->getOffset()+Offset), 207 MMO->getFlags(), Size, 208 MMO->getBaseAlignment(), 0); 209 } 210 211 MachineInstr::mmo_iterator 212 MachineFunction::allocateMemRefsArray(unsigned long Num) { 213 return Allocator.Allocate<MachineMemOperand *>(Num); 214 } 215 216 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 217 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 218 MachineInstr::mmo_iterator End) { 219 // Count the number of load mem refs. 220 unsigned Num = 0; 221 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 222 if ((*I)->isLoad()) 223 ++Num; 224 225 // Allocate a new array and populate it with the load information. 226 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 227 unsigned Index = 0; 228 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 229 if ((*I)->isLoad()) { 230 if (!(*I)->isStore()) 231 // Reuse the MMO. 232 Result[Index] = *I; 233 else { 234 // Clone the MMO and unset the store flag. 235 MachineMemOperand *JustLoad = 236 getMachineMemOperand((*I)->getPointerInfo(), 237 (*I)->getFlags() & ~MachineMemOperand::MOStore, 238 (*I)->getSize(), (*I)->getBaseAlignment(), 239 (*I)->getTBAAInfo()); 240 Result[Index] = JustLoad; 241 } 242 ++Index; 243 } 244 } 245 return std::make_pair(Result, Result + Num); 246 } 247 248 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 249 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 250 MachineInstr::mmo_iterator End) { 251 // Count the number of load mem refs. 252 unsigned Num = 0; 253 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 254 if ((*I)->isStore()) 255 ++Num; 256 257 // Allocate a new array and populate it with the store information. 258 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 259 unsigned Index = 0; 260 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 261 if ((*I)->isStore()) { 262 if (!(*I)->isLoad()) 263 // Reuse the MMO. 264 Result[Index] = *I; 265 else { 266 // Clone the MMO and unset the load flag. 267 MachineMemOperand *JustStore = 268 getMachineMemOperand((*I)->getPointerInfo(), 269 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 270 (*I)->getSize(), (*I)->getBaseAlignment(), 271 (*I)->getTBAAInfo()); 272 Result[Index] = JustStore; 273 } 274 ++Index; 275 } 276 } 277 return std::make_pair(Result, Result + Num); 278 } 279 280 void MachineFunction::dump() const { 281 print(dbgs()); 282 } 283 284 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 285 OS << "# Machine code for function " << Fn->getName() << ":\n"; 286 287 // Print Frame Information 288 FrameInfo->print(*this, OS); 289 290 // Print JumpTable Information 291 if (JumpTableInfo) 292 JumpTableInfo->print(OS); 293 294 // Print Constant Pool 295 ConstantPool->print(OS); 296 297 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 298 299 if (RegInfo && !RegInfo->livein_empty()) { 300 OS << "Function Live Ins: "; 301 for (MachineRegisterInfo::livein_iterator 302 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 303 if (TRI) 304 OS << "%" << TRI->getName(I->first); 305 else 306 OS << " %physreg" << I->first; 307 308 if (I->second) 309 OS << " in reg%" << I->second; 310 311 if (llvm::next(I) != E) 312 OS << ", "; 313 } 314 OS << '\n'; 315 } 316 if (RegInfo && !RegInfo->liveout_empty()) { 317 OS << "Function Live Outs: "; 318 for (MachineRegisterInfo::liveout_iterator 319 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){ 320 if (TRI) 321 OS << '%' << TRI->getName(*I); 322 else 323 OS << "%physreg" << *I; 324 325 if (llvm::next(I) != E) 326 OS << " "; 327 } 328 OS << '\n'; 329 } 330 331 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 332 OS << '\n'; 333 BB->print(OS, Indexes); 334 } 335 336 OS << "\n# End machine code for function " << Fn->getName() << ".\n\n"; 337 } 338 339 namespace llvm { 340 template<> 341 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 342 343 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 344 345 static std::string getGraphName(const MachineFunction *F) { 346 return "CFG for '" + F->getFunction()->getNameStr() + "' function"; 347 } 348 349 std::string getNodeLabel(const MachineBasicBlock *Node, 350 const MachineFunction *Graph) { 351 std::string OutStr; 352 { 353 raw_string_ostream OSS(OutStr); 354 355 if (isSimple()) { 356 OSS << "BB#" << Node->getNumber(); 357 if (const BasicBlock *BB = Node->getBasicBlock()) 358 OSS << ": " << BB->getName(); 359 } else 360 Node->print(OSS); 361 } 362 363 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 364 365 // Process string output to make it nicer... 366 for (unsigned i = 0; i != OutStr.length(); ++i) 367 if (OutStr[i] == '\n') { // Left justify 368 OutStr[i] = '\\'; 369 OutStr.insert(OutStr.begin()+i+1, 'l'); 370 } 371 return OutStr; 372 } 373 }; 374 } 375 376 void MachineFunction::viewCFG() const 377 { 378 #ifndef NDEBUG 379 ViewGraph(this, "mf" + getFunction()->getNameStr()); 380 #else 381 errs() << "MachineFunction::viewCFG is only available in debug builds on " 382 << "systems with Graphviz or gv!\n"; 383 #endif // NDEBUG 384 } 385 386 void MachineFunction::viewCFGOnly() const 387 { 388 #ifndef NDEBUG 389 ViewGraph(this, "mf" + getFunction()->getNameStr(), true); 390 #else 391 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 392 << "systems with Graphviz or gv!\n"; 393 #endif // NDEBUG 394 } 395 396 /// addLiveIn - Add the specified physical register as a live-in value and 397 /// create a corresponding virtual register for it. 398 unsigned MachineFunction::addLiveIn(unsigned PReg, 399 const TargetRegisterClass *RC) { 400 MachineRegisterInfo &MRI = getRegInfo(); 401 unsigned VReg = MRI.getLiveInVirtReg(PReg); 402 if (VReg) { 403 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 404 return VReg; 405 } 406 VReg = MRI.createVirtualRegister(RC); 407 MRI.addLiveIn(PReg, VReg); 408 return VReg; 409 } 410 411 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 412 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 413 /// normal 'L' label is returned. 414 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 415 bool isLinkerPrivate) const { 416 assert(JumpTableInfo && "No jump tables"); 417 418 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 419 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 420 421 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 422 MAI.getPrivateGlobalPrefix(); 423 SmallString<60> Name; 424 raw_svector_ostream(Name) 425 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 426 return Ctx.GetOrCreateSymbol(Name.str()); 427 } 428 429 430 //===----------------------------------------------------------------------===// 431 // MachineFrameInfo implementation 432 //===----------------------------------------------------------------------===// 433 434 /// CreateFixedObject - Create a new object at a fixed location on the stack. 435 /// All fixed objects should be created before other objects are created for 436 /// efficiency. By default, fixed objects are immutable. This returns an 437 /// index with a negative value. 438 /// 439 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 440 bool Immutable) { 441 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 442 // The alignment of the frame index can be determined from its offset from 443 // the incoming frame position. If the frame object is at offset 32 and 444 // the stack is guaranteed to be 16-byte aligned, then we know that the 445 // object is 16-byte aligned. 446 unsigned StackAlign = TFI.getStackAlignment(); 447 unsigned Align = MinAlign(SPOffset, StackAlign); 448 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 449 /*isSS*/false, false)); 450 return -++NumFixedObjects; 451 } 452 453 454 BitVector 455 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 456 assert(MBB && "MBB must be valid"); 457 const MachineFunction *MF = MBB->getParent(); 458 assert(MF && "MBB must be part of a MachineFunction"); 459 const TargetMachine &TM = MF->getTarget(); 460 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 461 BitVector BV(TRI->getNumRegs()); 462 463 // Before CSI is calculated, no registers are considered pristine. They can be 464 // freely used and PEI will make sure they are saved. 465 if (!isCalleeSavedInfoValid()) 466 return BV; 467 468 for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 469 BV.set(*CSR); 470 471 // The entry MBB always has all CSRs pristine. 472 if (MBB == &MF->front()) 473 return BV; 474 475 // On other MBBs the saved CSRs are not pristine. 476 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 477 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 478 E = CSI.end(); I != E; ++I) 479 BV.reset(I->getReg()); 480 481 return BV; 482 } 483 484 485 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 486 if (Objects.empty()) return; 487 488 const TargetFrameInfo *FI = MF.getTarget().getFrameInfo(); 489 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 490 491 OS << "Frame Objects:\n"; 492 493 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 494 const StackObject &SO = Objects[i]; 495 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 496 if (SO.Size == ~0ULL) { 497 OS << "dead\n"; 498 continue; 499 } 500 if (SO.Size == 0) 501 OS << "variable sized"; 502 else 503 OS << "size=" << SO.Size; 504 OS << ", align=" << SO.Alignment; 505 506 if (i < NumFixedObjects) 507 OS << ", fixed"; 508 if (i < NumFixedObjects || SO.SPOffset != -1) { 509 int64_t Off = SO.SPOffset - ValOffset; 510 OS << ", at location [SP"; 511 if (Off > 0) 512 OS << "+" << Off; 513 else if (Off < 0) 514 OS << Off; 515 OS << "]"; 516 } 517 OS << "\n"; 518 } 519 } 520 521 void MachineFrameInfo::dump(const MachineFunction &MF) const { 522 print(MF, dbgs()); 523 } 524 525 //===----------------------------------------------------------------------===// 526 // MachineJumpTableInfo implementation 527 //===----------------------------------------------------------------------===// 528 529 /// getEntrySize - Return the size of each entry in the jump table. 530 unsigned MachineJumpTableInfo::getEntrySize(const TargetData &TD) const { 531 // The size of a jump table entry is 4 bytes unless the entry is just the 532 // address of a block, in which case it is the pointer size. 533 switch (getEntryKind()) { 534 case MachineJumpTableInfo::EK_BlockAddress: 535 return TD.getPointerSize(); 536 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 537 case MachineJumpTableInfo::EK_LabelDifference32: 538 case MachineJumpTableInfo::EK_Custom32: 539 return 4; 540 case MachineJumpTableInfo::EK_Inline: 541 return 0; 542 } 543 assert(0 && "Unknown jump table encoding!"); 544 return ~0; 545 } 546 547 /// getEntryAlignment - Return the alignment of each entry in the jump table. 548 unsigned MachineJumpTableInfo::getEntryAlignment(const TargetData &TD) const { 549 // The alignment of a jump table entry is the alignment of int32 unless the 550 // entry is just the address of a block, in which case it is the pointer 551 // alignment. 552 switch (getEntryKind()) { 553 case MachineJumpTableInfo::EK_BlockAddress: 554 return TD.getPointerABIAlignment(); 555 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 556 case MachineJumpTableInfo::EK_LabelDifference32: 557 case MachineJumpTableInfo::EK_Custom32: 558 return TD.getABIIntegerTypeAlignment(32); 559 case MachineJumpTableInfo::EK_Inline: 560 return 1; 561 } 562 assert(0 && "Unknown jump table encoding!"); 563 return ~0; 564 } 565 566 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 567 /// 568 unsigned MachineJumpTableInfo::createJumpTableIndex( 569 const std::vector<MachineBasicBlock*> &DestBBs) { 570 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 571 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 572 return JumpTables.size()-1; 573 } 574 575 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 576 /// the jump tables to branch to New instead. 577 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 578 MachineBasicBlock *New) { 579 assert(Old != New && "Not making a change?"); 580 bool MadeChange = false; 581 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 582 ReplaceMBBInJumpTable(i, Old, New); 583 return MadeChange; 584 } 585 586 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 587 /// the jump table to branch to New instead. 588 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 589 MachineBasicBlock *Old, 590 MachineBasicBlock *New) { 591 assert(Old != New && "Not making a change?"); 592 bool MadeChange = false; 593 MachineJumpTableEntry &JTE = JumpTables[Idx]; 594 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 595 if (JTE.MBBs[j] == Old) { 596 JTE.MBBs[j] = New; 597 MadeChange = true; 598 } 599 return MadeChange; 600 } 601 602 void MachineJumpTableInfo::print(raw_ostream &OS) const { 603 if (JumpTables.empty()) return; 604 605 OS << "Jump Tables:\n"; 606 607 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 608 OS << " jt#" << i << ": "; 609 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 610 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 611 } 612 613 OS << '\n'; 614 } 615 616 void MachineJumpTableInfo::dump() const { print(dbgs()); } 617 618 619 //===----------------------------------------------------------------------===// 620 // MachineConstantPool implementation 621 //===----------------------------------------------------------------------===// 622 623 const Type *MachineConstantPoolEntry::getType() const { 624 if (isMachineConstantPoolEntry()) 625 return Val.MachineCPVal->getType(); 626 return Val.ConstVal->getType(); 627 } 628 629 630 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 631 if (isMachineConstantPoolEntry()) 632 return Val.MachineCPVal->getRelocationInfo(); 633 return Val.ConstVal->getRelocationInfo(); 634 } 635 636 MachineConstantPool::~MachineConstantPool() { 637 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 638 if (Constants[i].isMachineConstantPoolEntry()) 639 delete Constants[i].Val.MachineCPVal; 640 } 641 642 /// CanShareConstantPoolEntry - Test whether the given two constants 643 /// can be allocated the same constant pool entry. 644 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 645 const TargetData *TD) { 646 // Handle the trivial case quickly. 647 if (A == B) return true; 648 649 // If they have the same type but weren't the same constant, quickly 650 // reject them. 651 if (A->getType() == B->getType()) return false; 652 653 // For now, only support constants with the same size. 654 if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType())) 655 return false; 656 657 // If a floating-point value and an integer value have the same encoding, 658 // they can share a constant-pool entry. 659 if (const ConstantFP *AFP = dyn_cast<ConstantFP>(A)) 660 if (const ConstantInt *BI = dyn_cast<ConstantInt>(B)) 661 return AFP->getValueAPF().bitcastToAPInt() == BI->getValue(); 662 if (const ConstantFP *BFP = dyn_cast<ConstantFP>(B)) 663 if (const ConstantInt *AI = dyn_cast<ConstantInt>(A)) 664 return BFP->getValueAPF().bitcastToAPInt() == AI->getValue(); 665 666 // Two vectors can share an entry if each pair of corresponding 667 // elements could. 668 if (const ConstantVector *AV = dyn_cast<ConstantVector>(A)) 669 if (const ConstantVector *BV = dyn_cast<ConstantVector>(B)) { 670 if (AV->getType()->getNumElements() != BV->getType()->getNumElements()) 671 return false; 672 for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i) 673 if (!CanShareConstantPoolEntry(AV->getOperand(i), 674 BV->getOperand(i), TD)) 675 return false; 676 return true; 677 } 678 679 // TODO: Handle other cases. 680 681 return false; 682 } 683 684 /// getConstantPoolIndex - Create a new entry in the constant pool or return 685 /// an existing one. User must specify the log2 of the minimum required 686 /// alignment for the object. 687 /// 688 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 689 unsigned Alignment) { 690 assert(Alignment && "Alignment must be specified!"); 691 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 692 693 // Check to see if we already have this constant. 694 // 695 // FIXME, this could be made much more efficient for large constant pools. 696 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 697 if (!Constants[i].isMachineConstantPoolEntry() && 698 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 699 if ((unsigned)Constants[i].getAlignment() < Alignment) 700 Constants[i].Alignment = Alignment; 701 return i; 702 } 703 704 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 705 return Constants.size()-1; 706 } 707 708 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 709 unsigned Alignment) { 710 assert(Alignment && "Alignment must be specified!"); 711 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 712 713 // Check to see if we already have this constant. 714 // 715 // FIXME, this could be made much more efficient for large constant pools. 716 int Idx = V->getExistingMachineCPValue(this, Alignment); 717 if (Idx != -1) 718 return (unsigned)Idx; 719 720 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 721 return Constants.size()-1; 722 } 723 724 void MachineConstantPool::print(raw_ostream &OS) const { 725 if (Constants.empty()) return; 726 727 OS << "Constant Pool:\n"; 728 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 729 OS << " cp#" << i << ": "; 730 if (Constants[i].isMachineConstantPoolEntry()) 731 Constants[i].Val.MachineCPVal->print(OS); 732 else 733 OS << *(Value*)Constants[i].Val.ConstVal; 734 OS << ", align=" << Constants[i].getAlignment(); 735 OS << "\n"; 736 } 737 } 738 739 void MachineConstantPool::dump() const { print(dbgs()); } 740