1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 102 case P::FailsVerification: return "FailsVerification"; 103 } 104 llvm_unreachable("Invalid machine function property"); 105 } 106 107 // Pin the vtable to this file. 108 void MachineFunction::Delegate::anchor() {} 109 110 void MachineFunctionProperties::print(raw_ostream &OS) const { 111 const char *Separator = ""; 112 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 113 if (!Properties[I]) 114 continue; 115 OS << Separator << getPropertyName(static_cast<Property>(I)); 116 Separator = ", "; 117 } 118 } 119 120 //===----------------------------------------------------------------------===// 121 // MachineFunction implementation 122 //===----------------------------------------------------------------------===// 123 124 // Out-of-line virtual method. 125 MachineFunctionInfo::~MachineFunctionInfo() = default; 126 127 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 128 MBB->getParent()->DeleteMachineBasicBlock(MBB); 129 } 130 131 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 132 const Function &F) { 133 if (auto MA = F.getFnStackAlign()) 134 return MA->value(); 135 return STI->getFrameLowering()->getStackAlign().value(); 136 } 137 138 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 139 const TargetSubtargetInfo &STI, 140 unsigned FunctionNum, MachineModuleInfo &mmi) 141 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 142 FunctionNumber = FunctionNum; 143 init(); 144 } 145 146 void MachineFunction::handleInsertion(MachineInstr &MI) { 147 if (TheDelegate) 148 TheDelegate->MF_HandleInsertion(MI); 149 } 150 151 void MachineFunction::handleRemoval(MachineInstr &MI) { 152 if (TheDelegate) 153 TheDelegate->MF_HandleRemoval(MI); 154 } 155 156 void MachineFunction::init() { 157 // Assume the function starts in SSA form with correct liveness. 158 Properties.set(MachineFunctionProperties::Property::IsSSA); 159 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 160 if (STI->getRegisterInfo()) 161 RegInfo = new (Allocator) MachineRegisterInfo(this); 162 else 163 RegInfo = nullptr; 164 165 MFInfo = nullptr; 166 // We can realign the stack if the target supports it and the user hasn't 167 // explicitly asked us not to. 168 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 169 !F.hasFnAttribute("no-realign-stack"); 170 FrameInfo = new (Allocator) MachineFrameInfo( 171 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 172 /*ForcedRealign=*/CanRealignSP && 173 F.hasFnAttribute(Attribute::StackAlignment)); 174 175 if (F.hasFnAttribute(Attribute::StackAlignment)) 176 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 177 178 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 179 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 180 181 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 182 // FIXME: Use Function::hasOptSize(). 183 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 184 Alignment = std::max(Alignment, 185 STI->getTargetLowering()->getPrefFunctionAlignment()); 186 187 if (AlignAllFunctions) 188 Alignment = Align(1ULL << AlignAllFunctions); 189 190 JumpTableInfo = nullptr; 191 192 if (isFuncletEHPersonality(classifyEHPersonality( 193 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 194 WinEHInfo = new (Allocator) WinEHFuncInfo(); 195 } 196 197 if (isScopedEHPersonality(classifyEHPersonality( 198 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 199 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 200 } 201 202 assert(Target.isCompatibleDataLayout(getDataLayout()) && 203 "Can't create a MachineFunction using a Module with a " 204 "Target-incompatible DataLayout attached\n"); 205 206 PSVManager = 207 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 208 getInstrInfo())); 209 } 210 211 MachineFunction::~MachineFunction() { 212 clear(); 213 } 214 215 void MachineFunction::clear() { 216 Properties.reset(); 217 // Don't call destructors on MachineInstr and MachineOperand. All of their 218 // memory comes from the BumpPtrAllocator which is about to be purged. 219 // 220 // Do call MachineBasicBlock destructors, it contains std::vectors. 221 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 222 I->Insts.clearAndLeakNodesUnsafely(); 223 MBBNumbering.clear(); 224 225 InstructionRecycler.clear(Allocator); 226 OperandRecycler.clear(Allocator); 227 BasicBlockRecycler.clear(Allocator); 228 CodeViewAnnotations.clear(); 229 VariableDbgInfos.clear(); 230 if (RegInfo) { 231 RegInfo->~MachineRegisterInfo(); 232 Allocator.Deallocate(RegInfo); 233 } 234 if (MFInfo) { 235 MFInfo->~MachineFunctionInfo(); 236 Allocator.Deallocate(MFInfo); 237 } 238 239 FrameInfo->~MachineFrameInfo(); 240 Allocator.Deallocate(FrameInfo); 241 242 ConstantPool->~MachineConstantPool(); 243 Allocator.Deallocate(ConstantPool); 244 245 if (JumpTableInfo) { 246 JumpTableInfo->~MachineJumpTableInfo(); 247 Allocator.Deallocate(JumpTableInfo); 248 } 249 250 if (WinEHInfo) { 251 WinEHInfo->~WinEHFuncInfo(); 252 Allocator.Deallocate(WinEHInfo); 253 } 254 255 if (WasmEHInfo) { 256 WasmEHInfo->~WasmEHFuncInfo(); 257 Allocator.Deallocate(WasmEHInfo); 258 } 259 } 260 261 const DataLayout &MachineFunction::getDataLayout() const { 262 return F.getParent()->getDataLayout(); 263 } 264 265 /// Get the JumpTableInfo for this function. 266 /// If it does not already exist, allocate one. 267 MachineJumpTableInfo *MachineFunction:: 268 getOrCreateJumpTableInfo(unsigned EntryKind) { 269 if (JumpTableInfo) return JumpTableInfo; 270 271 JumpTableInfo = new (Allocator) 272 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 273 return JumpTableInfo; 274 } 275 276 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 277 return F.getDenormalMode(FPType); 278 } 279 280 /// Should we be emitting segmented stack stuff for the function 281 bool MachineFunction::shouldSplitStack() const { 282 return getFunction().hasFnAttribute("split-stack"); 283 } 284 285 LLVM_NODISCARD unsigned 286 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 287 FrameInstructions.push_back(Inst); 288 return FrameInstructions.size() - 1; 289 } 290 291 /// This discards all of the MachineBasicBlock numbers and recomputes them. 292 /// This guarantees that the MBB numbers are sequential, dense, and match the 293 /// ordering of the blocks within the function. If a specific MachineBasicBlock 294 /// is specified, only that block and those after it are renumbered. 295 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 296 if (empty()) { MBBNumbering.clear(); return; } 297 MachineFunction::iterator MBBI, E = end(); 298 if (MBB == nullptr) 299 MBBI = begin(); 300 else 301 MBBI = MBB->getIterator(); 302 303 // Figure out the block number this should have. 304 unsigned BlockNo = 0; 305 if (MBBI != begin()) 306 BlockNo = std::prev(MBBI)->getNumber() + 1; 307 308 for (; MBBI != E; ++MBBI, ++BlockNo) { 309 if (MBBI->getNumber() != (int)BlockNo) { 310 // Remove use of the old number. 311 if (MBBI->getNumber() != -1) { 312 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 313 "MBB number mismatch!"); 314 MBBNumbering[MBBI->getNumber()] = nullptr; 315 } 316 317 // If BlockNo is already taken, set that block's number to -1. 318 if (MBBNumbering[BlockNo]) 319 MBBNumbering[BlockNo]->setNumber(-1); 320 321 MBBNumbering[BlockNo] = &*MBBI; 322 MBBI->setNumber(BlockNo); 323 } 324 } 325 326 // Okay, all the blocks are renumbered. If we have compactified the block 327 // numbering, shrink MBBNumbering now. 328 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 329 MBBNumbering.resize(BlockNo); 330 } 331 332 /// This method iterates over the basic blocks and assigns their IsBeginSection 333 /// and IsEndSection fields. This must be called after MBB layout is finalized 334 /// and the SectionID's are assigned to MBBs. 335 void MachineFunction::assignBeginEndSections() { 336 front().setIsBeginSection(); 337 auto CurrentSectionID = front().getSectionID(); 338 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 339 if (MBBI->getSectionID() == CurrentSectionID) 340 continue; 341 MBBI->setIsBeginSection(); 342 std::prev(MBBI)->setIsEndSection(); 343 CurrentSectionID = MBBI->getSectionID(); 344 } 345 back().setIsEndSection(); 346 } 347 348 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 349 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 350 const DebugLoc &DL, 351 bool NoImplicit) { 352 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 353 MachineInstr(*this, MCID, DL, NoImplicit); 354 } 355 356 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 357 /// identical in all ways except the instruction has no parent, prev, or next. 358 MachineInstr * 359 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 360 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 361 MachineInstr(*this, *Orig); 362 } 363 364 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 365 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 366 MachineInstr *FirstClone = nullptr; 367 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 368 while (true) { 369 MachineInstr *Cloned = CloneMachineInstr(&*I); 370 MBB.insert(InsertBefore, Cloned); 371 if (FirstClone == nullptr) { 372 FirstClone = Cloned; 373 } else { 374 Cloned->bundleWithPred(); 375 } 376 377 if (!I->isBundledWithSucc()) 378 break; 379 ++I; 380 } 381 // Copy over call site info to the cloned instruction if needed. If Orig is in 382 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 383 // the bundle. 384 if (Orig.shouldUpdateCallSiteInfo()) 385 copyCallSiteInfo(&Orig, FirstClone); 386 return *FirstClone; 387 } 388 389 /// Delete the given MachineInstr. 390 /// 391 /// This function also serves as the MachineInstr destructor - the real 392 /// ~MachineInstr() destructor must be empty. 393 void 394 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 395 // Verify that a call site info is at valid state. This assertion should 396 // be triggered during the implementation of support for the 397 // call site info of a new architecture. If the assertion is triggered, 398 // back trace will tell where to insert a call to updateCallSiteInfo(). 399 assert((!MI->isCandidateForCallSiteEntry() || 400 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 401 "Call site info was not updated!"); 402 // Strip it for parts. The operand array and the MI object itself are 403 // independently recyclable. 404 if (MI->Operands) 405 deallocateOperandArray(MI->CapOperands, MI->Operands); 406 // Don't call ~MachineInstr() which must be trivial anyway because 407 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 408 // destructors. 409 InstructionRecycler.Deallocate(Allocator, MI); 410 } 411 412 /// Allocate a new MachineBasicBlock. Use this instead of 413 /// `new MachineBasicBlock'. 414 MachineBasicBlock * 415 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 416 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 417 MachineBasicBlock(*this, bb); 418 } 419 420 /// Delete the given MachineBasicBlock. 421 void 422 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 423 assert(MBB->getParent() == this && "MBB parent mismatch!"); 424 // Clean up any references to MBB in jump tables before deleting it. 425 if (JumpTableInfo) 426 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 427 MBB->~MachineBasicBlock(); 428 BasicBlockRecycler.Deallocate(Allocator, MBB); 429 } 430 431 MachineMemOperand *MachineFunction::getMachineMemOperand( 432 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 433 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 434 SyncScope::ID SSID, AtomicOrdering Ordering, 435 AtomicOrdering FailureOrdering) { 436 return new (Allocator) 437 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 438 SSID, Ordering, FailureOrdering); 439 } 440 441 MachineMemOperand *MachineFunction::getMachineMemOperand( 442 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 443 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 444 SyncScope::ID SSID, AtomicOrdering Ordering, 445 AtomicOrdering FailureOrdering) { 446 return new (Allocator) 447 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 448 Ordering, FailureOrdering); 449 } 450 451 MachineMemOperand *MachineFunction::getMachineMemOperand( 452 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 453 return new (Allocator) 454 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 455 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 456 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 457 } 458 459 MachineMemOperand *MachineFunction::getMachineMemOperand( 460 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 461 return new (Allocator) 462 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 463 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 464 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 465 } 466 467 MachineMemOperand * 468 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 469 int64_t Offset, LLT Ty) { 470 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 471 472 // If there is no pointer value, the offset isn't tracked so we need to adjust 473 // the base alignment. 474 Align Alignment = PtrInfo.V.isNull() 475 ? commonAlignment(MMO->getBaseAlign(), Offset) 476 : MMO->getBaseAlign(); 477 478 // Do not preserve ranges, since we don't necessarily know what the high bits 479 // are anymore. 480 return new (Allocator) MachineMemOperand( 481 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 482 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 483 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 484 } 485 486 MachineMemOperand * 487 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 488 const AAMDNodes &AAInfo) { 489 MachinePointerInfo MPI = MMO->getValue() ? 490 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 491 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 492 493 return new (Allocator) MachineMemOperand( 494 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 495 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 496 MMO->getFailureOrdering()); 497 } 498 499 MachineMemOperand * 500 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 501 MachineMemOperand::Flags Flags) { 502 return new (Allocator) MachineMemOperand( 503 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 504 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 505 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 506 } 507 508 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 509 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 510 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 511 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 512 PostInstrSymbol, HeapAllocMarker); 513 } 514 515 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 516 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 517 llvm::copy(Name, Dest); 518 Dest[Name.size()] = 0; 519 return Dest; 520 } 521 522 uint32_t *MachineFunction::allocateRegMask() { 523 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 524 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 525 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 526 memset(Mask, 0, Size * sizeof(Mask[0])); 527 return Mask; 528 } 529 530 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 531 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 532 copy(Mask, AllocMask); 533 return {AllocMask, Mask.size()}; 534 } 535 536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 537 LLVM_DUMP_METHOD void MachineFunction::dump() const { 538 print(dbgs()); 539 } 540 #endif 541 542 StringRef MachineFunction::getName() const { 543 return getFunction().getName(); 544 } 545 546 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 547 OS << "# Machine code for function " << getName() << ": "; 548 getProperties().print(OS); 549 OS << '\n'; 550 551 // Print Frame Information 552 FrameInfo->print(*this, OS); 553 554 // Print JumpTable Information 555 if (JumpTableInfo) 556 JumpTableInfo->print(OS); 557 558 // Print Constant Pool 559 ConstantPool->print(OS); 560 561 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 562 563 if (RegInfo && !RegInfo->livein_empty()) { 564 OS << "Function Live Ins: "; 565 for (MachineRegisterInfo::livein_iterator 566 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 567 OS << printReg(I->first, TRI); 568 if (I->second) 569 OS << " in " << printReg(I->second, TRI); 570 if (std::next(I) != E) 571 OS << ", "; 572 } 573 OS << '\n'; 574 } 575 576 ModuleSlotTracker MST(getFunction().getParent()); 577 MST.incorporateFunction(getFunction()); 578 for (const auto &BB : *this) { 579 OS << '\n'; 580 // If we print the whole function, print it at its most verbose level. 581 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 582 } 583 584 OS << "\n# End machine code for function " << getName() << ".\n\n"; 585 } 586 587 /// True if this function needs frame moves for debug or exceptions. 588 bool MachineFunction::needsFrameMoves() const { 589 return getMMI().hasDebugInfo() || 590 getTarget().Options.ForceDwarfFrameSection || 591 F.needsUnwindTableEntry(); 592 } 593 594 namespace llvm { 595 596 template<> 597 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 598 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 599 600 static std::string getGraphName(const MachineFunction *F) { 601 return ("CFG for '" + F->getName() + "' function").str(); 602 } 603 604 std::string getNodeLabel(const MachineBasicBlock *Node, 605 const MachineFunction *Graph) { 606 std::string OutStr; 607 { 608 raw_string_ostream OSS(OutStr); 609 610 if (isSimple()) { 611 OSS << printMBBReference(*Node); 612 if (const BasicBlock *BB = Node->getBasicBlock()) 613 OSS << ": " << BB->getName(); 614 } else 615 Node->print(OSS); 616 } 617 618 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 619 620 // Process string output to make it nicer... 621 for (unsigned i = 0; i != OutStr.length(); ++i) 622 if (OutStr[i] == '\n') { // Left justify 623 OutStr[i] = '\\'; 624 OutStr.insert(OutStr.begin()+i+1, 'l'); 625 } 626 return OutStr; 627 } 628 }; 629 630 } // end namespace llvm 631 632 void MachineFunction::viewCFG() const 633 { 634 #ifndef NDEBUG 635 ViewGraph(this, "mf" + getName()); 636 #else 637 errs() << "MachineFunction::viewCFG is only available in debug builds on " 638 << "systems with Graphviz or gv!\n"; 639 #endif // NDEBUG 640 } 641 642 void MachineFunction::viewCFGOnly() const 643 { 644 #ifndef NDEBUG 645 ViewGraph(this, "mf" + getName(), true); 646 #else 647 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 648 << "systems with Graphviz or gv!\n"; 649 #endif // NDEBUG 650 } 651 652 /// Add the specified physical register as a live-in value and 653 /// create a corresponding virtual register for it. 654 Register MachineFunction::addLiveIn(MCRegister PReg, 655 const TargetRegisterClass *RC) { 656 MachineRegisterInfo &MRI = getRegInfo(); 657 Register VReg = MRI.getLiveInVirtReg(PReg); 658 if (VReg) { 659 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 660 (void)VRegRC; 661 // A physical register can be added several times. 662 // Between two calls, the register class of the related virtual register 663 // may have been constrained to match some operation constraints. 664 // In that case, check that the current register class includes the 665 // physical register and is a sub class of the specified RC. 666 assert((VRegRC == RC || (VRegRC->contains(PReg) && 667 RC->hasSubClassEq(VRegRC))) && 668 "Register class mismatch!"); 669 return VReg; 670 } 671 VReg = MRI.createVirtualRegister(RC); 672 MRI.addLiveIn(PReg, VReg); 673 return VReg; 674 } 675 676 /// Return the MCSymbol for the specified non-empty jump table. 677 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 678 /// normal 'L' label is returned. 679 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 680 bool isLinkerPrivate) const { 681 const DataLayout &DL = getDataLayout(); 682 assert(JumpTableInfo && "No jump tables"); 683 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 684 685 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 686 : DL.getPrivateGlobalPrefix(); 687 SmallString<60> Name; 688 raw_svector_ostream(Name) 689 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 690 return Ctx.getOrCreateSymbol(Name); 691 } 692 693 /// Return a function-local symbol to represent the PIC base. 694 MCSymbol *MachineFunction::getPICBaseSymbol() const { 695 const DataLayout &DL = getDataLayout(); 696 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 697 Twine(getFunctionNumber()) + "$pb"); 698 } 699 700 /// \name Exception Handling 701 /// \{ 702 703 LandingPadInfo & 704 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 705 unsigned N = LandingPads.size(); 706 for (unsigned i = 0; i < N; ++i) { 707 LandingPadInfo &LP = LandingPads[i]; 708 if (LP.LandingPadBlock == LandingPad) 709 return LP; 710 } 711 712 LandingPads.push_back(LandingPadInfo(LandingPad)); 713 return LandingPads[N]; 714 } 715 716 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 717 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 718 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 719 LP.BeginLabels.push_back(BeginLabel); 720 LP.EndLabels.push_back(EndLabel); 721 } 722 723 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 724 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 725 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 726 LP.LandingPadLabel = LandingPadLabel; 727 728 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 729 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 730 if (const auto *PF = 731 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 732 getMMI().addPersonality(PF); 733 734 if (LPI->isCleanup()) 735 addCleanup(LandingPad); 736 737 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 738 // correct, but we need to do it this way because of how the DWARF EH 739 // emitter processes the clauses. 740 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 741 Value *Val = LPI->getClause(I - 1); 742 if (LPI->isCatch(I - 1)) { 743 addCatchTypeInfo(LandingPad, 744 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 745 } else { 746 // Add filters in a list. 747 auto *CVal = cast<Constant>(Val); 748 SmallVector<const GlobalValue *, 4> FilterList; 749 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 750 II != IE; ++II) 751 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 752 753 addFilterTypeInfo(LandingPad, FilterList); 754 } 755 } 756 757 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 758 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 759 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 760 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 761 } 762 763 } else { 764 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 765 } 766 767 return LandingPadLabel; 768 } 769 770 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 771 ArrayRef<const GlobalValue *> TyInfo) { 772 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 773 for (unsigned N = TyInfo.size(); N; --N) 774 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 775 } 776 777 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 778 ArrayRef<const GlobalValue *> TyInfo) { 779 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 780 std::vector<unsigned> IdsInFilter(TyInfo.size()); 781 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 782 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 783 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 784 } 785 786 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 787 bool TidyIfNoBeginLabels) { 788 for (unsigned i = 0; i != LandingPads.size(); ) { 789 LandingPadInfo &LandingPad = LandingPads[i]; 790 if (LandingPad.LandingPadLabel && 791 !LandingPad.LandingPadLabel->isDefined() && 792 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 793 LandingPad.LandingPadLabel = nullptr; 794 795 // Special case: we *should* emit LPs with null LP MBB. This indicates 796 // "nounwind" case. 797 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 798 LandingPads.erase(LandingPads.begin() + i); 799 continue; 800 } 801 802 if (TidyIfNoBeginLabels) { 803 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 804 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 805 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 806 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 807 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 808 continue; 809 810 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 811 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 812 --j; 813 --e; 814 } 815 816 // Remove landing pads with no try-ranges. 817 if (LandingPads[i].BeginLabels.empty()) { 818 LandingPads.erase(LandingPads.begin() + i); 819 continue; 820 } 821 } 822 823 // If there is no landing pad, ensure that the list of typeids is empty. 824 // If the only typeid is a cleanup, this is the same as having no typeids. 825 if (!LandingPad.LandingPadBlock || 826 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 827 LandingPad.TypeIds.clear(); 828 ++i; 829 } 830 } 831 832 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 833 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 834 LP.TypeIds.push_back(0); 835 } 836 837 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 838 const Function *Filter, 839 const BlockAddress *RecoverBA) { 840 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 841 SEHHandler Handler; 842 Handler.FilterOrFinally = Filter; 843 Handler.RecoverBA = RecoverBA; 844 LP.SEHHandlers.push_back(Handler); 845 } 846 847 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 848 const Function *Cleanup) { 849 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 850 SEHHandler Handler; 851 Handler.FilterOrFinally = Cleanup; 852 Handler.RecoverBA = nullptr; 853 LP.SEHHandlers.push_back(Handler); 854 } 855 856 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 857 ArrayRef<unsigned> Sites) { 858 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 859 } 860 861 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 862 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 863 if (TypeInfos[i] == TI) return i + 1; 864 865 TypeInfos.push_back(TI); 866 return TypeInfos.size(); 867 } 868 869 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 870 // If the new filter coincides with the tail of an existing filter, then 871 // re-use the existing filter. Folding filters more than this requires 872 // re-ordering filters and/or their elements - probably not worth it. 873 for (unsigned i : FilterEnds) { 874 unsigned j = TyIds.size(); 875 876 while (i && j) 877 if (FilterIds[--i] != TyIds[--j]) 878 goto try_next; 879 880 if (!j) 881 // The new filter coincides with range [i, end) of the existing filter. 882 return -(1 + i); 883 884 try_next:; 885 } 886 887 // Add the new filter. 888 int FilterID = -(1 + FilterIds.size()); 889 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 890 llvm::append_range(FilterIds, TyIds); 891 FilterEnds.push_back(FilterIds.size()); 892 FilterIds.push_back(0); // terminator 893 return FilterID; 894 } 895 896 MachineFunction::CallSiteInfoMap::iterator 897 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 898 assert(MI->isCandidateForCallSiteEntry() && 899 "Call site info refers only to call (MI) candidates"); 900 901 if (!Target.Options.EmitCallSiteInfo) 902 return CallSitesInfo.end(); 903 return CallSitesInfo.find(MI); 904 } 905 906 /// Return the call machine instruction or find a call within bundle. 907 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 908 if (!MI->isBundle()) 909 return MI; 910 911 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 912 getBundleEnd(MI->getIterator()))) 913 if (BMI.isCandidateForCallSiteEntry()) 914 return &BMI; 915 916 llvm_unreachable("Unexpected bundle without a call site candidate"); 917 } 918 919 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 920 assert(MI->shouldUpdateCallSiteInfo() && 921 "Call site info refers only to call (MI) candidates or " 922 "candidates inside bundles"); 923 924 const MachineInstr *CallMI = getCallInstr(MI); 925 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 926 if (CSIt == CallSitesInfo.end()) 927 return; 928 CallSitesInfo.erase(CSIt); 929 } 930 931 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 932 const MachineInstr *New) { 933 assert(Old->shouldUpdateCallSiteInfo() && 934 "Call site info refers only to call (MI) candidates or " 935 "candidates inside bundles"); 936 937 if (!New->isCandidateForCallSiteEntry()) 938 return eraseCallSiteInfo(Old); 939 940 const MachineInstr *OldCallMI = getCallInstr(Old); 941 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 942 if (CSIt == CallSitesInfo.end()) 943 return; 944 945 CallSiteInfo CSInfo = CSIt->second; 946 CallSitesInfo[New] = CSInfo; 947 } 948 949 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 950 const MachineInstr *New) { 951 assert(Old->shouldUpdateCallSiteInfo() && 952 "Call site info refers only to call (MI) candidates or " 953 "candidates inside bundles"); 954 955 if (!New->isCandidateForCallSiteEntry()) 956 return eraseCallSiteInfo(Old); 957 958 const MachineInstr *OldCallMI = getCallInstr(Old); 959 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 960 if (CSIt == CallSitesInfo.end()) 961 return; 962 963 CallSiteInfo CSInfo = std::move(CSIt->second); 964 CallSitesInfo.erase(CSIt); 965 CallSitesInfo[New] = CSInfo; 966 } 967 968 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 969 DebugInstrNumberingCount = Num; 970 } 971 972 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 973 DebugInstrOperandPair B, 974 unsigned Subreg) { 975 // Catch any accidental self-loops. 976 assert(A.first != B.first); 977 DebugValueSubstitutions.push_back({A, B, Subreg}); 978 } 979 980 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 981 MachineInstr &New, 982 unsigned MaxOperand) { 983 // If the Old instruction wasn't tracked at all, there is no work to do. 984 unsigned OldInstrNum = Old.peekDebugInstrNum(); 985 if (!OldInstrNum) 986 return; 987 988 // Iterate over all operands looking for defs to create substitutions for. 989 // Avoid creating new instr numbers unless we create a new substitution. 990 // While this has no functional effect, it risks confusing someone reading 991 // MIR output. 992 // Examine all the operands, or the first N specified by the caller. 993 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 994 for (unsigned int I = 0; I < MaxOperand; ++I) { 995 const auto &OldMO = Old.getOperand(I); 996 auto &NewMO = New.getOperand(I); 997 (void)NewMO; 998 999 if (!OldMO.isReg() || !OldMO.isDef()) 1000 continue; 1001 assert(NewMO.isDef()); 1002 1003 unsigned NewInstrNum = New.getDebugInstrNum(); 1004 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1005 std::make_pair(NewInstrNum, I)); 1006 } 1007 } 1008 1009 auto MachineFunction::salvageCopySSA(MachineInstr &MI) 1010 -> DebugInstrOperandPair { 1011 MachineRegisterInfo &MRI = getRegInfo(); 1012 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1013 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1014 1015 // Chase the value read by a copy-like instruction back to the instruction 1016 // that ultimately _defines_ that value. This may pass: 1017 // * Through multiple intermediate copies, including subregister moves / 1018 // copies, 1019 // * Copies from physical registers that must then be traced back to the 1020 // defining instruction, 1021 // * Or, physical registers may be live-in to (only) the entry block, which 1022 // requires a DBG_PHI to be created. 1023 // We can pursue this problem in that order: trace back through copies, 1024 // optionally through a physical register, to a defining instruction. We 1025 // should never move from physreg to vreg. As we're still in SSA form, no need 1026 // to worry about partial definitions of registers. 1027 1028 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1029 // returns the register read and any subregister identifying which part is 1030 // read. 1031 auto GetRegAndSubreg = 1032 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1033 Register NewReg, OldReg; 1034 unsigned SubReg; 1035 if (Cpy.isCopy()) { 1036 OldReg = Cpy.getOperand(0).getReg(); 1037 NewReg = Cpy.getOperand(1).getReg(); 1038 SubReg = Cpy.getOperand(1).getSubReg(); 1039 } else if (Cpy.isSubregToReg()) { 1040 OldReg = Cpy.getOperand(0).getReg(); 1041 NewReg = Cpy.getOperand(2).getReg(); 1042 SubReg = Cpy.getOperand(3).getImm(); 1043 } else { 1044 auto CopyDetails = *TII.isCopyInstr(Cpy); 1045 const MachineOperand &Src = *CopyDetails.Source; 1046 const MachineOperand &Dest = *CopyDetails.Destination; 1047 OldReg = Dest.getReg(); 1048 NewReg = Src.getReg(); 1049 SubReg = Src.getSubReg(); 1050 } 1051 1052 return {NewReg, SubReg}; 1053 }; 1054 1055 // First seek either the defining instruction, or a copy from a physreg. 1056 // During search, the current state is the current copy instruction, and which 1057 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1058 // deal with those later. 1059 auto State = GetRegAndSubreg(MI); 1060 auto CurInst = MI.getIterator(); 1061 SmallVector<unsigned, 4> SubregsSeen; 1062 while (true) { 1063 // If we've found a copy from a physreg, first portion of search is over. 1064 if (!State.first.isVirtual()) 1065 break; 1066 1067 // Record any subregister qualifier. 1068 if (State.second) 1069 SubregsSeen.push_back(State.second); 1070 1071 assert(MRI.hasOneDef(State.first)); 1072 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1073 CurInst = Inst.getIterator(); 1074 1075 // Any non-copy instruction is the defining instruction we're seeking. 1076 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1077 break; 1078 State = GetRegAndSubreg(Inst); 1079 }; 1080 1081 // Helper lambda to apply additional subregister substitutions to a known 1082 // instruction/operand pair. Adds new (fake) substitutions so that we can 1083 // record the subregister. FIXME: this isn't very space efficient if multiple 1084 // values are tracked back through the same copies; cache something later. 1085 auto ApplySubregisters = 1086 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1087 for (unsigned Subreg : reverse(SubregsSeen)) { 1088 // Fetch a new instruction number, not attached to an actual instruction. 1089 unsigned NewInstrNumber = getNewDebugInstrNum(); 1090 // Add a substitution from the "new" number to the known one, with a 1091 // qualifying subreg. 1092 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1093 // Return the new number; to find the underlying value, consumers need to 1094 // deal with the qualifying subreg. 1095 P = {NewInstrNumber, 0}; 1096 } 1097 return P; 1098 }; 1099 1100 // If we managed to find the defining instruction after COPYs, return an 1101 // instruction / operand pair after adding subregister qualifiers. 1102 if (State.first.isVirtual()) { 1103 // Virtual register def -- we can just look up where this happens. 1104 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1105 for (auto &MO : Inst->operands()) { 1106 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1107 continue; 1108 return ApplySubregisters( 1109 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1110 } 1111 1112 llvm_unreachable("Vreg def with no corresponding operand?"); 1113 } 1114 1115 // Our search ended in a copy from a physreg: walk back up the function 1116 // looking for whatever defines the physreg. 1117 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1118 State = GetRegAndSubreg(*CurInst); 1119 Register RegToSeek = State.first; 1120 1121 auto RMII = CurInst->getReverseIterator(); 1122 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1123 for (auto &ToExamine : PrevInstrs) { 1124 for (auto &MO : ToExamine.operands()) { 1125 // Test for operand that defines something aliasing RegToSeek. 1126 if (!MO.isReg() || !MO.isDef() || 1127 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1128 continue; 1129 1130 return ApplySubregisters( 1131 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1132 } 1133 } 1134 1135 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1136 1137 // We reached the start of the block before finding a defining instruction. 1138 // It could be from a constant register, otherwise it must be an argument. 1139 if (TRI.isConstantPhysReg(State.first)) { 1140 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't 1141 // matter where we put it, as it's constant valued. 1142 assert(CurInst->isCopy()); 1143 } else if (State.first == TRI.getFrameRegister(*this)) { 1144 // LLVM IR is allowed to read the framepointer by calling a 1145 // llvm.frameaddress.* intrinsic. We can support this by emitting a 1146 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / 1147 // position that DBG_PHIs appear at, limiting what can be done later. 1148 // TODO: see if there's a better way of expressing these variable 1149 // locations. 1150 ; 1151 } else { 1152 // Assert that this is the entry block, or an EH pad. If it isn't, then 1153 // there is some code construct we don't recognise that deals with physregs 1154 // across blocks. 1155 assert(!State.first.isVirtual()); 1156 assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad()); 1157 } 1158 1159 // Create DBG_PHI for specified physreg. 1160 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1161 TII.get(TargetOpcode::DBG_PHI)); 1162 Builder.addReg(State.first); 1163 unsigned NewNum = getNewDebugInstrNum(); 1164 Builder.addImm(NewNum); 1165 return ApplySubregisters({NewNum, 0u}); 1166 } 1167 1168 void MachineFunction::finalizeDebugInstrRefs() { 1169 auto *TII = getSubtarget().getInstrInfo(); 1170 1171 auto MakeDbgValue = [&](MachineInstr &MI) { 1172 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1173 MI.setDesc(RefII); 1174 MI.getOperand(1).ChangeToRegister(0, false); 1175 }; 1176 1177 if (!useDebugInstrRef()) 1178 return; 1179 1180 for (auto &MBB : *this) { 1181 for (auto &MI : MBB) { 1182 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1183 continue; 1184 1185 Register Reg = MI.getOperand(0).getReg(); 1186 1187 // Some vregs can be deleted as redundant in the meantime. Mark those 1188 // as DBG_VALUE $noreg. 1189 if (Reg == 0) { 1190 MakeDbgValue(MI); 1191 continue; 1192 } 1193 1194 assert(Reg.isVirtual()); 1195 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1196 assert(RegInfo->hasOneDef(Reg)); 1197 1198 // If we've found a copy-like instruction, follow it back to the 1199 // instruction that defines the source value, see salvageCopySSA docs 1200 // for why this is important. 1201 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1202 auto Result = salvageCopySSA(DefMI); 1203 MI.getOperand(0).ChangeToImmediate(Result.first); 1204 MI.getOperand(1).setImm(Result.second); 1205 } else { 1206 // Otherwise, identify the operand number that the VReg refers to. 1207 unsigned OperandIdx = 0; 1208 for (const auto &MO : DefMI.operands()) { 1209 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1210 break; 1211 ++OperandIdx; 1212 } 1213 assert(OperandIdx < DefMI.getNumOperands()); 1214 1215 // Morph this instr ref to point at the given instruction and operand. 1216 unsigned ID = DefMI.getDebugInstrNum(); 1217 MI.getOperand(0).ChangeToImmediate(ID); 1218 MI.getOperand(1).setImm(OperandIdx); 1219 } 1220 } 1221 } 1222 } 1223 1224 bool MachineFunction::useDebugInstrRef() const { 1225 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1226 // have optimized code inlined into this unoptimized code, however with 1227 // fewer and less aggressive optimizations happening, coverage and accuracy 1228 // should not suffer. 1229 if (getTarget().getOptLevel() == CodeGenOpt::None) 1230 return false; 1231 1232 // Don't use instr-ref if this function is marked optnone. 1233 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1234 return false; 1235 1236 if (getTarget().Options.ValueTrackingVariableLocations) 1237 return true; 1238 1239 return false; 1240 } 1241 1242 /// \} 1243 1244 //===----------------------------------------------------------------------===// 1245 // MachineJumpTableInfo implementation 1246 //===----------------------------------------------------------------------===// 1247 1248 /// Return the size of each entry in the jump table. 1249 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1250 // The size of a jump table entry is 4 bytes unless the entry is just the 1251 // address of a block, in which case it is the pointer size. 1252 switch (getEntryKind()) { 1253 case MachineJumpTableInfo::EK_BlockAddress: 1254 return TD.getPointerSize(); 1255 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1256 return 8; 1257 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1258 case MachineJumpTableInfo::EK_LabelDifference32: 1259 case MachineJumpTableInfo::EK_Custom32: 1260 return 4; 1261 case MachineJumpTableInfo::EK_Inline: 1262 return 0; 1263 } 1264 llvm_unreachable("Unknown jump table encoding!"); 1265 } 1266 1267 /// Return the alignment of each entry in the jump table. 1268 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1269 // The alignment of a jump table entry is the alignment of int32 unless the 1270 // entry is just the address of a block, in which case it is the pointer 1271 // alignment. 1272 switch (getEntryKind()) { 1273 case MachineJumpTableInfo::EK_BlockAddress: 1274 return TD.getPointerABIAlignment(0).value(); 1275 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1276 return TD.getABIIntegerTypeAlignment(64).value(); 1277 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1278 case MachineJumpTableInfo::EK_LabelDifference32: 1279 case MachineJumpTableInfo::EK_Custom32: 1280 return TD.getABIIntegerTypeAlignment(32).value(); 1281 case MachineJumpTableInfo::EK_Inline: 1282 return 1; 1283 } 1284 llvm_unreachable("Unknown jump table encoding!"); 1285 } 1286 1287 /// Create a new jump table entry in the jump table info. 1288 unsigned MachineJumpTableInfo::createJumpTableIndex( 1289 const std::vector<MachineBasicBlock*> &DestBBs) { 1290 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1291 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1292 return JumpTables.size()-1; 1293 } 1294 1295 /// If Old is the target of any jump tables, update the jump tables to branch 1296 /// to New instead. 1297 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1298 MachineBasicBlock *New) { 1299 assert(Old != New && "Not making a change?"); 1300 bool MadeChange = false; 1301 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1302 ReplaceMBBInJumpTable(i, Old, New); 1303 return MadeChange; 1304 } 1305 1306 /// If MBB is present in any jump tables, remove it. 1307 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1308 bool MadeChange = false; 1309 for (MachineJumpTableEntry &JTE : JumpTables) { 1310 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1311 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1312 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1313 } 1314 return MadeChange; 1315 } 1316 1317 /// If Old is a target of the jump tables, update the jump table to branch to 1318 /// New instead. 1319 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1320 MachineBasicBlock *Old, 1321 MachineBasicBlock *New) { 1322 assert(Old != New && "Not making a change?"); 1323 bool MadeChange = false; 1324 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1325 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1326 if (JTE.MBBs[j] == Old) { 1327 JTE.MBBs[j] = New; 1328 MadeChange = true; 1329 } 1330 return MadeChange; 1331 } 1332 1333 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1334 if (JumpTables.empty()) return; 1335 1336 OS << "Jump Tables:\n"; 1337 1338 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1339 OS << printJumpTableEntryReference(i) << ':'; 1340 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1341 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1342 if (i != e) 1343 OS << '\n'; 1344 } 1345 1346 OS << '\n'; 1347 } 1348 1349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1350 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1351 #endif 1352 1353 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1354 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1355 } 1356 1357 //===----------------------------------------------------------------------===// 1358 // MachineConstantPool implementation 1359 //===----------------------------------------------------------------------===// 1360 1361 void MachineConstantPoolValue::anchor() {} 1362 1363 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1364 return DL.getTypeAllocSize(Ty); 1365 } 1366 1367 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1368 if (isMachineConstantPoolEntry()) 1369 return Val.MachineCPVal->getSizeInBytes(DL); 1370 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1371 } 1372 1373 bool MachineConstantPoolEntry::needsRelocation() const { 1374 if (isMachineConstantPoolEntry()) 1375 return true; 1376 return Val.ConstVal->needsDynamicRelocation(); 1377 } 1378 1379 SectionKind 1380 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1381 if (needsRelocation()) 1382 return SectionKind::getReadOnlyWithRel(); 1383 switch (getSizeInBytes(*DL)) { 1384 case 4: 1385 return SectionKind::getMergeableConst4(); 1386 case 8: 1387 return SectionKind::getMergeableConst8(); 1388 case 16: 1389 return SectionKind::getMergeableConst16(); 1390 case 32: 1391 return SectionKind::getMergeableConst32(); 1392 default: 1393 return SectionKind::getReadOnly(); 1394 } 1395 } 1396 1397 MachineConstantPool::~MachineConstantPool() { 1398 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1399 // so keep track of which we've deleted to avoid double deletions. 1400 DenseSet<MachineConstantPoolValue*> Deleted; 1401 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1402 if (Constants[i].isMachineConstantPoolEntry()) { 1403 Deleted.insert(Constants[i].Val.MachineCPVal); 1404 delete Constants[i].Val.MachineCPVal; 1405 } 1406 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1407 if (Deleted.count(CPV) == 0) 1408 delete CPV; 1409 } 1410 } 1411 1412 /// Test whether the given two constants can be allocated the same constant pool 1413 /// entry. 1414 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1415 const DataLayout &DL) { 1416 // Handle the trivial case quickly. 1417 if (A == B) return true; 1418 1419 // If they have the same type but weren't the same constant, quickly 1420 // reject them. 1421 if (A->getType() == B->getType()) return false; 1422 1423 // We can't handle structs or arrays. 1424 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1425 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1426 return false; 1427 1428 // For now, only support constants with the same size. 1429 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1430 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1431 return false; 1432 1433 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1434 1435 // Try constant folding a bitcast of both instructions to an integer. If we 1436 // get two identical ConstantInt's, then we are good to share them. We use 1437 // the constant folding APIs to do this so that we get the benefit of 1438 // DataLayout. 1439 if (isa<PointerType>(A->getType())) 1440 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1441 const_cast<Constant *>(A), IntTy, DL); 1442 else if (A->getType() != IntTy) 1443 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1444 IntTy, DL); 1445 if (isa<PointerType>(B->getType())) 1446 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1447 const_cast<Constant *>(B), IntTy, DL); 1448 else if (B->getType() != IntTy) 1449 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1450 IntTy, DL); 1451 1452 return A == B; 1453 } 1454 1455 /// Create a new entry in the constant pool or return an existing one. 1456 /// User must specify the log2 of the minimum required alignment for the object. 1457 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1458 Align Alignment) { 1459 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1460 1461 // Check to see if we already have this constant. 1462 // 1463 // FIXME, this could be made much more efficient for large constant pools. 1464 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1465 if (!Constants[i].isMachineConstantPoolEntry() && 1466 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1467 if (Constants[i].getAlign() < Alignment) 1468 Constants[i].Alignment = Alignment; 1469 return i; 1470 } 1471 1472 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1473 return Constants.size()-1; 1474 } 1475 1476 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1477 Align Alignment) { 1478 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1479 1480 // Check to see if we already have this constant. 1481 // 1482 // FIXME, this could be made much more efficient for large constant pools. 1483 int Idx = V->getExistingMachineCPValue(this, Alignment); 1484 if (Idx != -1) { 1485 MachineCPVsSharingEntries.insert(V); 1486 return (unsigned)Idx; 1487 } 1488 1489 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1490 return Constants.size()-1; 1491 } 1492 1493 void MachineConstantPool::print(raw_ostream &OS) const { 1494 if (Constants.empty()) return; 1495 1496 OS << "Constant Pool:\n"; 1497 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1498 OS << " cp#" << i << ": "; 1499 if (Constants[i].isMachineConstantPoolEntry()) 1500 Constants[i].Val.MachineCPVal->print(OS); 1501 else 1502 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1503 OS << ", align=" << Constants[i].getAlign().value(); 1504 OS << "\n"; 1505 } 1506 } 1507 1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1509 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1510 #endif 1511