1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 /// Should we be emitting segmented stack stuff for the function 274 bool MachineFunction::shouldSplitStack() const { 275 return getFunction().hasFnAttribute("split-stack"); 276 } 277 278 LLVM_NODISCARD unsigned 279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 280 FrameInstructions.push_back(Inst); 281 return FrameInstructions.size() - 1; 282 } 283 284 /// This discards all of the MachineBasicBlock numbers and recomputes them. 285 /// This guarantees that the MBB numbers are sequential, dense, and match the 286 /// ordering of the blocks within the function. If a specific MachineBasicBlock 287 /// is specified, only that block and those after it are renumbered. 288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 289 if (empty()) { MBBNumbering.clear(); return; } 290 MachineFunction::iterator MBBI, E = end(); 291 if (MBB == nullptr) 292 MBBI = begin(); 293 else 294 MBBI = MBB->getIterator(); 295 296 // Figure out the block number this should have. 297 unsigned BlockNo = 0; 298 if (MBBI != begin()) 299 BlockNo = std::prev(MBBI)->getNumber() + 1; 300 301 for (; MBBI != E; ++MBBI, ++BlockNo) { 302 if (MBBI->getNumber() != (int)BlockNo) { 303 // Remove use of the old number. 304 if (MBBI->getNumber() != -1) { 305 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 306 "MBB number mismatch!"); 307 MBBNumbering[MBBI->getNumber()] = nullptr; 308 } 309 310 // If BlockNo is already taken, set that block's number to -1. 311 if (MBBNumbering[BlockNo]) 312 MBBNumbering[BlockNo]->setNumber(-1); 313 314 MBBNumbering[BlockNo] = &*MBBI; 315 MBBI->setNumber(BlockNo); 316 } 317 } 318 319 // Okay, all the blocks are renumbered. If we have compactified the block 320 // numbering, shrink MBBNumbering now. 321 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 322 MBBNumbering.resize(BlockNo); 323 } 324 325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 327 const DebugLoc &DL, 328 bool NoImp) { 329 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 330 MachineInstr(*this, MCID, DL, NoImp); 331 } 332 333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 334 /// identical in all ways except the instruction has no parent, prev, or next. 335 MachineInstr * 336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 337 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 338 MachineInstr(*this, *Orig); 339 } 340 341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 342 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 343 MachineInstr *FirstClone = nullptr; 344 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 345 while (true) { 346 MachineInstr *Cloned = CloneMachineInstr(&*I); 347 MBB.insert(InsertBefore, Cloned); 348 if (FirstClone == nullptr) { 349 FirstClone = Cloned; 350 } else { 351 Cloned->bundleWithPred(); 352 } 353 354 if (!I->isBundledWithSucc()) 355 break; 356 ++I; 357 } 358 return *FirstClone; 359 } 360 361 /// Delete the given MachineInstr. 362 /// 363 /// This function also serves as the MachineInstr destructor - the real 364 /// ~MachineInstr() destructor must be empty. 365 void 366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 367 // Verify that a call site info is at valid state. This assertion should 368 // be triggered during the implementation of support for the 369 // call site info of a new architecture. If the assertion is triggered, 370 // back trace will tell where to insert a call to updateCallSiteInfo(). 371 assert((!MI->isCall(MachineInstr::IgnoreBundle) || 372 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 373 "Call site info was not updated!"); 374 // Strip it for parts. The operand array and the MI object itself are 375 // independently recyclable. 376 if (MI->Operands) 377 deallocateOperandArray(MI->CapOperands, MI->Operands); 378 // Don't call ~MachineInstr() which must be trivial anyway because 379 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 380 // destructors. 381 InstructionRecycler.Deallocate(Allocator, MI); 382 } 383 384 /// Allocate a new MachineBasicBlock. Use this instead of 385 /// `new MachineBasicBlock'. 386 MachineBasicBlock * 387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 388 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 389 MachineBasicBlock(*this, bb); 390 } 391 392 /// Delete the given MachineBasicBlock. 393 void 394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 395 assert(MBB->getParent() == this && "MBB parent mismatch!"); 396 MBB->~MachineBasicBlock(); 397 BasicBlockRecycler.Deallocate(Allocator, MBB); 398 } 399 400 MachineMemOperand *MachineFunction::getMachineMemOperand( 401 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 402 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 403 SyncScope::ID SSID, AtomicOrdering Ordering, 404 AtomicOrdering FailureOrdering) { 405 return new (Allocator) 406 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 407 SSID, Ordering, FailureOrdering); 408 } 409 410 MachineMemOperand * 411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 412 int64_t Offset, uint64_t Size) { 413 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 414 415 // If there is no pointer value, the offset isn't tracked so we need to adjust 416 // the base alignment. 417 unsigned Align = PtrInfo.V.isNull() 418 ? MinAlign(MMO->getBaseAlignment(), Offset) 419 : MMO->getBaseAlignment(); 420 421 return new (Allocator) 422 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 423 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 424 MMO->getOrdering(), MMO->getFailureOrdering()); 425 } 426 427 MachineMemOperand * 428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 429 const AAMDNodes &AAInfo) { 430 MachinePointerInfo MPI = MMO->getValue() ? 431 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 432 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 433 434 return new (Allocator) 435 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 436 MMO->getBaseAlignment(), AAInfo, 437 MMO->getRanges(), MMO->getSyncScopeID(), 438 MMO->getOrdering(), MMO->getFailureOrdering()); 439 } 440 441 MachineMemOperand * 442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 443 MachineMemOperand::Flags Flags) { 444 return new (Allocator) MachineMemOperand( 445 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 446 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 447 MMO->getOrdering(), MMO->getFailureOrdering()); 448 } 449 450 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 451 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 452 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 453 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 454 PostInstrSymbol, HeapAllocMarker); 455 } 456 457 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 458 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 459 llvm::copy(Name, Dest); 460 Dest[Name.size()] = 0; 461 return Dest; 462 } 463 464 uint32_t *MachineFunction::allocateRegMask() { 465 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 466 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 467 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 468 memset(Mask, 0, Size * sizeof(Mask[0])); 469 return Mask; 470 } 471 472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 473 LLVM_DUMP_METHOD void MachineFunction::dump() const { 474 print(dbgs()); 475 } 476 #endif 477 478 StringRef MachineFunction::getName() const { 479 return getFunction().getName(); 480 } 481 482 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 483 OS << "# Machine code for function " << getName() << ": "; 484 getProperties().print(OS); 485 OS << '\n'; 486 487 // Print Frame Information 488 FrameInfo->print(*this, OS); 489 490 // Print JumpTable Information 491 if (JumpTableInfo) 492 JumpTableInfo->print(OS); 493 494 // Print Constant Pool 495 ConstantPool->print(OS); 496 497 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 498 499 if (RegInfo && !RegInfo->livein_empty()) { 500 OS << "Function Live Ins: "; 501 for (MachineRegisterInfo::livein_iterator 502 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 503 OS << printReg(I->first, TRI); 504 if (I->second) 505 OS << " in " << printReg(I->second, TRI); 506 if (std::next(I) != E) 507 OS << ", "; 508 } 509 OS << '\n'; 510 } 511 512 ModuleSlotTracker MST(getFunction().getParent()); 513 MST.incorporateFunction(getFunction()); 514 for (const auto &BB : *this) { 515 OS << '\n'; 516 // If we print the whole function, print it at its most verbose level. 517 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 518 } 519 520 OS << "\n# End machine code for function " << getName() << ".\n\n"; 521 } 522 523 /// True if this function needs frame moves for debug or exceptions. 524 bool MachineFunction::needsFrameMoves() const { 525 return getMMI().hasDebugInfo() || 526 getTarget().Options.ForceDwarfFrameSection || 527 F.needsUnwindTableEntry(); 528 } 529 530 namespace llvm { 531 532 template<> 533 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 534 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 535 536 static std::string getGraphName(const MachineFunction *F) { 537 return ("CFG for '" + F->getName() + "' function").str(); 538 } 539 540 std::string getNodeLabel(const MachineBasicBlock *Node, 541 const MachineFunction *Graph) { 542 std::string OutStr; 543 { 544 raw_string_ostream OSS(OutStr); 545 546 if (isSimple()) { 547 OSS << printMBBReference(*Node); 548 if (const BasicBlock *BB = Node->getBasicBlock()) 549 OSS << ": " << BB->getName(); 550 } else 551 Node->print(OSS); 552 } 553 554 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 555 556 // Process string output to make it nicer... 557 for (unsigned i = 0; i != OutStr.length(); ++i) 558 if (OutStr[i] == '\n') { // Left justify 559 OutStr[i] = '\\'; 560 OutStr.insert(OutStr.begin()+i+1, 'l'); 561 } 562 return OutStr; 563 } 564 }; 565 566 } // end namespace llvm 567 568 void MachineFunction::viewCFG() const 569 { 570 #ifndef NDEBUG 571 ViewGraph(this, "mf" + getName()); 572 #else 573 errs() << "MachineFunction::viewCFG is only available in debug builds on " 574 << "systems with Graphviz or gv!\n"; 575 #endif // NDEBUG 576 } 577 578 void MachineFunction::viewCFGOnly() const 579 { 580 #ifndef NDEBUG 581 ViewGraph(this, "mf" + getName(), true); 582 #else 583 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 584 << "systems with Graphviz or gv!\n"; 585 #endif // NDEBUG 586 } 587 588 /// Add the specified physical register as a live-in value and 589 /// create a corresponding virtual register for it. 590 unsigned MachineFunction::addLiveIn(unsigned PReg, 591 const TargetRegisterClass *RC) { 592 MachineRegisterInfo &MRI = getRegInfo(); 593 unsigned VReg = MRI.getLiveInVirtReg(PReg); 594 if (VReg) { 595 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 596 (void)VRegRC; 597 // A physical register can be added several times. 598 // Between two calls, the register class of the related virtual register 599 // may have been constrained to match some operation constraints. 600 // In that case, check that the current register class includes the 601 // physical register and is a sub class of the specified RC. 602 assert((VRegRC == RC || (VRegRC->contains(PReg) && 603 RC->hasSubClassEq(VRegRC))) && 604 "Register class mismatch!"); 605 return VReg; 606 } 607 VReg = MRI.createVirtualRegister(RC); 608 MRI.addLiveIn(PReg, VReg); 609 return VReg; 610 } 611 612 /// Return the MCSymbol for the specified non-empty jump table. 613 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 614 /// normal 'L' label is returned. 615 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 616 bool isLinkerPrivate) const { 617 const DataLayout &DL = getDataLayout(); 618 assert(JumpTableInfo && "No jump tables"); 619 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 620 621 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 622 : DL.getPrivateGlobalPrefix(); 623 SmallString<60> Name; 624 raw_svector_ostream(Name) 625 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 626 return Ctx.getOrCreateSymbol(Name); 627 } 628 629 /// Return a function-local symbol to represent the PIC base. 630 MCSymbol *MachineFunction::getPICBaseSymbol() const { 631 const DataLayout &DL = getDataLayout(); 632 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 633 Twine(getFunctionNumber()) + "$pb"); 634 } 635 636 /// \name Exception Handling 637 /// \{ 638 639 LandingPadInfo & 640 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 641 unsigned N = LandingPads.size(); 642 for (unsigned i = 0; i < N; ++i) { 643 LandingPadInfo &LP = LandingPads[i]; 644 if (LP.LandingPadBlock == LandingPad) 645 return LP; 646 } 647 648 LandingPads.push_back(LandingPadInfo(LandingPad)); 649 return LandingPads[N]; 650 } 651 652 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 653 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 654 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 655 LP.BeginLabels.push_back(BeginLabel); 656 LP.EndLabels.push_back(EndLabel); 657 } 658 659 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 660 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 661 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 662 LP.LandingPadLabel = LandingPadLabel; 663 664 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 665 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 666 if (const auto *PF = 667 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 668 getMMI().addPersonality(PF); 669 670 if (LPI->isCleanup()) 671 addCleanup(LandingPad); 672 673 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 674 // correct, but we need to do it this way because of how the DWARF EH 675 // emitter processes the clauses. 676 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 677 Value *Val = LPI->getClause(I - 1); 678 if (LPI->isCatch(I - 1)) { 679 addCatchTypeInfo(LandingPad, 680 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 681 } else { 682 // Add filters in a list. 683 auto *CVal = cast<Constant>(Val); 684 SmallVector<const GlobalValue *, 4> FilterList; 685 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 686 II != IE; ++II) 687 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 688 689 addFilterTypeInfo(LandingPad, FilterList); 690 } 691 } 692 693 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 694 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 695 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 696 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 697 } 698 699 } else { 700 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 701 } 702 703 return LandingPadLabel; 704 } 705 706 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 707 ArrayRef<const GlobalValue *> TyInfo) { 708 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 709 for (unsigned N = TyInfo.size(); N; --N) 710 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 711 } 712 713 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 714 ArrayRef<const GlobalValue *> TyInfo) { 715 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 716 std::vector<unsigned> IdsInFilter(TyInfo.size()); 717 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 718 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 719 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 720 } 721 722 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 723 bool TidyIfNoBeginLabels) { 724 for (unsigned i = 0; i != LandingPads.size(); ) { 725 LandingPadInfo &LandingPad = LandingPads[i]; 726 if (LandingPad.LandingPadLabel && 727 !LandingPad.LandingPadLabel->isDefined() && 728 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 729 LandingPad.LandingPadLabel = nullptr; 730 731 // Special case: we *should* emit LPs with null LP MBB. This indicates 732 // "nounwind" case. 733 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 734 LandingPads.erase(LandingPads.begin() + i); 735 continue; 736 } 737 738 if (TidyIfNoBeginLabels) { 739 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 740 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 741 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 742 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 743 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 744 continue; 745 746 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 747 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 748 --j; 749 --e; 750 } 751 752 // Remove landing pads with no try-ranges. 753 if (LandingPads[i].BeginLabels.empty()) { 754 LandingPads.erase(LandingPads.begin() + i); 755 continue; 756 } 757 } 758 759 // If there is no landing pad, ensure that the list of typeids is empty. 760 // If the only typeid is a cleanup, this is the same as having no typeids. 761 if (!LandingPad.LandingPadBlock || 762 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 763 LandingPad.TypeIds.clear(); 764 ++i; 765 } 766 } 767 768 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 769 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 770 LP.TypeIds.push_back(0); 771 } 772 773 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 774 const Function *Filter, 775 const BlockAddress *RecoverBA) { 776 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 777 SEHHandler Handler; 778 Handler.FilterOrFinally = Filter; 779 Handler.RecoverBA = RecoverBA; 780 LP.SEHHandlers.push_back(Handler); 781 } 782 783 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 784 const Function *Cleanup) { 785 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 786 SEHHandler Handler; 787 Handler.FilterOrFinally = Cleanup; 788 Handler.RecoverBA = nullptr; 789 LP.SEHHandlers.push_back(Handler); 790 } 791 792 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 793 ArrayRef<unsigned> Sites) { 794 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 795 } 796 797 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 798 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 799 if (TypeInfos[i] == TI) return i + 1; 800 801 TypeInfos.push_back(TI); 802 return TypeInfos.size(); 803 } 804 805 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 806 // If the new filter coincides with the tail of an existing filter, then 807 // re-use the existing filter. Folding filters more than this requires 808 // re-ordering filters and/or their elements - probably not worth it. 809 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 810 E = FilterEnds.end(); I != E; ++I) { 811 unsigned i = *I, j = TyIds.size(); 812 813 while (i && j) 814 if (FilterIds[--i] != TyIds[--j]) 815 goto try_next; 816 817 if (!j) 818 // The new filter coincides with range [i, end) of the existing filter. 819 return -(1 + i); 820 821 try_next:; 822 } 823 824 // Add the new filter. 825 int FilterID = -(1 + FilterIds.size()); 826 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 827 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 828 FilterEnds.push_back(FilterIds.size()); 829 FilterIds.push_back(0); // terminator 830 return FilterID; 831 } 832 833 MachineFunction::CallSiteInfoMap::iterator 834 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 835 assert(MI->isCall() && "Call site info refers only to call instructions!"); 836 837 if (!Target.Options.EnableDebugEntryValues) 838 return CallSitesInfo.end(); 839 return CallSitesInfo.find(MI); 840 } 841 842 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 843 const MachineInstr *New) { 844 assert(New->isCall() && "Call site info refers only to call instructions!"); 845 846 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 847 if (CSIt == CallSitesInfo.end()) 848 return; 849 850 CallSiteInfo CSInfo = std::move(CSIt->second); 851 CallSitesInfo.erase(CSIt); 852 CallSitesInfo[New] = CSInfo; 853 } 854 855 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 856 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI); 857 if (CSIt == CallSitesInfo.end()) 858 return; 859 CallSitesInfo.erase(CSIt); 860 } 861 862 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 863 const MachineInstr *New) { 864 assert(New->isCall() && "Call site info refers only to call instructions!"); 865 866 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 867 if (CSIt == CallSitesInfo.end()) 868 return; 869 870 CallSiteInfo CSInfo = CSIt->second; 871 CallSitesInfo[New] = CSInfo; 872 } 873 874 /// \} 875 876 //===----------------------------------------------------------------------===// 877 // MachineJumpTableInfo implementation 878 //===----------------------------------------------------------------------===// 879 880 /// Return the size of each entry in the jump table. 881 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 882 // The size of a jump table entry is 4 bytes unless the entry is just the 883 // address of a block, in which case it is the pointer size. 884 switch (getEntryKind()) { 885 case MachineJumpTableInfo::EK_BlockAddress: 886 return TD.getPointerSize(); 887 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 888 return 8; 889 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 890 case MachineJumpTableInfo::EK_LabelDifference32: 891 case MachineJumpTableInfo::EK_Custom32: 892 return 4; 893 case MachineJumpTableInfo::EK_Inline: 894 return 0; 895 } 896 llvm_unreachable("Unknown jump table encoding!"); 897 } 898 899 /// Return the alignment of each entry in the jump table. 900 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 901 // The alignment of a jump table entry is the alignment of int32 unless the 902 // entry is just the address of a block, in which case it is the pointer 903 // alignment. 904 switch (getEntryKind()) { 905 case MachineJumpTableInfo::EK_BlockAddress: 906 return TD.getPointerABIAlignment(0).value(); 907 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 908 return TD.getABIIntegerTypeAlignment(64).value(); 909 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 910 case MachineJumpTableInfo::EK_LabelDifference32: 911 case MachineJumpTableInfo::EK_Custom32: 912 return TD.getABIIntegerTypeAlignment(32).value(); 913 case MachineJumpTableInfo::EK_Inline: 914 return 1; 915 } 916 llvm_unreachable("Unknown jump table encoding!"); 917 } 918 919 /// Create a new jump table entry in the jump table info. 920 unsigned MachineJumpTableInfo::createJumpTableIndex( 921 const std::vector<MachineBasicBlock*> &DestBBs) { 922 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 923 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 924 return JumpTables.size()-1; 925 } 926 927 /// If Old is the target of any jump tables, update the jump tables to branch 928 /// to New instead. 929 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 930 MachineBasicBlock *New) { 931 assert(Old != New && "Not making a change?"); 932 bool MadeChange = false; 933 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 934 ReplaceMBBInJumpTable(i, Old, New); 935 return MadeChange; 936 } 937 938 /// If Old is a target of the jump tables, update the jump table to branch to 939 /// New instead. 940 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 941 MachineBasicBlock *Old, 942 MachineBasicBlock *New) { 943 assert(Old != New && "Not making a change?"); 944 bool MadeChange = false; 945 MachineJumpTableEntry &JTE = JumpTables[Idx]; 946 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 947 if (JTE.MBBs[j] == Old) { 948 JTE.MBBs[j] = New; 949 MadeChange = true; 950 } 951 return MadeChange; 952 } 953 954 void MachineJumpTableInfo::print(raw_ostream &OS) const { 955 if (JumpTables.empty()) return; 956 957 OS << "Jump Tables:\n"; 958 959 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 960 OS << printJumpTableEntryReference(i) << ':'; 961 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 962 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 963 if (i != e) 964 OS << '\n'; 965 } 966 967 OS << '\n'; 968 } 969 970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 971 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 972 #endif 973 974 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 975 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 976 } 977 978 //===----------------------------------------------------------------------===// 979 // MachineConstantPool implementation 980 //===----------------------------------------------------------------------===// 981 982 void MachineConstantPoolValue::anchor() {} 983 984 Type *MachineConstantPoolEntry::getType() const { 985 if (isMachineConstantPoolEntry()) 986 return Val.MachineCPVal->getType(); 987 return Val.ConstVal->getType(); 988 } 989 990 bool MachineConstantPoolEntry::needsRelocation() const { 991 if (isMachineConstantPoolEntry()) 992 return true; 993 return Val.ConstVal->needsRelocation(); 994 } 995 996 SectionKind 997 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 998 if (needsRelocation()) 999 return SectionKind::getReadOnlyWithRel(); 1000 switch (DL->getTypeAllocSize(getType())) { 1001 case 4: 1002 return SectionKind::getMergeableConst4(); 1003 case 8: 1004 return SectionKind::getMergeableConst8(); 1005 case 16: 1006 return SectionKind::getMergeableConst16(); 1007 case 32: 1008 return SectionKind::getMergeableConst32(); 1009 default: 1010 return SectionKind::getReadOnly(); 1011 } 1012 } 1013 1014 MachineConstantPool::~MachineConstantPool() { 1015 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1016 // so keep track of which we've deleted to avoid double deletions. 1017 DenseSet<MachineConstantPoolValue*> Deleted; 1018 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1019 if (Constants[i].isMachineConstantPoolEntry()) { 1020 Deleted.insert(Constants[i].Val.MachineCPVal); 1021 delete Constants[i].Val.MachineCPVal; 1022 } 1023 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1024 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1025 I != E; ++I) { 1026 if (Deleted.count(*I) == 0) 1027 delete *I; 1028 } 1029 } 1030 1031 /// Test whether the given two constants can be allocated the same constant pool 1032 /// entry. 1033 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1034 const DataLayout &DL) { 1035 // Handle the trivial case quickly. 1036 if (A == B) return true; 1037 1038 // If they have the same type but weren't the same constant, quickly 1039 // reject them. 1040 if (A->getType() == B->getType()) return false; 1041 1042 // We can't handle structs or arrays. 1043 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1044 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1045 return false; 1046 1047 // For now, only support constants with the same size. 1048 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1049 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1050 return false; 1051 1052 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1053 1054 // Try constant folding a bitcast of both instructions to an integer. If we 1055 // get two identical ConstantInt's, then we are good to share them. We use 1056 // the constant folding APIs to do this so that we get the benefit of 1057 // DataLayout. 1058 if (isa<PointerType>(A->getType())) 1059 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1060 const_cast<Constant *>(A), IntTy, DL); 1061 else if (A->getType() != IntTy) 1062 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1063 IntTy, DL); 1064 if (isa<PointerType>(B->getType())) 1065 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1066 const_cast<Constant *>(B), IntTy, DL); 1067 else if (B->getType() != IntTy) 1068 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1069 IntTy, DL); 1070 1071 return A == B; 1072 } 1073 1074 /// Create a new entry in the constant pool or return an existing one. 1075 /// User must specify the log2 of the minimum required alignment for the object. 1076 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1077 unsigned Alignment) { 1078 assert(Alignment && "Alignment must be specified!"); 1079 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1080 1081 // Check to see if we already have this constant. 1082 // 1083 // FIXME, this could be made much more efficient for large constant pools. 1084 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1085 if (!Constants[i].isMachineConstantPoolEntry() && 1086 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1087 if ((unsigned)Constants[i].getAlignment() < Alignment) 1088 Constants[i].Alignment = Alignment; 1089 return i; 1090 } 1091 1092 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1093 return Constants.size()-1; 1094 } 1095 1096 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1097 unsigned Alignment) { 1098 assert(Alignment && "Alignment must be specified!"); 1099 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1100 1101 // Check to see if we already have this constant. 1102 // 1103 // FIXME, this could be made much more efficient for large constant pools. 1104 int Idx = V->getExistingMachineCPValue(this, Alignment); 1105 if (Idx != -1) { 1106 MachineCPVsSharingEntries.insert(V); 1107 return (unsigned)Idx; 1108 } 1109 1110 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1111 return Constants.size()-1; 1112 } 1113 1114 void MachineConstantPool::print(raw_ostream &OS) const { 1115 if (Constants.empty()) return; 1116 1117 OS << "Constant Pool:\n"; 1118 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1119 OS << " cp#" << i << ": "; 1120 if (Constants[i].isMachineConstantPoolEntry()) 1121 Constants[i].Val.MachineCPVal->print(OS); 1122 else 1123 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1124 OS << ", align=" << Constants[i].getAlignment(); 1125 OS << "\n"; 1126 } 1127 } 1128 1129 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1130 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1131 #endif 1132