1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 } 102 llvm_unreachable("Invalid machine function property"); 103 } 104 105 // Pin the vtable to this file. 106 void MachineFunction::Delegate::anchor() {} 107 108 void MachineFunctionProperties::print(raw_ostream &OS) const { 109 const char *Separator = ""; 110 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 111 if (!Properties[I]) 112 continue; 113 OS << Separator << getPropertyName(static_cast<Property>(I)); 114 Separator = ", "; 115 } 116 } 117 118 //===----------------------------------------------------------------------===// 119 // MachineFunction implementation 120 //===----------------------------------------------------------------------===// 121 122 // Out-of-line virtual method. 123 MachineFunctionInfo::~MachineFunctionInfo() = default; 124 125 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 126 MBB->getParent()->DeleteMachineBasicBlock(MBB); 127 } 128 129 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 130 const Function &F) { 131 if (F.hasFnAttribute(Attribute::StackAlignment)) 132 return F.getFnStackAlignment(); 133 return STI->getFrameLowering()->getStackAlign().value(); 134 } 135 136 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 137 const TargetSubtargetInfo &STI, 138 unsigned FunctionNum, MachineModuleInfo &mmi) 139 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 140 FunctionNumber = FunctionNum; 141 init(); 142 } 143 144 void MachineFunction::handleInsertion(MachineInstr &MI) { 145 if (TheDelegate) 146 TheDelegate->MF_HandleInsertion(MI); 147 } 148 149 void MachineFunction::handleRemoval(MachineInstr &MI) { 150 if (TheDelegate) 151 TheDelegate->MF_HandleRemoval(MI); 152 } 153 154 void MachineFunction::init() { 155 // Assume the function starts in SSA form with correct liveness. 156 Properties.set(MachineFunctionProperties::Property::IsSSA); 157 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 158 if (STI->getRegisterInfo()) 159 RegInfo = new (Allocator) MachineRegisterInfo(this); 160 else 161 RegInfo = nullptr; 162 163 MFInfo = nullptr; 164 // We can realign the stack if the target supports it and the user hasn't 165 // explicitly asked us not to. 166 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 167 !F.hasFnAttribute("no-realign-stack"); 168 FrameInfo = new (Allocator) MachineFrameInfo( 169 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 170 /*ForcedRealign=*/CanRealignSP && 171 F.hasFnAttribute(Attribute::StackAlignment)); 172 173 if (F.hasFnAttribute(Attribute::StackAlignment)) 174 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 175 176 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 177 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 178 179 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 180 // FIXME: Use Function::hasOptSize(). 181 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 182 Alignment = std::max(Alignment, 183 STI->getTargetLowering()->getPrefFunctionAlignment()); 184 185 if (AlignAllFunctions) 186 Alignment = Align(1ULL << AlignAllFunctions); 187 188 JumpTableInfo = nullptr; 189 190 if (isFuncletEHPersonality(classifyEHPersonality( 191 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 192 WinEHInfo = new (Allocator) WinEHFuncInfo(); 193 } 194 195 if (isScopedEHPersonality(classifyEHPersonality( 196 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 197 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 198 } 199 200 assert(Target.isCompatibleDataLayout(getDataLayout()) && 201 "Can't create a MachineFunction using a Module with a " 202 "Target-incompatible DataLayout attached\n"); 203 204 PSVManager = 205 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 206 getInstrInfo())); 207 } 208 209 MachineFunction::~MachineFunction() { 210 clear(); 211 } 212 213 void MachineFunction::clear() { 214 Properties.reset(); 215 // Don't call destructors on MachineInstr and MachineOperand. All of their 216 // memory comes from the BumpPtrAllocator which is about to be purged. 217 // 218 // Do call MachineBasicBlock destructors, it contains std::vectors. 219 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 220 I->Insts.clearAndLeakNodesUnsafely(); 221 MBBNumbering.clear(); 222 223 InstructionRecycler.clear(Allocator); 224 OperandRecycler.clear(Allocator); 225 BasicBlockRecycler.clear(Allocator); 226 CodeViewAnnotations.clear(); 227 VariableDbgInfos.clear(); 228 if (RegInfo) { 229 RegInfo->~MachineRegisterInfo(); 230 Allocator.Deallocate(RegInfo); 231 } 232 if (MFInfo) { 233 MFInfo->~MachineFunctionInfo(); 234 Allocator.Deallocate(MFInfo); 235 } 236 237 FrameInfo->~MachineFrameInfo(); 238 Allocator.Deallocate(FrameInfo); 239 240 ConstantPool->~MachineConstantPool(); 241 Allocator.Deallocate(ConstantPool); 242 243 if (JumpTableInfo) { 244 JumpTableInfo->~MachineJumpTableInfo(); 245 Allocator.Deallocate(JumpTableInfo); 246 } 247 248 if (WinEHInfo) { 249 WinEHInfo->~WinEHFuncInfo(); 250 Allocator.Deallocate(WinEHInfo); 251 } 252 253 if (WasmEHInfo) { 254 WasmEHInfo->~WasmEHFuncInfo(); 255 Allocator.Deallocate(WasmEHInfo); 256 } 257 } 258 259 const DataLayout &MachineFunction::getDataLayout() const { 260 return F.getParent()->getDataLayout(); 261 } 262 263 /// Get the JumpTableInfo for this function. 264 /// If it does not already exist, allocate one. 265 MachineJumpTableInfo *MachineFunction:: 266 getOrCreateJumpTableInfo(unsigned EntryKind) { 267 if (JumpTableInfo) return JumpTableInfo; 268 269 JumpTableInfo = new (Allocator) 270 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 271 return JumpTableInfo; 272 } 273 274 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 275 if (&FPType == &APFloat::IEEEsingle()) { 276 Attribute Attr = F.getFnAttribute("denormal-fp-math-f32"); 277 StringRef Val = Attr.getValueAsString(); 278 if (!Val.empty()) 279 return parseDenormalFPAttribute(Val); 280 281 // If the f32 variant of the attribute isn't specified, try to use the 282 // generic one. 283 } 284 285 // TODO: Should probably avoid the connection to the IR and store directly 286 // in the MachineFunction. 287 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 288 return parseDenormalFPAttribute(Attr.getValueAsString()); 289 } 290 291 /// Should we be emitting segmented stack stuff for the function 292 bool MachineFunction::shouldSplitStack() const { 293 return getFunction().hasFnAttribute("split-stack"); 294 } 295 296 LLVM_NODISCARD unsigned 297 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 298 FrameInstructions.push_back(Inst); 299 return FrameInstructions.size() - 1; 300 } 301 302 /// This discards all of the MachineBasicBlock numbers and recomputes them. 303 /// This guarantees that the MBB numbers are sequential, dense, and match the 304 /// ordering of the blocks within the function. If a specific MachineBasicBlock 305 /// is specified, only that block and those after it are renumbered. 306 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 307 if (empty()) { MBBNumbering.clear(); return; } 308 MachineFunction::iterator MBBI, E = end(); 309 if (MBB == nullptr) 310 MBBI = begin(); 311 else 312 MBBI = MBB->getIterator(); 313 314 // Figure out the block number this should have. 315 unsigned BlockNo = 0; 316 if (MBBI != begin()) 317 BlockNo = std::prev(MBBI)->getNumber() + 1; 318 319 for (; MBBI != E; ++MBBI, ++BlockNo) { 320 if (MBBI->getNumber() != (int)BlockNo) { 321 // Remove use of the old number. 322 if (MBBI->getNumber() != -1) { 323 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 324 "MBB number mismatch!"); 325 MBBNumbering[MBBI->getNumber()] = nullptr; 326 } 327 328 // If BlockNo is already taken, set that block's number to -1. 329 if (MBBNumbering[BlockNo]) 330 MBBNumbering[BlockNo]->setNumber(-1); 331 332 MBBNumbering[BlockNo] = &*MBBI; 333 MBBI->setNumber(BlockNo); 334 } 335 } 336 337 // Okay, all the blocks are renumbered. If we have compactified the block 338 // numbering, shrink MBBNumbering now. 339 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 340 MBBNumbering.resize(BlockNo); 341 } 342 343 /// This sets the section ranges of cold or exception section with basic block 344 /// sections. 345 void MachineFunction::setSectionRange() { 346 // Compute the Section Range of cold and exception basic blocks. Find the 347 // first and last block of each range. 348 auto SectionRange = 349 ([&](llvm::MachineBasicBlockSection S) -> std::pair<int, int> { 350 auto MBBP = 351 std::find_if(begin(), end(), [&](MachineBasicBlock &MBB) -> bool { 352 return MBB.getSectionType() == S; 353 }); 354 if (MBBP == end()) 355 return std::make_pair(-1, -1); 356 357 auto MBBQ = 358 std::find_if(rbegin(), rend(), [&](MachineBasicBlock &MBB) -> bool { 359 return MBB.getSectionType() == S; 360 }); 361 assert(MBBQ != rend() && "Section end not found!"); 362 return std::make_pair(MBBP->getNumber(), MBBQ->getNumber()); 363 }); 364 365 ExceptionSectionRange = SectionRange(MBBS_Exception); 366 ColdSectionRange = SectionRange(llvm::MBBS_Cold); 367 } 368 369 /// This is used with -fbasicblock-sections or -fbasicblock-labels option. 370 /// A unary encoding of basic block labels is done to keep ".strtab" sizes 371 /// small. 372 void MachineFunction::createBBLabels() { 373 const TargetInstrInfo *TII = getSubtarget().getInstrInfo(); 374 this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a'); 375 for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) { 376 assert( 377 (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) && 378 "BasicBlock number was out of range!"); 379 // 'a' - Normal block. 380 // 'r' - Return block. 381 // 'l' - Landing Pad. 382 // 'L' - Return and landing pad. 383 bool isEHPad = MBBI->isEHPad(); 384 bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back()); 385 char type = 'a'; 386 if (isEHPad && isRetBlock) 387 type = 'L'; 388 else if (isEHPad) 389 type = 'l'; 390 else if (isRetBlock) 391 type = 'r'; 392 BBSectionsSymbolPrefix[MBBI->getNumber()] = type; 393 } 394 } 395 396 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 397 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 398 const DebugLoc &DL, 399 bool NoImp) { 400 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 401 MachineInstr(*this, MCID, DL, NoImp); 402 } 403 404 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 405 /// identical in all ways except the instruction has no parent, prev, or next. 406 MachineInstr * 407 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 408 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 409 MachineInstr(*this, *Orig); 410 } 411 412 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 413 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 414 MachineInstr *FirstClone = nullptr; 415 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 416 while (true) { 417 MachineInstr *Cloned = CloneMachineInstr(&*I); 418 MBB.insert(InsertBefore, Cloned); 419 if (FirstClone == nullptr) { 420 FirstClone = Cloned; 421 } else { 422 Cloned->bundleWithPred(); 423 } 424 425 if (!I->isBundledWithSucc()) 426 break; 427 ++I; 428 } 429 return *FirstClone; 430 } 431 432 /// Delete the given MachineInstr. 433 /// 434 /// This function also serves as the MachineInstr destructor - the real 435 /// ~MachineInstr() destructor must be empty. 436 void 437 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 438 // Verify that a call site info is at valid state. This assertion should 439 // be triggered during the implementation of support for the 440 // call site info of a new architecture. If the assertion is triggered, 441 // back trace will tell where to insert a call to updateCallSiteInfo(). 442 assert((!MI->isCandidateForCallSiteEntry() || 443 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 444 "Call site info was not updated!"); 445 // Strip it for parts. The operand array and the MI object itself are 446 // independently recyclable. 447 if (MI->Operands) 448 deallocateOperandArray(MI->CapOperands, MI->Operands); 449 // Don't call ~MachineInstr() which must be trivial anyway because 450 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 451 // destructors. 452 InstructionRecycler.Deallocate(Allocator, MI); 453 } 454 455 /// Allocate a new MachineBasicBlock. Use this instead of 456 /// `new MachineBasicBlock'. 457 MachineBasicBlock * 458 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 459 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 460 MachineBasicBlock(*this, bb); 461 } 462 463 /// Delete the given MachineBasicBlock. 464 void 465 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 466 assert(MBB->getParent() == this && "MBB parent mismatch!"); 467 MBB->~MachineBasicBlock(); 468 BasicBlockRecycler.Deallocate(Allocator, MBB); 469 } 470 471 MachineMemOperand *MachineFunction::getMachineMemOperand( 472 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 473 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 474 SyncScope::ID SSID, AtomicOrdering Ordering, 475 AtomicOrdering FailureOrdering) { 476 return new (Allocator) 477 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 478 SSID, Ordering, FailureOrdering); 479 } 480 481 MachineMemOperand * 482 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 483 int64_t Offset, uint64_t Size) { 484 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 485 486 // If there is no pointer value, the offset isn't tracked so we need to adjust 487 // the base alignment. 488 Align Alignment = PtrInfo.V.isNull() 489 ? commonAlignment(MMO->getBaseAlign(), Offset) 490 : MMO->getBaseAlign(); 491 492 return new (Allocator) 493 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 494 Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 495 MMO->getOrdering(), MMO->getFailureOrdering()); 496 } 497 498 MachineMemOperand * 499 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 500 const AAMDNodes &AAInfo) { 501 MachinePointerInfo MPI = MMO->getValue() ? 502 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 503 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 504 505 return new (Allocator) MachineMemOperand( 506 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 507 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(), 508 MMO->getFailureOrdering()); 509 } 510 511 MachineMemOperand * 512 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 513 MachineMemOperand::Flags Flags) { 514 return new (Allocator) MachineMemOperand( 515 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 516 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 517 MMO->getOrdering(), MMO->getFailureOrdering()); 518 } 519 520 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 521 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 522 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 523 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 524 PostInstrSymbol, HeapAllocMarker); 525 } 526 527 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 528 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 529 llvm::copy(Name, Dest); 530 Dest[Name.size()] = 0; 531 return Dest; 532 } 533 534 uint32_t *MachineFunction::allocateRegMask() { 535 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 536 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 537 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 538 memset(Mask, 0, Size * sizeof(Mask[0])); 539 return Mask; 540 } 541 542 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 543 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 544 copy(Mask, AllocMask); 545 return {AllocMask, Mask.size()}; 546 } 547 548 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 549 LLVM_DUMP_METHOD void MachineFunction::dump() const { 550 print(dbgs()); 551 } 552 #endif 553 554 StringRef MachineFunction::getName() const { 555 return getFunction().getName(); 556 } 557 558 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 559 OS << "# Machine code for function " << getName() << ": "; 560 getProperties().print(OS); 561 OS << '\n'; 562 563 // Print Frame Information 564 FrameInfo->print(*this, OS); 565 566 // Print JumpTable Information 567 if (JumpTableInfo) 568 JumpTableInfo->print(OS); 569 570 // Print Constant Pool 571 ConstantPool->print(OS); 572 573 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 574 575 if (RegInfo && !RegInfo->livein_empty()) { 576 OS << "Function Live Ins: "; 577 for (MachineRegisterInfo::livein_iterator 578 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 579 OS << printReg(I->first, TRI); 580 if (I->second) 581 OS << " in " << printReg(I->second, TRI); 582 if (std::next(I) != E) 583 OS << ", "; 584 } 585 OS << '\n'; 586 } 587 588 ModuleSlotTracker MST(getFunction().getParent()); 589 MST.incorporateFunction(getFunction()); 590 for (const auto &BB : *this) { 591 OS << '\n'; 592 // If we print the whole function, print it at its most verbose level. 593 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 594 } 595 596 OS << "\n# End machine code for function " << getName() << ".\n\n"; 597 } 598 599 /// True if this function needs frame moves for debug or exceptions. 600 bool MachineFunction::needsFrameMoves() const { 601 return getMMI().hasDebugInfo() || 602 getTarget().Options.ForceDwarfFrameSection || 603 F.needsUnwindTableEntry(); 604 } 605 606 namespace llvm { 607 608 template<> 609 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 610 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 611 612 static std::string getGraphName(const MachineFunction *F) { 613 return ("CFG for '" + F->getName() + "' function").str(); 614 } 615 616 std::string getNodeLabel(const MachineBasicBlock *Node, 617 const MachineFunction *Graph) { 618 std::string OutStr; 619 { 620 raw_string_ostream OSS(OutStr); 621 622 if (isSimple()) { 623 OSS << printMBBReference(*Node); 624 if (const BasicBlock *BB = Node->getBasicBlock()) 625 OSS << ": " << BB->getName(); 626 } else 627 Node->print(OSS); 628 } 629 630 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 631 632 // Process string output to make it nicer... 633 for (unsigned i = 0; i != OutStr.length(); ++i) 634 if (OutStr[i] == '\n') { // Left justify 635 OutStr[i] = '\\'; 636 OutStr.insert(OutStr.begin()+i+1, 'l'); 637 } 638 return OutStr; 639 } 640 }; 641 642 } // end namespace llvm 643 644 void MachineFunction::viewCFG() const 645 { 646 #ifndef NDEBUG 647 ViewGraph(this, "mf" + getName()); 648 #else 649 errs() << "MachineFunction::viewCFG is only available in debug builds on " 650 << "systems with Graphviz or gv!\n"; 651 #endif // NDEBUG 652 } 653 654 void MachineFunction::viewCFGOnly() const 655 { 656 #ifndef NDEBUG 657 ViewGraph(this, "mf" + getName(), true); 658 #else 659 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 660 << "systems with Graphviz or gv!\n"; 661 #endif // NDEBUG 662 } 663 664 /// Add the specified physical register as a live-in value and 665 /// create a corresponding virtual register for it. 666 unsigned MachineFunction::addLiveIn(unsigned PReg, 667 const TargetRegisterClass *RC) { 668 MachineRegisterInfo &MRI = getRegInfo(); 669 unsigned VReg = MRI.getLiveInVirtReg(PReg); 670 if (VReg) { 671 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 672 (void)VRegRC; 673 // A physical register can be added several times. 674 // Between two calls, the register class of the related virtual register 675 // may have been constrained to match some operation constraints. 676 // In that case, check that the current register class includes the 677 // physical register and is a sub class of the specified RC. 678 assert((VRegRC == RC || (VRegRC->contains(PReg) && 679 RC->hasSubClassEq(VRegRC))) && 680 "Register class mismatch!"); 681 return VReg; 682 } 683 VReg = MRI.createVirtualRegister(RC); 684 MRI.addLiveIn(PReg, VReg); 685 return VReg; 686 } 687 688 /// Return the MCSymbol for the specified non-empty jump table. 689 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 690 /// normal 'L' label is returned. 691 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 692 bool isLinkerPrivate) const { 693 const DataLayout &DL = getDataLayout(); 694 assert(JumpTableInfo && "No jump tables"); 695 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 696 697 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 698 : DL.getPrivateGlobalPrefix(); 699 SmallString<60> Name; 700 raw_svector_ostream(Name) 701 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 702 return Ctx.getOrCreateSymbol(Name); 703 } 704 705 /// Return a function-local symbol to represent the PIC base. 706 MCSymbol *MachineFunction::getPICBaseSymbol() const { 707 const DataLayout &DL = getDataLayout(); 708 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 709 Twine(getFunctionNumber()) + "$pb"); 710 } 711 712 /// \name Exception Handling 713 /// \{ 714 715 LandingPadInfo & 716 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 717 unsigned N = LandingPads.size(); 718 for (unsigned i = 0; i < N; ++i) { 719 LandingPadInfo &LP = LandingPads[i]; 720 if (LP.LandingPadBlock == LandingPad) 721 return LP; 722 } 723 724 LandingPads.push_back(LandingPadInfo(LandingPad)); 725 return LandingPads[N]; 726 } 727 728 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 729 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 730 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 731 LP.BeginLabels.push_back(BeginLabel); 732 LP.EndLabels.push_back(EndLabel); 733 } 734 735 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 736 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 737 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 738 LP.LandingPadLabel = LandingPadLabel; 739 740 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 741 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 742 if (const auto *PF = 743 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 744 getMMI().addPersonality(PF); 745 746 if (LPI->isCleanup()) 747 addCleanup(LandingPad); 748 749 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 750 // correct, but we need to do it this way because of how the DWARF EH 751 // emitter processes the clauses. 752 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 753 Value *Val = LPI->getClause(I - 1); 754 if (LPI->isCatch(I - 1)) { 755 addCatchTypeInfo(LandingPad, 756 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 757 } else { 758 // Add filters in a list. 759 auto *CVal = cast<Constant>(Val); 760 SmallVector<const GlobalValue *, 4> FilterList; 761 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 762 II != IE; ++II) 763 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 764 765 addFilterTypeInfo(LandingPad, FilterList); 766 } 767 } 768 769 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 770 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 771 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 772 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 773 } 774 775 } else { 776 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 777 } 778 779 return LandingPadLabel; 780 } 781 782 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 783 ArrayRef<const GlobalValue *> TyInfo) { 784 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 785 for (unsigned N = TyInfo.size(); N; --N) 786 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 787 } 788 789 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 790 ArrayRef<const GlobalValue *> TyInfo) { 791 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 792 std::vector<unsigned> IdsInFilter(TyInfo.size()); 793 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 794 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 795 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 796 } 797 798 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 799 bool TidyIfNoBeginLabels) { 800 for (unsigned i = 0; i != LandingPads.size(); ) { 801 LandingPadInfo &LandingPad = LandingPads[i]; 802 if (LandingPad.LandingPadLabel && 803 !LandingPad.LandingPadLabel->isDefined() && 804 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 805 LandingPad.LandingPadLabel = nullptr; 806 807 // Special case: we *should* emit LPs with null LP MBB. This indicates 808 // "nounwind" case. 809 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 810 LandingPads.erase(LandingPads.begin() + i); 811 continue; 812 } 813 814 if (TidyIfNoBeginLabels) { 815 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 816 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 817 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 818 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 819 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 820 continue; 821 822 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 823 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 824 --j; 825 --e; 826 } 827 828 // Remove landing pads with no try-ranges. 829 if (LandingPads[i].BeginLabels.empty()) { 830 LandingPads.erase(LandingPads.begin() + i); 831 continue; 832 } 833 } 834 835 // If there is no landing pad, ensure that the list of typeids is empty. 836 // If the only typeid is a cleanup, this is the same as having no typeids. 837 if (!LandingPad.LandingPadBlock || 838 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 839 LandingPad.TypeIds.clear(); 840 ++i; 841 } 842 } 843 844 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 845 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 846 LP.TypeIds.push_back(0); 847 } 848 849 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 850 const Function *Filter, 851 const BlockAddress *RecoverBA) { 852 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 853 SEHHandler Handler; 854 Handler.FilterOrFinally = Filter; 855 Handler.RecoverBA = RecoverBA; 856 LP.SEHHandlers.push_back(Handler); 857 } 858 859 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 860 const Function *Cleanup) { 861 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 862 SEHHandler Handler; 863 Handler.FilterOrFinally = Cleanup; 864 Handler.RecoverBA = nullptr; 865 LP.SEHHandlers.push_back(Handler); 866 } 867 868 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 869 ArrayRef<unsigned> Sites) { 870 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 871 } 872 873 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 874 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 875 if (TypeInfos[i] == TI) return i + 1; 876 877 TypeInfos.push_back(TI); 878 return TypeInfos.size(); 879 } 880 881 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 882 // If the new filter coincides with the tail of an existing filter, then 883 // re-use the existing filter. Folding filters more than this requires 884 // re-ordering filters and/or their elements - probably not worth it. 885 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 886 E = FilterEnds.end(); I != E; ++I) { 887 unsigned i = *I, j = TyIds.size(); 888 889 while (i && j) 890 if (FilterIds[--i] != TyIds[--j]) 891 goto try_next; 892 893 if (!j) 894 // The new filter coincides with range [i, end) of the existing filter. 895 return -(1 + i); 896 897 try_next:; 898 } 899 900 // Add the new filter. 901 int FilterID = -(1 + FilterIds.size()); 902 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 903 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 904 FilterEnds.push_back(FilterIds.size()); 905 FilterIds.push_back(0); // terminator 906 return FilterID; 907 } 908 909 MachineFunction::CallSiteInfoMap::iterator 910 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 911 assert(MI->isCandidateForCallSiteEntry() && 912 "Call site info refers only to call (MI) candidates"); 913 914 if (!Target.Options.EmitCallSiteInfo) 915 return CallSitesInfo.end(); 916 return CallSitesInfo.find(MI); 917 } 918 919 /// Return the call machine instruction or find a call within bundle. 920 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 921 if (!MI->isBundle()) 922 return MI; 923 924 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 925 getBundleEnd(MI->getIterator()))) 926 if (BMI.isCandidateForCallSiteEntry()) 927 return &BMI; 928 929 llvm_unreachable("Unexpected bundle without a call site candidate"); 930 } 931 932 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 933 assert(MI->shouldUpdateCallSiteInfo() && 934 "Call site info refers only to call (MI) candidates or " 935 "candidates inside bundles"); 936 937 const MachineInstr *CallMI = getCallInstr(MI); 938 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 939 if (CSIt == CallSitesInfo.end()) 940 return; 941 CallSitesInfo.erase(CSIt); 942 } 943 944 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 945 const MachineInstr *New) { 946 assert(Old->shouldUpdateCallSiteInfo() && 947 "Call site info refers only to call (MI) candidates or " 948 "candidates inside bundles"); 949 950 if (!New->isCandidateForCallSiteEntry()) 951 return eraseCallSiteInfo(Old); 952 953 const MachineInstr *OldCallMI = getCallInstr(Old); 954 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 955 if (CSIt == CallSitesInfo.end()) 956 return; 957 958 CallSiteInfo CSInfo = CSIt->second; 959 CallSitesInfo[New] = CSInfo; 960 } 961 962 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 963 const MachineInstr *New) { 964 assert(Old->shouldUpdateCallSiteInfo() && 965 "Call site info refers only to call (MI) candidates or " 966 "candidates inside bundles"); 967 968 if (!New->isCandidateForCallSiteEntry()) 969 return eraseCallSiteInfo(Old); 970 971 const MachineInstr *OldCallMI = getCallInstr(Old); 972 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 973 if (CSIt == CallSitesInfo.end()) 974 return; 975 976 CallSiteInfo CSInfo = std::move(CSIt->second); 977 CallSitesInfo.erase(CSIt); 978 CallSitesInfo[New] = CSInfo; 979 } 980 981 /// \} 982 983 //===----------------------------------------------------------------------===// 984 // MachineJumpTableInfo implementation 985 //===----------------------------------------------------------------------===// 986 987 /// Return the size of each entry in the jump table. 988 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 989 // The size of a jump table entry is 4 bytes unless the entry is just the 990 // address of a block, in which case it is the pointer size. 991 switch (getEntryKind()) { 992 case MachineJumpTableInfo::EK_BlockAddress: 993 return TD.getPointerSize(); 994 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 995 return 8; 996 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 997 case MachineJumpTableInfo::EK_LabelDifference32: 998 case MachineJumpTableInfo::EK_Custom32: 999 return 4; 1000 case MachineJumpTableInfo::EK_Inline: 1001 return 0; 1002 } 1003 llvm_unreachable("Unknown jump table encoding!"); 1004 } 1005 1006 /// Return the alignment of each entry in the jump table. 1007 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1008 // The alignment of a jump table entry is the alignment of int32 unless the 1009 // entry is just the address of a block, in which case it is the pointer 1010 // alignment. 1011 switch (getEntryKind()) { 1012 case MachineJumpTableInfo::EK_BlockAddress: 1013 return TD.getPointerABIAlignment(0).value(); 1014 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1015 return TD.getABIIntegerTypeAlignment(64).value(); 1016 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1017 case MachineJumpTableInfo::EK_LabelDifference32: 1018 case MachineJumpTableInfo::EK_Custom32: 1019 return TD.getABIIntegerTypeAlignment(32).value(); 1020 case MachineJumpTableInfo::EK_Inline: 1021 return 1; 1022 } 1023 llvm_unreachable("Unknown jump table encoding!"); 1024 } 1025 1026 /// Create a new jump table entry in the jump table info. 1027 unsigned MachineJumpTableInfo::createJumpTableIndex( 1028 const std::vector<MachineBasicBlock*> &DestBBs) { 1029 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1030 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1031 return JumpTables.size()-1; 1032 } 1033 1034 /// If Old is the target of any jump tables, update the jump tables to branch 1035 /// to New instead. 1036 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1037 MachineBasicBlock *New) { 1038 assert(Old != New && "Not making a change?"); 1039 bool MadeChange = false; 1040 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1041 ReplaceMBBInJumpTable(i, Old, New); 1042 return MadeChange; 1043 } 1044 1045 /// If Old is a target of the jump tables, update the jump table to branch to 1046 /// New instead. 1047 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1048 MachineBasicBlock *Old, 1049 MachineBasicBlock *New) { 1050 assert(Old != New && "Not making a change?"); 1051 bool MadeChange = false; 1052 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1053 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1054 if (JTE.MBBs[j] == Old) { 1055 JTE.MBBs[j] = New; 1056 MadeChange = true; 1057 } 1058 return MadeChange; 1059 } 1060 1061 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1062 if (JumpTables.empty()) return; 1063 1064 OS << "Jump Tables:\n"; 1065 1066 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1067 OS << printJumpTableEntryReference(i) << ':'; 1068 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1069 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1070 if (i != e) 1071 OS << '\n'; 1072 } 1073 1074 OS << '\n'; 1075 } 1076 1077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1078 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1079 #endif 1080 1081 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1082 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1083 } 1084 1085 //===----------------------------------------------------------------------===// 1086 // MachineConstantPool implementation 1087 //===----------------------------------------------------------------------===// 1088 1089 void MachineConstantPoolValue::anchor() {} 1090 1091 Type *MachineConstantPoolEntry::getType() const { 1092 if (isMachineConstantPoolEntry()) 1093 return Val.MachineCPVal->getType(); 1094 return Val.ConstVal->getType(); 1095 } 1096 1097 bool MachineConstantPoolEntry::needsRelocation() const { 1098 if (isMachineConstantPoolEntry()) 1099 return true; 1100 return Val.ConstVal->needsRelocation(); 1101 } 1102 1103 SectionKind 1104 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1105 if (needsRelocation()) 1106 return SectionKind::getReadOnlyWithRel(); 1107 switch (DL->getTypeAllocSize(getType())) { 1108 case 4: 1109 return SectionKind::getMergeableConst4(); 1110 case 8: 1111 return SectionKind::getMergeableConst8(); 1112 case 16: 1113 return SectionKind::getMergeableConst16(); 1114 case 32: 1115 return SectionKind::getMergeableConst32(); 1116 default: 1117 return SectionKind::getReadOnly(); 1118 } 1119 } 1120 1121 MachineConstantPool::~MachineConstantPool() { 1122 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1123 // so keep track of which we've deleted to avoid double deletions. 1124 DenseSet<MachineConstantPoolValue*> Deleted; 1125 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1126 if (Constants[i].isMachineConstantPoolEntry()) { 1127 Deleted.insert(Constants[i].Val.MachineCPVal); 1128 delete Constants[i].Val.MachineCPVal; 1129 } 1130 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1131 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1132 I != E; ++I) { 1133 if (Deleted.count(*I) == 0) 1134 delete *I; 1135 } 1136 } 1137 1138 /// Test whether the given two constants can be allocated the same constant pool 1139 /// entry. 1140 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1141 const DataLayout &DL) { 1142 // Handle the trivial case quickly. 1143 if (A == B) return true; 1144 1145 // If they have the same type but weren't the same constant, quickly 1146 // reject them. 1147 if (A->getType() == B->getType()) return false; 1148 1149 // We can't handle structs or arrays. 1150 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1151 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1152 return false; 1153 1154 // For now, only support constants with the same size. 1155 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1156 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1157 return false; 1158 1159 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1160 1161 // Try constant folding a bitcast of both instructions to an integer. If we 1162 // get two identical ConstantInt's, then we are good to share them. We use 1163 // the constant folding APIs to do this so that we get the benefit of 1164 // DataLayout. 1165 if (isa<PointerType>(A->getType())) 1166 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1167 const_cast<Constant *>(A), IntTy, DL); 1168 else if (A->getType() != IntTy) 1169 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1170 IntTy, DL); 1171 if (isa<PointerType>(B->getType())) 1172 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1173 const_cast<Constant *>(B), IntTy, DL); 1174 else if (B->getType() != IntTy) 1175 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1176 IntTy, DL); 1177 1178 return A == B; 1179 } 1180 1181 /// Create a new entry in the constant pool or return an existing one. 1182 /// User must specify the log2 of the minimum required alignment for the object. 1183 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1184 unsigned Alignment) { 1185 assert(Alignment && "Alignment must be specified!"); 1186 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1187 1188 // Check to see if we already have this constant. 1189 // 1190 // FIXME, this could be made much more efficient for large constant pools. 1191 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1192 if (!Constants[i].isMachineConstantPoolEntry() && 1193 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1194 if ((unsigned)Constants[i].getAlignment() < Alignment) 1195 Constants[i].Alignment = Alignment; 1196 return i; 1197 } 1198 1199 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1200 return Constants.size()-1; 1201 } 1202 1203 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1204 unsigned Alignment) { 1205 assert(Alignment && "Alignment must be specified!"); 1206 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1207 1208 // Check to see if we already have this constant. 1209 // 1210 // FIXME, this could be made much more efficient for large constant pools. 1211 int Idx = V->getExistingMachineCPValue(this, Alignment); 1212 if (Idx != -1) { 1213 MachineCPVsSharingEntries.insert(V); 1214 return (unsigned)Idx; 1215 } 1216 1217 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1218 return Constants.size()-1; 1219 } 1220 1221 void MachineConstantPool::print(raw_ostream &OS) const { 1222 if (Constants.empty()) return; 1223 1224 OS << "Constant Pool:\n"; 1225 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1226 OS << " cp#" << i << ": "; 1227 if (Constants[i].isMachineConstantPoolEntry()) 1228 Constants[i].Val.MachineCPVal->print(OS); 1229 else 1230 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1231 OS << ", align=" << Constants[i].getAlignment(); 1232 OS << "\n"; 1233 } 1234 } 1235 1236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1237 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1238 #endif 1239