1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionInitializer.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCContext.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/GraphWriter.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetFrameLowering.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "codegen" 45 46 void MachineFunctionInitializer::anchor() {} 47 48 //===----------------------------------------------------------------------===// 49 // MachineFunction implementation 50 //===----------------------------------------------------------------------===// 51 52 // Out-of-line virtual method. 53 MachineFunctionInfo::~MachineFunctionInfo() {} 54 55 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 56 MBB->getParent()->DeleteMachineBasicBlock(MBB); 57 } 58 59 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 60 unsigned FunctionNum, MachineModuleInfo &mmi) 61 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 62 MMI(mmi) { 63 if (STI->getRegisterInfo()) 64 RegInfo = new (Allocator) MachineRegisterInfo(this); 65 else 66 RegInfo = nullptr; 67 68 MFInfo = nullptr; 69 FrameInfo = new (Allocator) 70 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(), 71 STI->getFrameLowering()->isStackRealignable(), 72 !F->hasFnAttribute("no-realign-stack")); 73 74 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 75 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 76 77 ConstantPool = new (Allocator) MachineConstantPool(TM); 78 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 79 80 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 81 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 82 Alignment = std::max(Alignment, 83 STI->getTargetLowering()->getPrefFunctionAlignment()); 84 85 FunctionNumber = FunctionNum; 86 JumpTableInfo = nullptr; 87 } 88 89 MachineFunction::~MachineFunction() { 90 // Don't call destructors on MachineInstr and MachineOperand. All of their 91 // memory comes from the BumpPtrAllocator which is about to be purged. 92 // 93 // Do call MachineBasicBlock destructors, it contains std::vectors. 94 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 95 I->Insts.clearAndLeakNodesUnsafely(); 96 97 InstructionRecycler.clear(Allocator); 98 OperandRecycler.clear(Allocator); 99 BasicBlockRecycler.clear(Allocator); 100 if (RegInfo) { 101 RegInfo->~MachineRegisterInfo(); 102 Allocator.Deallocate(RegInfo); 103 } 104 if (MFInfo) { 105 MFInfo->~MachineFunctionInfo(); 106 Allocator.Deallocate(MFInfo); 107 } 108 109 FrameInfo->~MachineFrameInfo(); 110 Allocator.Deallocate(FrameInfo); 111 112 ConstantPool->~MachineConstantPool(); 113 Allocator.Deallocate(ConstantPool); 114 115 if (JumpTableInfo) { 116 JumpTableInfo->~MachineJumpTableInfo(); 117 Allocator.Deallocate(JumpTableInfo); 118 } 119 } 120 121 /// Get the JumpTableInfo for this function. 122 /// If it does not already exist, allocate one. 123 MachineJumpTableInfo *MachineFunction:: 124 getOrCreateJumpTableInfo(unsigned EntryKind) { 125 if (JumpTableInfo) return JumpTableInfo; 126 127 JumpTableInfo = new (Allocator) 128 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 129 return JumpTableInfo; 130 } 131 132 /// Should we be emitting segmented stack stuff for the function 133 bool MachineFunction::shouldSplitStack() { 134 return getFunction()->hasFnAttribute("split-stack"); 135 } 136 137 /// This discards all of the MachineBasicBlock numbers and recomputes them. 138 /// This guarantees that the MBB numbers are sequential, dense, and match the 139 /// ordering of the blocks within the function. If a specific MachineBasicBlock 140 /// is specified, only that block and those after it are renumbered. 141 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 142 if (empty()) { MBBNumbering.clear(); return; } 143 MachineFunction::iterator MBBI, E = end(); 144 if (MBB == nullptr) 145 MBBI = begin(); 146 else 147 MBBI = MBB; 148 149 // Figure out the block number this should have. 150 unsigned BlockNo = 0; 151 if (MBBI != begin()) 152 BlockNo = std::prev(MBBI)->getNumber() + 1; 153 154 for (; MBBI != E; ++MBBI, ++BlockNo) { 155 if (MBBI->getNumber() != (int)BlockNo) { 156 // Remove use of the old number. 157 if (MBBI->getNumber() != -1) { 158 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 159 "MBB number mismatch!"); 160 MBBNumbering[MBBI->getNumber()] = nullptr; 161 } 162 163 // If BlockNo is already taken, set that block's number to -1. 164 if (MBBNumbering[BlockNo]) 165 MBBNumbering[BlockNo]->setNumber(-1); 166 167 MBBNumbering[BlockNo] = MBBI; 168 MBBI->setNumber(BlockNo); 169 } 170 } 171 172 // Okay, all the blocks are renumbered. If we have compactified the block 173 // numbering, shrink MBBNumbering now. 174 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 175 MBBNumbering.resize(BlockNo); 176 } 177 178 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 179 MachineInstr * 180 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 181 DebugLoc DL, bool NoImp) { 182 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 183 MachineInstr(*this, MCID, DL, NoImp); 184 } 185 186 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 187 /// identical in all ways except the instruction has no parent, prev, or next. 188 MachineInstr * 189 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 190 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 191 MachineInstr(*this, *Orig); 192 } 193 194 /// Delete the given MachineInstr. 195 /// 196 /// This function also serves as the MachineInstr destructor - the real 197 /// ~MachineInstr() destructor must be empty. 198 void 199 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 200 // Strip it for parts. The operand array and the MI object itself are 201 // independently recyclable. 202 if (MI->Operands) 203 deallocateOperandArray(MI->CapOperands, MI->Operands); 204 // Don't call ~MachineInstr() which must be trivial anyway because 205 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 206 // destructors. 207 InstructionRecycler.Deallocate(Allocator, MI); 208 } 209 210 /// Allocate a new MachineBasicBlock. Use this instead of 211 /// `new MachineBasicBlock'. 212 MachineBasicBlock * 213 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 214 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 215 MachineBasicBlock(*this, bb); 216 } 217 218 /// Delete the given MachineBasicBlock. 219 void 220 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 221 assert(MBB->getParent() == this && "MBB parent mismatch!"); 222 MBB->~MachineBasicBlock(); 223 BasicBlockRecycler.Deallocate(Allocator, MBB); 224 } 225 226 MachineMemOperand * 227 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 228 uint64_t s, unsigned base_alignment, 229 const AAMDNodes &AAInfo, 230 const MDNode *Ranges) { 231 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 232 AAInfo, Ranges); 233 } 234 235 MachineMemOperand * 236 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 237 int64_t Offset, uint64_t Size) { 238 if (MMO->getValue()) 239 return new (Allocator) 240 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 241 MMO->getOffset()+Offset), 242 MMO->getFlags(), Size, 243 MMO->getBaseAlignment()); 244 return new (Allocator) 245 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 246 MMO->getOffset()+Offset), 247 MMO->getFlags(), Size, 248 MMO->getBaseAlignment()); 249 } 250 251 MachineInstr::mmo_iterator 252 MachineFunction::allocateMemRefsArray(unsigned long Num) { 253 return Allocator.Allocate<MachineMemOperand *>(Num); 254 } 255 256 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 257 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 258 MachineInstr::mmo_iterator End) { 259 // Count the number of load mem refs. 260 unsigned Num = 0; 261 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 262 if ((*I)->isLoad()) 263 ++Num; 264 265 // Allocate a new array and populate it with the load information. 266 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 267 unsigned Index = 0; 268 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 269 if ((*I)->isLoad()) { 270 if (!(*I)->isStore()) 271 // Reuse the MMO. 272 Result[Index] = *I; 273 else { 274 // Clone the MMO and unset the store flag. 275 MachineMemOperand *JustLoad = 276 getMachineMemOperand((*I)->getPointerInfo(), 277 (*I)->getFlags() & ~MachineMemOperand::MOStore, 278 (*I)->getSize(), (*I)->getBaseAlignment(), 279 (*I)->getAAInfo()); 280 Result[Index] = JustLoad; 281 } 282 ++Index; 283 } 284 } 285 return std::make_pair(Result, Result + Num); 286 } 287 288 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 289 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 290 MachineInstr::mmo_iterator End) { 291 // Count the number of load mem refs. 292 unsigned Num = 0; 293 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 294 if ((*I)->isStore()) 295 ++Num; 296 297 // Allocate a new array and populate it with the store information. 298 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 299 unsigned Index = 0; 300 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 301 if ((*I)->isStore()) { 302 if (!(*I)->isLoad()) 303 // Reuse the MMO. 304 Result[Index] = *I; 305 else { 306 // Clone the MMO and unset the load flag. 307 MachineMemOperand *JustStore = 308 getMachineMemOperand((*I)->getPointerInfo(), 309 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 310 (*I)->getSize(), (*I)->getBaseAlignment(), 311 (*I)->getAAInfo()); 312 Result[Index] = JustStore; 313 } 314 ++Index; 315 } 316 } 317 return std::make_pair(Result, Result + Num); 318 } 319 320 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 321 void MachineFunction::dump() const { 322 print(dbgs()); 323 } 324 #endif 325 326 StringRef MachineFunction::getName() const { 327 assert(getFunction() && "No function!"); 328 return getFunction()->getName(); 329 } 330 331 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 332 OS << "# Machine code for function " << getName() << ": "; 333 if (RegInfo) { 334 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 335 if (!RegInfo->tracksLiveness()) 336 OS << ", not tracking liveness"; 337 } 338 OS << '\n'; 339 340 // Print Frame Information 341 FrameInfo->print(*this, OS); 342 343 // Print JumpTable Information 344 if (JumpTableInfo) 345 JumpTableInfo->print(OS); 346 347 // Print Constant Pool 348 ConstantPool->print(OS); 349 350 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 351 352 if (RegInfo && !RegInfo->livein_empty()) { 353 OS << "Function Live Ins: "; 354 for (MachineRegisterInfo::livein_iterator 355 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 356 OS << PrintReg(I->first, TRI); 357 if (I->second) 358 OS << " in " << PrintReg(I->second, TRI); 359 if (std::next(I) != E) 360 OS << ", "; 361 } 362 OS << '\n'; 363 } 364 365 ModuleSlotTracker MST(getFunction()->getParent()); 366 MST.incorporateFunction(*getFunction()); 367 for (const auto &BB : *this) { 368 OS << '\n'; 369 BB.print(OS, MST, Indexes); 370 } 371 372 OS << "\n# End machine code for function " << getName() << ".\n\n"; 373 } 374 375 namespace llvm { 376 template<> 377 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 378 379 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 380 381 static std::string getGraphName(const MachineFunction *F) { 382 return ("CFG for '" + F->getName() + "' function").str(); 383 } 384 385 std::string getNodeLabel(const MachineBasicBlock *Node, 386 const MachineFunction *Graph) { 387 std::string OutStr; 388 { 389 raw_string_ostream OSS(OutStr); 390 391 if (isSimple()) { 392 OSS << "BB#" << Node->getNumber(); 393 if (const BasicBlock *BB = Node->getBasicBlock()) 394 OSS << ": " << BB->getName(); 395 } else 396 Node->print(OSS); 397 } 398 399 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 400 401 // Process string output to make it nicer... 402 for (unsigned i = 0; i != OutStr.length(); ++i) 403 if (OutStr[i] == '\n') { // Left justify 404 OutStr[i] = '\\'; 405 OutStr.insert(OutStr.begin()+i+1, 'l'); 406 } 407 return OutStr; 408 } 409 }; 410 } 411 412 void MachineFunction::viewCFG() const 413 { 414 #ifndef NDEBUG 415 ViewGraph(this, "mf" + getName()); 416 #else 417 errs() << "MachineFunction::viewCFG is only available in debug builds on " 418 << "systems with Graphviz or gv!\n"; 419 #endif // NDEBUG 420 } 421 422 void MachineFunction::viewCFGOnly() const 423 { 424 #ifndef NDEBUG 425 ViewGraph(this, "mf" + getName(), true); 426 #else 427 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 428 << "systems with Graphviz or gv!\n"; 429 #endif // NDEBUG 430 } 431 432 /// Add the specified physical register as a live-in value and 433 /// create a corresponding virtual register for it. 434 unsigned MachineFunction::addLiveIn(unsigned PReg, 435 const TargetRegisterClass *RC) { 436 MachineRegisterInfo &MRI = getRegInfo(); 437 unsigned VReg = MRI.getLiveInVirtReg(PReg); 438 if (VReg) { 439 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 440 (void)VRegRC; 441 // A physical register can be added several times. 442 // Between two calls, the register class of the related virtual register 443 // may have been constrained to match some operation constraints. 444 // In that case, check that the current register class includes the 445 // physical register and is a sub class of the specified RC. 446 assert((VRegRC == RC || (VRegRC->contains(PReg) && 447 RC->hasSubClassEq(VRegRC))) && 448 "Register class mismatch!"); 449 return VReg; 450 } 451 VReg = MRI.createVirtualRegister(RC); 452 MRI.addLiveIn(PReg, VReg); 453 return VReg; 454 } 455 456 /// Return the MCSymbol for the specified non-empty jump table. 457 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 458 /// normal 'L' label is returned. 459 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 460 bool isLinkerPrivate) const { 461 const DataLayout *DL = getTarget().getDataLayout(); 462 assert(JumpTableInfo && "No jump tables"); 463 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 464 465 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 466 DL->getPrivateGlobalPrefix(); 467 SmallString<60> Name; 468 raw_svector_ostream(Name) 469 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 470 return Ctx.getOrCreateSymbol(Name); 471 } 472 473 /// Return a function-local symbol to represent the PIC base. 474 MCSymbol *MachineFunction::getPICBaseSymbol() const { 475 const DataLayout *DL = getTarget().getDataLayout(); 476 return Ctx.getOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 477 Twine(getFunctionNumber())+"$pb"); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // MachineFrameInfo implementation 482 //===----------------------------------------------------------------------===// 483 484 /// Make sure the function is at least Align bytes aligned. 485 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 486 if (!StackRealignable || !RealignOption) 487 assert(Align <= StackAlignment && 488 "For targets without stack realignment, Align is out of limit!"); 489 if (MaxAlignment < Align) MaxAlignment = Align; 490 } 491 492 /// Clamp the alignment if requested and emit a warning. 493 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 494 unsigned StackAlign) { 495 if (!ShouldClamp || Align <= StackAlign) 496 return Align; 497 DEBUG(dbgs() << "Warning: requested alignment " << Align 498 << " exceeds the stack alignment " << StackAlign 499 << " when stack realignment is off" << '\n'); 500 return StackAlign; 501 } 502 503 /// Create a new statically sized stack object, returning a nonnegative 504 /// identifier to represent it. 505 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 506 bool isSS, const AllocaInst *Alloca) { 507 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 508 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 509 Alignment, StackAlignment); 510 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 511 !isSS)); 512 int Index = (int)Objects.size() - NumFixedObjects - 1; 513 assert(Index >= 0 && "Bad frame index!"); 514 ensureMaxAlignment(Alignment); 515 return Index; 516 } 517 518 /// Create a new statically sized stack object that represents a spill slot, 519 /// returning a nonnegative identifier to represent it. 520 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 521 unsigned Alignment) { 522 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 523 Alignment, StackAlignment); 524 CreateStackObject(Size, Alignment, true); 525 int Index = (int)Objects.size() - NumFixedObjects - 1; 526 ensureMaxAlignment(Alignment); 527 return Index; 528 } 529 530 /// Notify the MachineFrameInfo object that a variable sized object has been 531 /// created. This must be created whenever a variable sized object is created, 532 /// whether or not the index returned is actually used. 533 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 534 const AllocaInst *Alloca) { 535 HasVarSizedObjects = true; 536 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 537 Alignment, StackAlignment); 538 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 539 ensureMaxAlignment(Alignment); 540 return (int)Objects.size()-NumFixedObjects-1; 541 } 542 543 /// Create a new object at a fixed location on the stack. 544 /// All fixed objects should be created before other objects are created for 545 /// efficiency. By default, fixed objects are immutable. This returns an 546 /// index with a negative value. 547 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 548 bool Immutable, bool isAliased) { 549 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 550 // The alignment of the frame index can be determined from its offset from 551 // the incoming frame position. If the frame object is at offset 32 and 552 // the stack is guaranteed to be 16-byte aligned, then we know that the 553 // object is 16-byte aligned. 554 unsigned Align = MinAlign(SPOffset, StackAlignment); 555 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 556 StackAlignment); 557 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 558 /*isSS*/ false, 559 /*Alloca*/ nullptr, isAliased)); 560 return -++NumFixedObjects; 561 } 562 563 /// Create a spill slot at a fixed location on the stack. 564 /// Returns an index with a negative value. 565 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 566 int64_t SPOffset) { 567 unsigned Align = MinAlign(SPOffset, StackAlignment); 568 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 569 StackAlignment); 570 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 571 /*Immutable*/ true, 572 /*isSS*/ true, 573 /*Alloca*/ nullptr, 574 /*isAliased*/ false)); 575 return -++NumFixedObjects; 576 } 577 578 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 579 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 580 BitVector BV(TRI->getNumRegs()); 581 582 // Before CSI is calculated, no registers are considered pristine. They can be 583 // freely used and PEI will make sure they are saved. 584 if (!isCalleeSavedInfoValid()) 585 return BV; 586 587 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 588 BV.set(*CSR); 589 590 // Saved CSRs are not pristine. 591 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 592 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 593 E = CSI.end(); I != E; ++I) 594 BV.reset(I->getReg()); 595 596 return BV; 597 } 598 599 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 600 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 601 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 602 unsigned MaxAlign = getMaxAlignment(); 603 int Offset = 0; 604 605 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 606 // It really should be refactored to share code. Until then, changes 607 // should keep in mind that there's tight coupling between the two. 608 609 for (int i = getObjectIndexBegin(); i != 0; ++i) { 610 int FixedOff = -getObjectOffset(i); 611 if (FixedOff > Offset) Offset = FixedOff; 612 } 613 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 614 if (isDeadObjectIndex(i)) 615 continue; 616 Offset += getObjectSize(i); 617 unsigned Align = getObjectAlignment(i); 618 // Adjust to alignment boundary 619 Offset = (Offset+Align-1)/Align*Align; 620 621 MaxAlign = std::max(Align, MaxAlign); 622 } 623 624 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 625 Offset += getMaxCallFrameSize(); 626 627 // Round up the size to a multiple of the alignment. If the function has 628 // any calls or alloca's, align to the target's StackAlignment value to 629 // ensure that the callee's frame or the alloca data is suitably aligned; 630 // otherwise, for leaf functions, align to the TransientStackAlignment 631 // value. 632 unsigned StackAlign; 633 if (adjustsStack() || hasVarSizedObjects() || 634 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 635 StackAlign = TFI->getStackAlignment(); 636 else 637 StackAlign = TFI->getTransientStackAlignment(); 638 639 // If the frame pointer is eliminated, all frame offsets will be relative to 640 // SP not FP. Align to MaxAlign so this works. 641 StackAlign = std::max(StackAlign, MaxAlign); 642 unsigned AlignMask = StackAlign - 1; 643 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 644 645 return (unsigned)Offset; 646 } 647 648 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 649 if (Objects.empty()) return; 650 651 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 652 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 653 654 OS << "Frame Objects:\n"; 655 656 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 657 const StackObject &SO = Objects[i]; 658 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 659 if (SO.Size == ~0ULL) { 660 OS << "dead\n"; 661 continue; 662 } 663 if (SO.Size == 0) 664 OS << "variable sized"; 665 else 666 OS << "size=" << SO.Size; 667 OS << ", align=" << SO.Alignment; 668 669 if (i < NumFixedObjects) 670 OS << ", fixed"; 671 if (i < NumFixedObjects || SO.SPOffset != -1) { 672 int64_t Off = SO.SPOffset - ValOffset; 673 OS << ", at location [SP"; 674 if (Off > 0) 675 OS << "+" << Off; 676 else if (Off < 0) 677 OS << Off; 678 OS << "]"; 679 } 680 OS << "\n"; 681 } 682 } 683 684 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 685 void MachineFrameInfo::dump(const MachineFunction &MF) const { 686 print(MF, dbgs()); 687 } 688 #endif 689 690 //===----------------------------------------------------------------------===// 691 // MachineJumpTableInfo implementation 692 //===----------------------------------------------------------------------===// 693 694 /// Return the size of each entry in the jump table. 695 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 696 // The size of a jump table entry is 4 bytes unless the entry is just the 697 // address of a block, in which case it is the pointer size. 698 switch (getEntryKind()) { 699 case MachineJumpTableInfo::EK_BlockAddress: 700 return TD.getPointerSize(); 701 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 702 return 8; 703 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 704 case MachineJumpTableInfo::EK_LabelDifference32: 705 case MachineJumpTableInfo::EK_Custom32: 706 return 4; 707 case MachineJumpTableInfo::EK_Inline: 708 return 0; 709 } 710 llvm_unreachable("Unknown jump table encoding!"); 711 } 712 713 /// Return the alignment of each entry in the jump table. 714 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 715 // The alignment of a jump table entry is the alignment of int32 unless the 716 // entry is just the address of a block, in which case it is the pointer 717 // alignment. 718 switch (getEntryKind()) { 719 case MachineJumpTableInfo::EK_BlockAddress: 720 return TD.getPointerABIAlignment(); 721 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 722 return TD.getABIIntegerTypeAlignment(64); 723 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 724 case MachineJumpTableInfo::EK_LabelDifference32: 725 case MachineJumpTableInfo::EK_Custom32: 726 return TD.getABIIntegerTypeAlignment(32); 727 case MachineJumpTableInfo::EK_Inline: 728 return 1; 729 } 730 llvm_unreachable("Unknown jump table encoding!"); 731 } 732 733 /// Create a new jump table entry in the jump table info. 734 unsigned MachineJumpTableInfo::createJumpTableIndex( 735 const std::vector<MachineBasicBlock*> &DestBBs) { 736 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 737 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 738 return JumpTables.size()-1; 739 } 740 741 /// If Old is the target of any jump tables, update the jump tables to branch 742 /// to New instead. 743 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 744 MachineBasicBlock *New) { 745 assert(Old != New && "Not making a change?"); 746 bool MadeChange = false; 747 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 748 ReplaceMBBInJumpTable(i, Old, New); 749 return MadeChange; 750 } 751 752 /// If Old is a target of the jump tables, update the jump table to branch to 753 /// New instead. 754 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 755 MachineBasicBlock *Old, 756 MachineBasicBlock *New) { 757 assert(Old != New && "Not making a change?"); 758 bool MadeChange = false; 759 MachineJumpTableEntry &JTE = JumpTables[Idx]; 760 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 761 if (JTE.MBBs[j] == Old) { 762 JTE.MBBs[j] = New; 763 MadeChange = true; 764 } 765 return MadeChange; 766 } 767 768 void MachineJumpTableInfo::print(raw_ostream &OS) const { 769 if (JumpTables.empty()) return; 770 771 OS << "Jump Tables:\n"; 772 773 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 774 OS << " jt#" << i << ": "; 775 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 776 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 777 } 778 779 OS << '\n'; 780 } 781 782 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 783 void MachineJumpTableInfo::dump() const { print(dbgs()); } 784 #endif 785 786 787 //===----------------------------------------------------------------------===// 788 // MachineConstantPool implementation 789 //===----------------------------------------------------------------------===// 790 791 void MachineConstantPoolValue::anchor() { } 792 793 const DataLayout *MachineConstantPool::getDataLayout() const { 794 return TM.getDataLayout(); 795 } 796 797 Type *MachineConstantPoolEntry::getType() const { 798 if (isMachineConstantPoolEntry()) 799 return Val.MachineCPVal->getType(); 800 return Val.ConstVal->getType(); 801 } 802 803 804 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 805 if (isMachineConstantPoolEntry()) 806 return Val.MachineCPVal->getRelocationInfo(); 807 return Val.ConstVal->getRelocationInfo(); 808 } 809 810 SectionKind 811 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 812 SectionKind Kind; 813 switch (getRelocationInfo()) { 814 default: 815 llvm_unreachable("Unknown section kind"); 816 case Constant::GlobalRelocations: 817 Kind = SectionKind::getReadOnlyWithRel(); 818 break; 819 case Constant::LocalRelocation: 820 Kind = SectionKind::getReadOnlyWithRelLocal(); 821 break; 822 case Constant::NoRelocation: 823 switch (DL->getTypeAllocSize(getType())) { 824 case 4: 825 Kind = SectionKind::getMergeableConst4(); 826 break; 827 case 8: 828 Kind = SectionKind::getMergeableConst8(); 829 break; 830 case 16: 831 Kind = SectionKind::getMergeableConst16(); 832 break; 833 default: 834 Kind = SectionKind::getReadOnly(); 835 break; 836 } 837 } 838 return Kind; 839 } 840 841 MachineConstantPool::~MachineConstantPool() { 842 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 843 if (Constants[i].isMachineConstantPoolEntry()) 844 delete Constants[i].Val.MachineCPVal; 845 for (DenseSet<MachineConstantPoolValue*>::iterator I = 846 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 847 I != E; ++I) 848 delete *I; 849 } 850 851 /// Test whether the given two constants can be allocated the same constant pool 852 /// entry. 853 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 854 const DataLayout *TD) { 855 // Handle the trivial case quickly. 856 if (A == B) return true; 857 858 // If they have the same type but weren't the same constant, quickly 859 // reject them. 860 if (A->getType() == B->getType()) return false; 861 862 // We can't handle structs or arrays. 863 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 864 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 865 return false; 866 867 // For now, only support constants with the same size. 868 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 869 if (StoreSize != TD->getTypeStoreSize(B->getType()) || StoreSize > 128) 870 return false; 871 872 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 873 874 // Try constant folding a bitcast of both instructions to an integer. If we 875 // get two identical ConstantInt's, then we are good to share them. We use 876 // the constant folding APIs to do this so that we get the benefit of 877 // DataLayout. 878 if (isa<PointerType>(A->getType())) 879 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 880 const_cast<Constant *>(A), *TD); 881 else if (A->getType() != IntTy) 882 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 883 const_cast<Constant *>(A), *TD); 884 if (isa<PointerType>(B->getType())) 885 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 886 const_cast<Constant *>(B), *TD); 887 else if (B->getType() != IntTy) 888 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 889 const_cast<Constant *>(B), *TD); 890 891 return A == B; 892 } 893 894 /// Create a new entry in the constant pool or return an existing one. 895 /// User must specify the log2 of the minimum required alignment for the object. 896 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 897 unsigned Alignment) { 898 assert(Alignment && "Alignment must be specified!"); 899 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 900 901 // Check to see if we already have this constant. 902 // 903 // FIXME, this could be made much more efficient for large constant pools. 904 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 905 if (!Constants[i].isMachineConstantPoolEntry() && 906 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 907 getDataLayout())) { 908 if ((unsigned)Constants[i].getAlignment() < Alignment) 909 Constants[i].Alignment = Alignment; 910 return i; 911 } 912 913 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 914 return Constants.size()-1; 915 } 916 917 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 918 unsigned Alignment) { 919 assert(Alignment && "Alignment must be specified!"); 920 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 921 922 // Check to see if we already have this constant. 923 // 924 // FIXME, this could be made much more efficient for large constant pools. 925 int Idx = V->getExistingMachineCPValue(this, Alignment); 926 if (Idx != -1) { 927 MachineCPVsSharingEntries.insert(V); 928 return (unsigned)Idx; 929 } 930 931 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 932 return Constants.size()-1; 933 } 934 935 void MachineConstantPool::print(raw_ostream &OS) const { 936 if (Constants.empty()) return; 937 938 OS << "Constant Pool:\n"; 939 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 940 OS << " cp#" << i << ": "; 941 if (Constants[i].isMachineConstantPoolEntry()) 942 Constants[i].Val.MachineCPVal->print(OS); 943 else 944 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 945 OS << ", align=" << Constants[i].getAlignment(); 946 OS << "\n"; 947 } 948 } 949 950 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 951 void MachineConstantPool::dump() const { print(dbgs()); } 952 #endif 953