xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 1be62f0327cec94df3b60e3f2dc78384f48c6630)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/WinEHFuncInfo.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/ModuleSlotTracker.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/MC/MCContext.h"
51 #include "llvm/MC/MCSymbol.h"
52 #include "llvm/MC/SectionKind.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/DOTGraphTraits.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/CodeGen/TargetFrameLowering.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <iterator>
71 #include <string>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "codegen"
78 
79 static cl::opt<unsigned>
80 AlignAllFunctions("align-all-functions",
81                   cl::desc("Force the alignment of all functions."),
82                   cl::init(0), cl::Hidden);
83 
84 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
85   using P = MachineFunctionProperties::Property;
86 
87   switch(Prop) {
88   case P::FailedISel: return "FailedISel";
89   case P::IsSSA: return "IsSSA";
90   case P::Legalized: return "Legalized";
91   case P::NoPHIs: return "NoPHIs";
92   case P::NoVRegs: return "NoVRegs";
93   case P::RegBankSelected: return "RegBankSelected";
94   case P::Selected: return "Selected";
95   case P::TracksLiveness: return "TracksLiveness";
96   }
97   llvm_unreachable("Invalid machine function property");
98 }
99 
100 void MachineFunctionProperties::print(raw_ostream &OS) const {
101   const char *Separator = "";
102   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
103     if (!Properties[I])
104       continue;
105     OS << Separator << getPropertyName(static_cast<Property>(I));
106     Separator = ", ";
107   }
108 }
109 
110 //===----------------------------------------------------------------------===//
111 // MachineFunction implementation
112 //===----------------------------------------------------------------------===//
113 
114 // Out-of-line virtual method.
115 MachineFunctionInfo::~MachineFunctionInfo() = default;
116 
117 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
118   MBB->getParent()->DeleteMachineBasicBlock(MBB);
119 }
120 
121 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
122                                            const Function *Fn) {
123   if (Fn->hasFnAttribute(Attribute::StackAlignment))
124     return Fn->getFnStackAlignment();
125   return STI->getFrameLowering()->getStackAlignment();
126 }
127 
128 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
129                                  unsigned FunctionNum, MachineModuleInfo &mmi)
130     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
131       MMI(mmi) {
132   FunctionNumber = FunctionNum;
133   init();
134 }
135 
136 void MachineFunction::init() {
137   // Assume the function starts in SSA form with correct liveness.
138   Properties.set(MachineFunctionProperties::Property::IsSSA);
139   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
140   if (STI->getRegisterInfo())
141     RegInfo = new (Allocator) MachineRegisterInfo(this);
142   else
143     RegInfo = nullptr;
144 
145   MFInfo = nullptr;
146   // We can realign the stack if the target supports it and the user hasn't
147   // explicitly asked us not to.
148   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
149                       !Fn->hasFnAttribute("no-realign-stack");
150   FrameInfo = new (Allocator) MachineFrameInfo(
151       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
152       /*ForceRealign=*/CanRealignSP &&
153           Fn->hasFnAttribute(Attribute::StackAlignment));
154 
155   if (Fn->hasFnAttribute(Attribute::StackAlignment))
156     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
157 
158   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
159   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
160 
161   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
162   // FIXME: Use Function::optForSize().
163   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
164     Alignment = std::max(Alignment,
165                          STI->getTargetLowering()->getPrefFunctionAlignment());
166 
167   if (AlignAllFunctions)
168     Alignment = AlignAllFunctions;
169 
170   JumpTableInfo = nullptr;
171 
172   if (isFuncletEHPersonality(classifyEHPersonality(
173           Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) {
174     WinEHInfo = new (Allocator) WinEHFuncInfo();
175   }
176 
177   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
178          "Can't create a MachineFunction using a Module with a "
179          "Target-incompatible DataLayout attached\n");
180 
181   PSVManager =
182     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
183                                                   getInstrInfo()));
184 }
185 
186 MachineFunction::~MachineFunction() {
187   clear();
188 }
189 
190 void MachineFunction::clear() {
191   Properties.reset();
192   // Don't call destructors on MachineInstr and MachineOperand. All of their
193   // memory comes from the BumpPtrAllocator which is about to be purged.
194   //
195   // Do call MachineBasicBlock destructors, it contains std::vectors.
196   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
197     I->Insts.clearAndLeakNodesUnsafely();
198 
199   InstructionRecycler.clear(Allocator);
200   OperandRecycler.clear(Allocator);
201   BasicBlockRecycler.clear(Allocator);
202   CodeViewAnnotations.clear();
203   VariableDbgInfos.clear();
204   if (RegInfo) {
205     RegInfo->~MachineRegisterInfo();
206     Allocator.Deallocate(RegInfo);
207   }
208   if (MFInfo) {
209     MFInfo->~MachineFunctionInfo();
210     Allocator.Deallocate(MFInfo);
211   }
212 
213   FrameInfo->~MachineFrameInfo();
214   Allocator.Deallocate(FrameInfo);
215 
216   ConstantPool->~MachineConstantPool();
217   Allocator.Deallocate(ConstantPool);
218 
219   if (JumpTableInfo) {
220     JumpTableInfo->~MachineJumpTableInfo();
221     Allocator.Deallocate(JumpTableInfo);
222   }
223 
224   if (WinEHInfo) {
225     WinEHInfo->~WinEHFuncInfo();
226     Allocator.Deallocate(WinEHInfo);
227   }
228 }
229 
230 const DataLayout &MachineFunction::getDataLayout() const {
231   return Fn->getParent()->getDataLayout();
232 }
233 
234 /// Get the JumpTableInfo for this function.
235 /// If it does not already exist, allocate one.
236 MachineJumpTableInfo *MachineFunction::
237 getOrCreateJumpTableInfo(unsigned EntryKind) {
238   if (JumpTableInfo) return JumpTableInfo;
239 
240   JumpTableInfo = new (Allocator)
241     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
242   return JumpTableInfo;
243 }
244 
245 /// Should we be emitting segmented stack stuff for the function
246 bool MachineFunction::shouldSplitStack() const {
247   return getFunction()->hasFnAttribute("split-stack");
248 }
249 
250 /// This discards all of the MachineBasicBlock numbers and recomputes them.
251 /// This guarantees that the MBB numbers are sequential, dense, and match the
252 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
253 /// is specified, only that block and those after it are renumbered.
254 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
255   if (empty()) { MBBNumbering.clear(); return; }
256   MachineFunction::iterator MBBI, E = end();
257   if (MBB == nullptr)
258     MBBI = begin();
259   else
260     MBBI = MBB->getIterator();
261 
262   // Figure out the block number this should have.
263   unsigned BlockNo = 0;
264   if (MBBI != begin())
265     BlockNo = std::prev(MBBI)->getNumber() + 1;
266 
267   for (; MBBI != E; ++MBBI, ++BlockNo) {
268     if (MBBI->getNumber() != (int)BlockNo) {
269       // Remove use of the old number.
270       if (MBBI->getNumber() != -1) {
271         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
272                "MBB number mismatch!");
273         MBBNumbering[MBBI->getNumber()] = nullptr;
274       }
275 
276       // If BlockNo is already taken, set that block's number to -1.
277       if (MBBNumbering[BlockNo])
278         MBBNumbering[BlockNo]->setNumber(-1);
279 
280       MBBNumbering[BlockNo] = &*MBBI;
281       MBBI->setNumber(BlockNo);
282     }
283   }
284 
285   // Okay, all the blocks are renumbered.  If we have compactified the block
286   // numbering, shrink MBBNumbering now.
287   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
288   MBBNumbering.resize(BlockNo);
289 }
290 
291 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
292 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
293                                                   const DebugLoc &DL,
294                                                   bool NoImp) {
295   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
296     MachineInstr(*this, MCID, DL, NoImp);
297 }
298 
299 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
300 /// identical in all ways except the instruction has no parent, prev, or next.
301 MachineInstr *
302 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
303   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
304              MachineInstr(*this, *Orig);
305 }
306 
307 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
308     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
309   MachineInstr *FirstClone = nullptr;
310   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
311   while (true) {
312     MachineInstr *Cloned = CloneMachineInstr(&*I);
313     MBB.insert(InsertBefore, Cloned);
314     if (FirstClone == nullptr) {
315       FirstClone = Cloned;
316     } else {
317       Cloned->bundleWithPred();
318     }
319 
320     if (!I->isBundledWithSucc())
321       break;
322     ++I;
323   }
324   return *FirstClone;
325 }
326 
327 /// Delete the given MachineInstr.
328 ///
329 /// This function also serves as the MachineInstr destructor - the real
330 /// ~MachineInstr() destructor must be empty.
331 void
332 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
333   // Strip it for parts. The operand array and the MI object itself are
334   // independently recyclable.
335   if (MI->Operands)
336     deallocateOperandArray(MI->CapOperands, MI->Operands);
337   // Don't call ~MachineInstr() which must be trivial anyway because
338   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
339   // destructors.
340   InstructionRecycler.Deallocate(Allocator, MI);
341 }
342 
343 /// Allocate a new MachineBasicBlock. Use this instead of
344 /// `new MachineBasicBlock'.
345 MachineBasicBlock *
346 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
347   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
348              MachineBasicBlock(*this, bb);
349 }
350 
351 /// Delete the given MachineBasicBlock.
352 void
353 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
354   assert(MBB->getParent() == this && "MBB parent mismatch!");
355   MBB->~MachineBasicBlock();
356   BasicBlockRecycler.Deallocate(Allocator, MBB);
357 }
358 
359 MachineMemOperand *MachineFunction::getMachineMemOperand(
360     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
361     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
362     SyncScope::ID SSID, AtomicOrdering Ordering,
363     AtomicOrdering FailureOrdering) {
364   return new (Allocator)
365       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
366                         SSID, Ordering, FailureOrdering);
367 }
368 
369 MachineMemOperand *
370 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
371                                       int64_t Offset, uint64_t Size) {
372   if (MMO->getValue())
373     return new (Allocator)
374                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
375                                                     MMO->getOffset()+Offset),
376                                  MMO->getFlags(), Size, MMO->getBaseAlignment(),
377                                  AAMDNodes(), nullptr, MMO->getSyncScopeID(),
378                                  MMO->getOrdering(), MMO->getFailureOrdering());
379   return new (Allocator)
380              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
381                                                   MMO->getOffset()+Offset),
382                                MMO->getFlags(), Size, MMO->getBaseAlignment(),
383                                AAMDNodes(), nullptr, MMO->getSyncScopeID(),
384                                MMO->getOrdering(), MMO->getFailureOrdering());
385 }
386 
387 MachineMemOperand *
388 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
389                                       const AAMDNodes &AAInfo) {
390   MachinePointerInfo MPI = MMO->getValue() ?
391              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
392              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
393 
394   return new (Allocator)
395              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
396                                MMO->getBaseAlignment(), AAInfo,
397                                MMO->getRanges(), MMO->getSyncScopeID(),
398                                MMO->getOrdering(), MMO->getFailureOrdering());
399 }
400 
401 MachineInstr::mmo_iterator
402 MachineFunction::allocateMemRefsArray(unsigned long Num) {
403   return Allocator.Allocate<MachineMemOperand *>(Num);
404 }
405 
406 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
407 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
408                                     MachineInstr::mmo_iterator End) {
409   // Count the number of load mem refs.
410   unsigned Num = 0;
411   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
412     if ((*I)->isLoad())
413       ++Num;
414 
415   // Allocate a new array and populate it with the load information.
416   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
417   unsigned Index = 0;
418   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
419     if ((*I)->isLoad()) {
420       if (!(*I)->isStore())
421         // Reuse the MMO.
422         Result[Index] = *I;
423       else {
424         // Clone the MMO and unset the store flag.
425         MachineMemOperand *JustLoad =
426           getMachineMemOperand((*I)->getPointerInfo(),
427                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
428                                (*I)->getSize(), (*I)->getBaseAlignment(),
429                                (*I)->getAAInfo(), nullptr,
430                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
431                                (*I)->getFailureOrdering());
432         Result[Index] = JustLoad;
433       }
434       ++Index;
435     }
436   }
437   return std::make_pair(Result, Result + Num);
438 }
439 
440 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
441 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
442                                      MachineInstr::mmo_iterator End) {
443   // Count the number of load mem refs.
444   unsigned Num = 0;
445   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
446     if ((*I)->isStore())
447       ++Num;
448 
449   // Allocate a new array and populate it with the store information.
450   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
451   unsigned Index = 0;
452   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
453     if ((*I)->isStore()) {
454       if (!(*I)->isLoad())
455         // Reuse the MMO.
456         Result[Index] = *I;
457       else {
458         // Clone the MMO and unset the load flag.
459         MachineMemOperand *JustStore =
460           getMachineMemOperand((*I)->getPointerInfo(),
461                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
462                                (*I)->getSize(), (*I)->getBaseAlignment(),
463                                (*I)->getAAInfo(), nullptr,
464                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
465                                (*I)->getFailureOrdering());
466         Result[Index] = JustStore;
467       }
468       ++Index;
469     }
470   }
471   return std::make_pair(Result, Result + Num);
472 }
473 
474 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
475   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
476   std::copy(Name.begin(), Name.end(), Dest);
477   Dest[Name.size()] = 0;
478   return Dest;
479 }
480 
481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
482 LLVM_DUMP_METHOD void MachineFunction::dump() const {
483   print(dbgs());
484 }
485 #endif
486 
487 StringRef MachineFunction::getName() const {
488   assert(getFunction() && "No function!");
489   return getFunction()->getName();
490 }
491 
492 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
493   OS << "# Machine code for function " << getName() << ": ";
494   getProperties().print(OS);
495   OS << '\n';
496 
497   // Print Frame Information
498   FrameInfo->print(*this, OS);
499 
500   // Print JumpTable Information
501   if (JumpTableInfo)
502     JumpTableInfo->print(OS);
503 
504   // Print Constant Pool
505   ConstantPool->print(OS);
506 
507   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
508 
509   if (RegInfo && !RegInfo->livein_empty()) {
510     OS << "Function Live Ins: ";
511     for (MachineRegisterInfo::livein_iterator
512          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
513       OS << PrintReg(I->first, TRI);
514       if (I->second)
515         OS << " in " << PrintReg(I->second, TRI);
516       if (std::next(I) != E)
517         OS << ", ";
518     }
519     OS << '\n';
520   }
521 
522   ModuleSlotTracker MST(getFunction()->getParent());
523   MST.incorporateFunction(*getFunction());
524   for (const auto &BB : *this) {
525     OS << '\n';
526     BB.print(OS, MST, Indexes);
527   }
528 
529   OS << "\n# End machine code for function " << getName() << ".\n\n";
530 }
531 
532 namespace llvm {
533 
534   template<>
535   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
536     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
537 
538     static std::string getGraphName(const MachineFunction *F) {
539       return ("CFG for '" + F->getName() + "' function").str();
540     }
541 
542     std::string getNodeLabel(const MachineBasicBlock *Node,
543                              const MachineFunction *Graph) {
544       std::string OutStr;
545       {
546         raw_string_ostream OSS(OutStr);
547 
548         if (isSimple()) {
549           OSS << "BB#" << Node->getNumber();
550           if (const BasicBlock *BB = Node->getBasicBlock())
551             OSS << ": " << BB->getName();
552         } else
553           Node->print(OSS);
554       }
555 
556       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
557 
558       // Process string output to make it nicer...
559       for (unsigned i = 0; i != OutStr.length(); ++i)
560         if (OutStr[i] == '\n') {                            // Left justify
561           OutStr[i] = '\\';
562           OutStr.insert(OutStr.begin()+i+1, 'l');
563         }
564       return OutStr;
565     }
566   };
567 
568 } // end namespace llvm
569 
570 void MachineFunction::viewCFG() const
571 {
572 #ifndef NDEBUG
573   ViewGraph(this, "mf" + getName());
574 #else
575   errs() << "MachineFunction::viewCFG is only available in debug builds on "
576          << "systems with Graphviz or gv!\n";
577 #endif // NDEBUG
578 }
579 
580 void MachineFunction::viewCFGOnly() const
581 {
582 #ifndef NDEBUG
583   ViewGraph(this, "mf" + getName(), true);
584 #else
585   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
586          << "systems with Graphviz or gv!\n";
587 #endif // NDEBUG
588 }
589 
590 /// Add the specified physical register as a live-in value and
591 /// create a corresponding virtual register for it.
592 unsigned MachineFunction::addLiveIn(unsigned PReg,
593                                     const TargetRegisterClass *RC) {
594   MachineRegisterInfo &MRI = getRegInfo();
595   unsigned VReg = MRI.getLiveInVirtReg(PReg);
596   if (VReg) {
597     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
598     (void)VRegRC;
599     // A physical register can be added several times.
600     // Between two calls, the register class of the related virtual register
601     // may have been constrained to match some operation constraints.
602     // In that case, check that the current register class includes the
603     // physical register and is a sub class of the specified RC.
604     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
605                              RC->hasSubClassEq(VRegRC))) &&
606             "Register class mismatch!");
607     return VReg;
608   }
609   VReg = MRI.createVirtualRegister(RC);
610   MRI.addLiveIn(PReg, VReg);
611   return VReg;
612 }
613 
614 /// Return the MCSymbol for the specified non-empty jump table.
615 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
616 /// normal 'L' label is returned.
617 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
618                                         bool isLinkerPrivate) const {
619   const DataLayout &DL = getDataLayout();
620   assert(JumpTableInfo && "No jump tables");
621   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
622 
623   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
624                                      : DL.getPrivateGlobalPrefix();
625   SmallString<60> Name;
626   raw_svector_ostream(Name)
627     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
628   return Ctx.getOrCreateSymbol(Name);
629 }
630 
631 /// Return a function-local symbol to represent the PIC base.
632 MCSymbol *MachineFunction::getPICBaseSymbol() const {
633   const DataLayout &DL = getDataLayout();
634   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
635                                Twine(getFunctionNumber()) + "$pb");
636 }
637 
638 /// \name Exception Handling
639 /// \{
640 
641 LandingPadInfo &
642 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
643   unsigned N = LandingPads.size();
644   for (unsigned i = 0; i < N; ++i) {
645     LandingPadInfo &LP = LandingPads[i];
646     if (LP.LandingPadBlock == LandingPad)
647       return LP;
648   }
649 
650   LandingPads.push_back(LandingPadInfo(LandingPad));
651   return LandingPads[N];
652 }
653 
654 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
655                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
656   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
657   LP.BeginLabels.push_back(BeginLabel);
658   LP.EndLabels.push_back(EndLabel);
659 }
660 
661 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
662   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
663   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
664   LP.LandingPadLabel = LandingPadLabel;
665   return LandingPadLabel;
666 }
667 
668 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
669                                        ArrayRef<const GlobalValue *> TyInfo) {
670   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
671   for (unsigned N = TyInfo.size(); N; --N)
672     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
673 }
674 
675 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
676                                         ArrayRef<const GlobalValue *> TyInfo) {
677   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
678   std::vector<unsigned> IdsInFilter(TyInfo.size());
679   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
680     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
681   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
682 }
683 
684 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
685   for (unsigned i = 0; i != LandingPads.size(); ) {
686     LandingPadInfo &LandingPad = LandingPads[i];
687     if (LandingPad.LandingPadLabel &&
688         !LandingPad.LandingPadLabel->isDefined() &&
689         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
690       LandingPad.LandingPadLabel = nullptr;
691 
692     // Special case: we *should* emit LPs with null LP MBB. This indicates
693     // "nounwind" case.
694     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
695       LandingPads.erase(LandingPads.begin() + i);
696       continue;
697     }
698 
699     for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
700       MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
701       MCSymbol *EndLabel = LandingPad.EndLabels[j];
702       if ((BeginLabel->isDefined() ||
703            (LPMap && (*LPMap)[BeginLabel] != 0)) &&
704           (EndLabel->isDefined() ||
705            (LPMap && (*LPMap)[EndLabel] != 0))) continue;
706 
707       LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
708       LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
709       --j;
710       --e;
711     }
712 
713     // Remove landing pads with no try-ranges.
714     if (LandingPads[i].BeginLabels.empty()) {
715       LandingPads.erase(LandingPads.begin() + i);
716       continue;
717     }
718 
719     // If there is no landing pad, ensure that the list of typeids is empty.
720     // If the only typeid is a cleanup, this is the same as having no typeids.
721     if (!LandingPad.LandingPadBlock ||
722         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
723       LandingPad.TypeIds.clear();
724     ++i;
725   }
726 }
727 
728 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
729   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
730   LP.TypeIds.push_back(0);
731 }
732 
733 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
734                                          const Function *Filter,
735                                          const BlockAddress *RecoverBA) {
736   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
737   SEHHandler Handler;
738   Handler.FilterOrFinally = Filter;
739   Handler.RecoverBA = RecoverBA;
740   LP.SEHHandlers.push_back(Handler);
741 }
742 
743 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
744                                            const Function *Cleanup) {
745   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
746   SEHHandler Handler;
747   Handler.FilterOrFinally = Cleanup;
748   Handler.RecoverBA = nullptr;
749   LP.SEHHandlers.push_back(Handler);
750 }
751 
752 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
753                                             ArrayRef<unsigned> Sites) {
754   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
755 }
756 
757 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
758   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
759     if (TypeInfos[i] == TI) return i + 1;
760 
761   TypeInfos.push_back(TI);
762   return TypeInfos.size();
763 }
764 
765 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
766   // If the new filter coincides with the tail of an existing filter, then
767   // re-use the existing filter.  Folding filters more than this requires
768   // re-ordering filters and/or their elements - probably not worth it.
769   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
770        E = FilterEnds.end(); I != E; ++I) {
771     unsigned i = *I, j = TyIds.size();
772 
773     while (i && j)
774       if (FilterIds[--i] != TyIds[--j])
775         goto try_next;
776 
777     if (!j)
778       // The new filter coincides with range [i, end) of the existing filter.
779       return -(1 + i);
780 
781 try_next:;
782   }
783 
784   // Add the new filter.
785   int FilterID = -(1 + FilterIds.size());
786   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
787   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
788   FilterEnds.push_back(FilterIds.size());
789   FilterIds.push_back(0); // terminator
790   return FilterID;
791 }
792 
793 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
794   MachineFunction &MF = *MBB.getParent();
795   if (const auto *PF = dyn_cast<Function>(
796           I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
797     MF.getMMI().addPersonality(PF);
798 
799   if (I.isCleanup())
800     MF.addCleanup(&MBB);
801 
802   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
803   //        but we need to do it this way because of how the DWARF EH emitter
804   //        processes the clauses.
805   for (unsigned i = I.getNumClauses(); i != 0; --i) {
806     Value *Val = I.getClause(i - 1);
807     if (I.isCatch(i - 1)) {
808       MF.addCatchTypeInfo(&MBB,
809                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
810     } else {
811       // Add filters in a list.
812       Constant *CVal = cast<Constant>(Val);
813       SmallVector<const GlobalValue *, 4> FilterList;
814       for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
815            II != IE; ++II)
816         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
817 
818       MF.addFilterTypeInfo(&MBB, FilterList);
819     }
820   }
821 }
822 
823 /// \}
824 
825 //===----------------------------------------------------------------------===//
826 //  MachineJumpTableInfo implementation
827 //===----------------------------------------------------------------------===//
828 
829 /// Return the size of each entry in the jump table.
830 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
831   // The size of a jump table entry is 4 bytes unless the entry is just the
832   // address of a block, in which case it is the pointer size.
833   switch (getEntryKind()) {
834   case MachineJumpTableInfo::EK_BlockAddress:
835     return TD.getPointerSize();
836   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
837     return 8;
838   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
839   case MachineJumpTableInfo::EK_LabelDifference32:
840   case MachineJumpTableInfo::EK_Custom32:
841     return 4;
842   case MachineJumpTableInfo::EK_Inline:
843     return 0;
844   }
845   llvm_unreachable("Unknown jump table encoding!");
846 }
847 
848 /// Return the alignment of each entry in the jump table.
849 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
850   // The alignment of a jump table entry is the alignment of int32 unless the
851   // entry is just the address of a block, in which case it is the pointer
852   // alignment.
853   switch (getEntryKind()) {
854   case MachineJumpTableInfo::EK_BlockAddress:
855     return TD.getPointerABIAlignment();
856   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
857     return TD.getABIIntegerTypeAlignment(64);
858   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
859   case MachineJumpTableInfo::EK_LabelDifference32:
860   case MachineJumpTableInfo::EK_Custom32:
861     return TD.getABIIntegerTypeAlignment(32);
862   case MachineJumpTableInfo::EK_Inline:
863     return 1;
864   }
865   llvm_unreachable("Unknown jump table encoding!");
866 }
867 
868 /// Create a new jump table entry in the jump table info.
869 unsigned MachineJumpTableInfo::createJumpTableIndex(
870                                const std::vector<MachineBasicBlock*> &DestBBs) {
871   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
872   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
873   return JumpTables.size()-1;
874 }
875 
876 /// If Old is the target of any jump tables, update the jump tables to branch
877 /// to New instead.
878 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
879                                                   MachineBasicBlock *New) {
880   assert(Old != New && "Not making a change?");
881   bool MadeChange = false;
882   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
883     ReplaceMBBInJumpTable(i, Old, New);
884   return MadeChange;
885 }
886 
887 /// If Old is a target of the jump tables, update the jump table to branch to
888 /// New instead.
889 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
890                                                  MachineBasicBlock *Old,
891                                                  MachineBasicBlock *New) {
892   assert(Old != New && "Not making a change?");
893   bool MadeChange = false;
894   MachineJumpTableEntry &JTE = JumpTables[Idx];
895   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
896     if (JTE.MBBs[j] == Old) {
897       JTE.MBBs[j] = New;
898       MadeChange = true;
899     }
900   return MadeChange;
901 }
902 
903 void MachineJumpTableInfo::print(raw_ostream &OS) const {
904   if (JumpTables.empty()) return;
905 
906   OS << "Jump Tables:\n";
907 
908   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
909     OS << "  jt#" << i << ": ";
910     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
911       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
912   }
913 
914   OS << '\n';
915 }
916 
917 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
918 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
919 #endif
920 
921 //===----------------------------------------------------------------------===//
922 //  MachineConstantPool implementation
923 //===----------------------------------------------------------------------===//
924 
925 void MachineConstantPoolValue::anchor() {}
926 
927 Type *MachineConstantPoolEntry::getType() const {
928   if (isMachineConstantPoolEntry())
929     return Val.MachineCPVal->getType();
930   return Val.ConstVal->getType();
931 }
932 
933 bool MachineConstantPoolEntry::needsRelocation() const {
934   if (isMachineConstantPoolEntry())
935     return true;
936   return Val.ConstVal->needsRelocation();
937 }
938 
939 SectionKind
940 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
941   if (needsRelocation())
942     return SectionKind::getReadOnlyWithRel();
943   switch (DL->getTypeAllocSize(getType())) {
944   case 4:
945     return SectionKind::getMergeableConst4();
946   case 8:
947     return SectionKind::getMergeableConst8();
948   case 16:
949     return SectionKind::getMergeableConst16();
950   case 32:
951     return SectionKind::getMergeableConst32();
952   default:
953     return SectionKind::getReadOnly();
954   }
955 }
956 
957 MachineConstantPool::~MachineConstantPool() {
958   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
959   // so keep track of which we've deleted to avoid double deletions.
960   DenseSet<MachineConstantPoolValue*> Deleted;
961   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
962     if (Constants[i].isMachineConstantPoolEntry()) {
963       Deleted.insert(Constants[i].Val.MachineCPVal);
964       delete Constants[i].Val.MachineCPVal;
965     }
966   for (DenseSet<MachineConstantPoolValue*>::iterator I =
967        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
968        I != E; ++I) {
969     if (Deleted.count(*I) == 0)
970       delete *I;
971   }
972 }
973 
974 /// Test whether the given two constants can be allocated the same constant pool
975 /// entry.
976 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
977                                       const DataLayout &DL) {
978   // Handle the trivial case quickly.
979   if (A == B) return true;
980 
981   // If they have the same type but weren't the same constant, quickly
982   // reject them.
983   if (A->getType() == B->getType()) return false;
984 
985   // We can't handle structs or arrays.
986   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
987       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
988     return false;
989 
990   // For now, only support constants with the same size.
991   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
992   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
993     return false;
994 
995   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
996 
997   // Try constant folding a bitcast of both instructions to an integer.  If we
998   // get two identical ConstantInt's, then we are good to share them.  We use
999   // the constant folding APIs to do this so that we get the benefit of
1000   // DataLayout.
1001   if (isa<PointerType>(A->getType()))
1002     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1003                                 const_cast<Constant *>(A), IntTy, DL);
1004   else if (A->getType() != IntTy)
1005     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1006                                 IntTy, DL);
1007   if (isa<PointerType>(B->getType()))
1008     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1009                                 const_cast<Constant *>(B), IntTy, DL);
1010   else if (B->getType() != IntTy)
1011     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1012                                 IntTy, DL);
1013 
1014   return A == B;
1015 }
1016 
1017 /// Create a new entry in the constant pool or return an existing one.
1018 /// User must specify the log2 of the minimum required alignment for the object.
1019 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1020                                                    unsigned Alignment) {
1021   assert(Alignment && "Alignment must be specified!");
1022   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1023 
1024   // Check to see if we already have this constant.
1025   //
1026   // FIXME, this could be made much more efficient for large constant pools.
1027   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1028     if (!Constants[i].isMachineConstantPoolEntry() &&
1029         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1030       if ((unsigned)Constants[i].getAlignment() < Alignment)
1031         Constants[i].Alignment = Alignment;
1032       return i;
1033     }
1034 
1035   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1036   return Constants.size()-1;
1037 }
1038 
1039 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1040                                                    unsigned Alignment) {
1041   assert(Alignment && "Alignment must be specified!");
1042   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1043 
1044   // Check to see if we already have this constant.
1045   //
1046   // FIXME, this could be made much more efficient for large constant pools.
1047   int Idx = V->getExistingMachineCPValue(this, Alignment);
1048   if (Idx != -1) {
1049     MachineCPVsSharingEntries.insert(V);
1050     return (unsigned)Idx;
1051   }
1052 
1053   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1054   return Constants.size()-1;
1055 }
1056 
1057 void MachineConstantPool::print(raw_ostream &OS) const {
1058   if (Constants.empty()) return;
1059 
1060   OS << "Constant Pool:\n";
1061   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1062     OS << "  cp#" << i << ": ";
1063     if (Constants[i].isMachineConstantPoolEntry())
1064       Constants[i].Val.MachineCPVal->print(OS);
1065     else
1066       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1067     OS << ", align=" << Constants[i].getAlignment();
1068     OS << "\n";
1069   }
1070 }
1071 
1072 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1073 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1074 #endif
1075