xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 1ae7905fc86004a95fbf9a07f248af382f01909f)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned> AlignAllFunctions(
82     "align-all-functions",
83     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
84              "means align on 16B boundaries)."),
85     cl::init(0), cl::Hidden);
86 
87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
88   using P = MachineFunctionProperties::Property;
89 
90   switch(Prop) {
91   case P::FailedISel: return "FailedISel";
92   case P::IsSSA: return "IsSSA";
93   case P::Legalized: return "Legalized";
94   case P::NoPHIs: return "NoPHIs";
95   case P::NoVRegs: return "NoVRegs";
96   case P::RegBankSelected: return "RegBankSelected";
97   case P::Selected: return "Selected";
98   case P::TracksLiveness: return "TracksLiveness";
99   }
100   llvm_unreachable("Invalid machine function property");
101 }
102 
103 // Pin the vtable to this file.
104 void MachineFunction::Delegate::anchor() {}
105 
106 void MachineFunctionProperties::print(raw_ostream &OS) const {
107   const char *Separator = "";
108   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
109     if (!Properties[I])
110       continue;
111     OS << Separator << getPropertyName(static_cast<Property>(I));
112     Separator = ", ";
113   }
114 }
115 
116 //===----------------------------------------------------------------------===//
117 // MachineFunction implementation
118 //===----------------------------------------------------------------------===//
119 
120 // Out-of-line virtual method.
121 MachineFunctionInfo::~MachineFunctionInfo() = default;
122 
123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
124   MBB->getParent()->DeleteMachineBasicBlock(MBB);
125 }
126 
127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
128                                            const Function &F) {
129   if (F.hasFnAttribute(Attribute::StackAlignment))
130     return F.getFnStackAlignment();
131   return STI->getFrameLowering()->getStackAlignment();
132 }
133 
134 MachineFunction::MachineFunction(const Function &F,
135                                  const LLVMTargetMachine &Target,
136                                  const TargetSubtargetInfo &STI,
137                                  unsigned FunctionNum, MachineModuleInfo &mmi)
138     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
139   FunctionNumber = FunctionNum;
140   init();
141 }
142 
143 void MachineFunction::handleInsertion(MachineInstr &MI) {
144   if (TheDelegate)
145     TheDelegate->MF_HandleInsertion(MI);
146 }
147 
148 void MachineFunction::handleRemoval(MachineInstr &MI) {
149   if (TheDelegate)
150     TheDelegate->MF_HandleRemoval(MI);
151 }
152 
153 void MachineFunction::init() {
154   // Assume the function starts in SSA form with correct liveness.
155   Properties.set(MachineFunctionProperties::Property::IsSSA);
156   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
157   if (STI->getRegisterInfo())
158     RegInfo = new (Allocator) MachineRegisterInfo(this);
159   else
160     RegInfo = nullptr;
161 
162   MFInfo = nullptr;
163   // We can realign the stack if the target supports it and the user hasn't
164   // explicitly asked us not to.
165   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
166                       !F.hasFnAttribute("no-realign-stack");
167   FrameInfo = new (Allocator) MachineFrameInfo(
168       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
169       /*ForcedRealign=*/CanRealignSP &&
170           F.hasFnAttribute(Attribute::StackAlignment));
171 
172   if (F.hasFnAttribute(Attribute::StackAlignment))
173     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
174 
175   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
176   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
177 
178   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
179   // FIXME: Use Function::hasOptSize().
180   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
181     Alignment = std::max(Alignment,
182                          STI->getTargetLowering()->getPrefFunctionAlignment());
183 
184   if (AlignAllFunctions)
185     Alignment = llvm::Align(1ULL << AlignAllFunctions);
186 
187   JumpTableInfo = nullptr;
188 
189   if (isFuncletEHPersonality(classifyEHPersonality(
190           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
191     WinEHInfo = new (Allocator) WinEHFuncInfo();
192   }
193 
194   if (isScopedEHPersonality(classifyEHPersonality(
195           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
196     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
197   }
198 
199   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
200          "Can't create a MachineFunction using a Module with a "
201          "Target-incompatible DataLayout attached\n");
202 
203   PSVManager =
204     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
205                                                   getInstrInfo()));
206 }
207 
208 MachineFunction::~MachineFunction() {
209   clear();
210 }
211 
212 void MachineFunction::clear() {
213   Properties.reset();
214   // Don't call destructors on MachineInstr and MachineOperand. All of their
215   // memory comes from the BumpPtrAllocator which is about to be purged.
216   //
217   // Do call MachineBasicBlock destructors, it contains std::vectors.
218   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
219     I->Insts.clearAndLeakNodesUnsafely();
220   MBBNumbering.clear();
221 
222   InstructionRecycler.clear(Allocator);
223   OperandRecycler.clear(Allocator);
224   BasicBlockRecycler.clear(Allocator);
225   CodeViewAnnotations.clear();
226   VariableDbgInfos.clear();
227   if (RegInfo) {
228     RegInfo->~MachineRegisterInfo();
229     Allocator.Deallocate(RegInfo);
230   }
231   if (MFInfo) {
232     MFInfo->~MachineFunctionInfo();
233     Allocator.Deallocate(MFInfo);
234   }
235 
236   FrameInfo->~MachineFrameInfo();
237   Allocator.Deallocate(FrameInfo);
238 
239   ConstantPool->~MachineConstantPool();
240   Allocator.Deallocate(ConstantPool);
241 
242   if (JumpTableInfo) {
243     JumpTableInfo->~MachineJumpTableInfo();
244     Allocator.Deallocate(JumpTableInfo);
245   }
246 
247   if (WinEHInfo) {
248     WinEHInfo->~WinEHFuncInfo();
249     Allocator.Deallocate(WinEHInfo);
250   }
251 
252   if (WasmEHInfo) {
253     WasmEHInfo->~WasmEHFuncInfo();
254     Allocator.Deallocate(WasmEHInfo);
255   }
256 }
257 
258 const DataLayout &MachineFunction::getDataLayout() const {
259   return F.getParent()->getDataLayout();
260 }
261 
262 /// Get the JumpTableInfo for this function.
263 /// If it does not already exist, allocate one.
264 MachineJumpTableInfo *MachineFunction::
265 getOrCreateJumpTableInfo(unsigned EntryKind) {
266   if (JumpTableInfo) return JumpTableInfo;
267 
268   JumpTableInfo = new (Allocator)
269     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
270   return JumpTableInfo;
271 }
272 
273 /// Should we be emitting segmented stack stuff for the function
274 bool MachineFunction::shouldSplitStack() const {
275   return getFunction().hasFnAttribute("split-stack");
276 }
277 
278 LLVM_NODISCARD unsigned
279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
280   FrameInstructions.push_back(Inst);
281   return FrameInstructions.size() - 1;
282 }
283 
284 /// This discards all of the MachineBasicBlock numbers and recomputes them.
285 /// This guarantees that the MBB numbers are sequential, dense, and match the
286 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
287 /// is specified, only that block and those after it are renumbered.
288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
289   if (empty()) { MBBNumbering.clear(); return; }
290   MachineFunction::iterator MBBI, E = end();
291   if (MBB == nullptr)
292     MBBI = begin();
293   else
294     MBBI = MBB->getIterator();
295 
296   // Figure out the block number this should have.
297   unsigned BlockNo = 0;
298   if (MBBI != begin())
299     BlockNo = std::prev(MBBI)->getNumber() + 1;
300 
301   for (; MBBI != E; ++MBBI, ++BlockNo) {
302     if (MBBI->getNumber() != (int)BlockNo) {
303       // Remove use of the old number.
304       if (MBBI->getNumber() != -1) {
305         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
306                "MBB number mismatch!");
307         MBBNumbering[MBBI->getNumber()] = nullptr;
308       }
309 
310       // If BlockNo is already taken, set that block's number to -1.
311       if (MBBNumbering[BlockNo])
312         MBBNumbering[BlockNo]->setNumber(-1);
313 
314       MBBNumbering[BlockNo] = &*MBBI;
315       MBBI->setNumber(BlockNo);
316     }
317   }
318 
319   // Okay, all the blocks are renumbered.  If we have compactified the block
320   // numbering, shrink MBBNumbering now.
321   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
322   MBBNumbering.resize(BlockNo);
323 }
324 
325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
327                                                   const DebugLoc &DL,
328                                                   bool NoImp) {
329   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
330     MachineInstr(*this, MCID, DL, NoImp);
331 }
332 
333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
334 /// identical in all ways except the instruction has no parent, prev, or next.
335 MachineInstr *
336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
337   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
338              MachineInstr(*this, *Orig);
339 }
340 
341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
342     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
343   MachineInstr *FirstClone = nullptr;
344   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
345   while (true) {
346     MachineInstr *Cloned = CloneMachineInstr(&*I);
347     MBB.insert(InsertBefore, Cloned);
348     if (FirstClone == nullptr) {
349       FirstClone = Cloned;
350     } else {
351       Cloned->bundleWithPred();
352     }
353 
354     if (!I->isBundledWithSucc())
355       break;
356     ++I;
357   }
358   return *FirstClone;
359 }
360 
361 /// Delete the given MachineInstr.
362 ///
363 /// This function also serves as the MachineInstr destructor - the real
364 /// ~MachineInstr() destructor must be empty.
365 void
366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
367   // Verify that a call site info is at valid state. This assertion should
368   // be triggered during the implementation of support for the
369   // call site info of a new architecture. If the assertion is triggered,
370   // back trace will tell where to insert a call to updateCallSiteInfo().
371   assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
372           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
373          "Call site info was not updated!");
374   // Strip it for parts. The operand array and the MI object itself are
375   // independently recyclable.
376   if (MI->Operands)
377     deallocateOperandArray(MI->CapOperands, MI->Operands);
378   // Don't call ~MachineInstr() which must be trivial anyway because
379   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
380   // destructors.
381   InstructionRecycler.Deallocate(Allocator, MI);
382 }
383 
384 /// Allocate a new MachineBasicBlock. Use this instead of
385 /// `new MachineBasicBlock'.
386 MachineBasicBlock *
387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
388   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
389              MachineBasicBlock(*this, bb);
390 }
391 
392 /// Delete the given MachineBasicBlock.
393 void
394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
395   assert(MBB->getParent() == this && "MBB parent mismatch!");
396   MBB->~MachineBasicBlock();
397   BasicBlockRecycler.Deallocate(Allocator, MBB);
398 }
399 
400 MachineMemOperand *MachineFunction::getMachineMemOperand(
401     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
402     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
403     SyncScope::ID SSID, AtomicOrdering Ordering,
404     AtomicOrdering FailureOrdering) {
405   return new (Allocator)
406       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
407                         SSID, Ordering, FailureOrdering);
408 }
409 
410 MachineMemOperand *
411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
412                                       int64_t Offset, uint64_t Size) {
413   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
414 
415   // If there is no pointer value, the offset isn't tracked so we need to adjust
416   // the base alignment.
417   unsigned Align = PtrInfo.V.isNull()
418                        ? MinAlign(MMO->getBaseAlignment(), Offset)
419                        : MMO->getBaseAlignment();
420 
421   return new (Allocator)
422       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
423                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
424                         MMO->getOrdering(), MMO->getFailureOrdering());
425 }
426 
427 MachineMemOperand *
428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
429                                       const AAMDNodes &AAInfo) {
430   MachinePointerInfo MPI = MMO->getValue() ?
431              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
432              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
433 
434   return new (Allocator)
435              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
436                                MMO->getBaseAlignment(), AAInfo,
437                                MMO->getRanges(), MMO->getSyncScopeID(),
438                                MMO->getOrdering(), MMO->getFailureOrdering());
439 }
440 
441 MachineMemOperand *
442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
443                                       MachineMemOperand::Flags Flags) {
444   return new (Allocator) MachineMemOperand(
445       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
446       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
447       MMO->getOrdering(), MMO->getFailureOrdering());
448 }
449 
450 MachineInstr::ExtraInfo *
451 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
452                                    MCSymbol *PreInstrSymbol,
453                                    MCSymbol *PostInstrSymbol) {
454   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
455                                          PostInstrSymbol);
456 }
457 
458 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
459   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
460   llvm::copy(Name, Dest);
461   Dest[Name.size()] = 0;
462   return Dest;
463 }
464 
465 uint32_t *MachineFunction::allocateRegMask() {
466   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
467   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
468   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
469   memset(Mask, 0, Size * sizeof(Mask[0]));
470   return Mask;
471 }
472 
473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
474 LLVM_DUMP_METHOD void MachineFunction::dump() const {
475   print(dbgs());
476 }
477 #endif
478 
479 StringRef MachineFunction::getName() const {
480   return getFunction().getName();
481 }
482 
483 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
484   OS << "# Machine code for function " << getName() << ": ";
485   getProperties().print(OS);
486   OS << '\n';
487 
488   // Print Frame Information
489   FrameInfo->print(*this, OS);
490 
491   // Print JumpTable Information
492   if (JumpTableInfo)
493     JumpTableInfo->print(OS);
494 
495   // Print Constant Pool
496   ConstantPool->print(OS);
497 
498   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
499 
500   if (RegInfo && !RegInfo->livein_empty()) {
501     OS << "Function Live Ins: ";
502     for (MachineRegisterInfo::livein_iterator
503          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
504       OS << printReg(I->first, TRI);
505       if (I->second)
506         OS << " in " << printReg(I->second, TRI);
507       if (std::next(I) != E)
508         OS << ", ";
509     }
510     OS << '\n';
511   }
512 
513   ModuleSlotTracker MST(getFunction().getParent());
514   MST.incorporateFunction(getFunction());
515   for (const auto &BB : *this) {
516     OS << '\n';
517     // If we print the whole function, print it at its most verbose level.
518     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
519   }
520 
521   OS << "\n# End machine code for function " << getName() << ".\n\n";
522 }
523 
524 namespace llvm {
525 
526   template<>
527   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
528     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
529 
530     static std::string getGraphName(const MachineFunction *F) {
531       return ("CFG for '" + F->getName() + "' function").str();
532     }
533 
534     std::string getNodeLabel(const MachineBasicBlock *Node,
535                              const MachineFunction *Graph) {
536       std::string OutStr;
537       {
538         raw_string_ostream OSS(OutStr);
539 
540         if (isSimple()) {
541           OSS << printMBBReference(*Node);
542           if (const BasicBlock *BB = Node->getBasicBlock())
543             OSS << ": " << BB->getName();
544         } else
545           Node->print(OSS);
546       }
547 
548       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
549 
550       // Process string output to make it nicer...
551       for (unsigned i = 0; i != OutStr.length(); ++i)
552         if (OutStr[i] == '\n') {                            // Left justify
553           OutStr[i] = '\\';
554           OutStr.insert(OutStr.begin()+i+1, 'l');
555         }
556       return OutStr;
557     }
558   };
559 
560 } // end namespace llvm
561 
562 void MachineFunction::viewCFG() const
563 {
564 #ifndef NDEBUG
565   ViewGraph(this, "mf" + getName());
566 #else
567   errs() << "MachineFunction::viewCFG is only available in debug builds on "
568          << "systems with Graphviz or gv!\n";
569 #endif // NDEBUG
570 }
571 
572 void MachineFunction::viewCFGOnly() const
573 {
574 #ifndef NDEBUG
575   ViewGraph(this, "mf" + getName(), true);
576 #else
577   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
578          << "systems with Graphviz or gv!\n";
579 #endif // NDEBUG
580 }
581 
582 /// Add the specified physical register as a live-in value and
583 /// create a corresponding virtual register for it.
584 unsigned MachineFunction::addLiveIn(unsigned PReg,
585                                     const TargetRegisterClass *RC) {
586   MachineRegisterInfo &MRI = getRegInfo();
587   unsigned VReg = MRI.getLiveInVirtReg(PReg);
588   if (VReg) {
589     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
590     (void)VRegRC;
591     // A physical register can be added several times.
592     // Between two calls, the register class of the related virtual register
593     // may have been constrained to match some operation constraints.
594     // In that case, check that the current register class includes the
595     // physical register and is a sub class of the specified RC.
596     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
597                              RC->hasSubClassEq(VRegRC))) &&
598             "Register class mismatch!");
599     return VReg;
600   }
601   VReg = MRI.createVirtualRegister(RC);
602   MRI.addLiveIn(PReg, VReg);
603   return VReg;
604 }
605 
606 /// Return the MCSymbol for the specified non-empty jump table.
607 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
608 /// normal 'L' label is returned.
609 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
610                                         bool isLinkerPrivate) const {
611   const DataLayout &DL = getDataLayout();
612   assert(JumpTableInfo && "No jump tables");
613   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
614 
615   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
616                                      : DL.getPrivateGlobalPrefix();
617   SmallString<60> Name;
618   raw_svector_ostream(Name)
619     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
620   return Ctx.getOrCreateSymbol(Name);
621 }
622 
623 /// Return a function-local symbol to represent the PIC base.
624 MCSymbol *MachineFunction::getPICBaseSymbol() const {
625   const DataLayout &DL = getDataLayout();
626   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
627                                Twine(getFunctionNumber()) + "$pb");
628 }
629 
630 /// \name Exception Handling
631 /// \{
632 
633 LandingPadInfo &
634 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
635   unsigned N = LandingPads.size();
636   for (unsigned i = 0; i < N; ++i) {
637     LandingPadInfo &LP = LandingPads[i];
638     if (LP.LandingPadBlock == LandingPad)
639       return LP;
640   }
641 
642   LandingPads.push_back(LandingPadInfo(LandingPad));
643   return LandingPads[N];
644 }
645 
646 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
647                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
648   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
649   LP.BeginLabels.push_back(BeginLabel);
650   LP.EndLabels.push_back(EndLabel);
651 }
652 
653 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
654   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
655   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
656   LP.LandingPadLabel = LandingPadLabel;
657 
658   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
659   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
660     if (const auto *PF =
661             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
662       getMMI().addPersonality(PF);
663 
664     if (LPI->isCleanup())
665       addCleanup(LandingPad);
666 
667     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
668     //        correct, but we need to do it this way because of how the DWARF EH
669     //        emitter processes the clauses.
670     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
671       Value *Val = LPI->getClause(I - 1);
672       if (LPI->isCatch(I - 1)) {
673         addCatchTypeInfo(LandingPad,
674                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
675       } else {
676         // Add filters in a list.
677         auto *CVal = cast<Constant>(Val);
678         SmallVector<const GlobalValue *, 4> FilterList;
679         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
680              II != IE; ++II)
681           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
682 
683         addFilterTypeInfo(LandingPad, FilterList);
684       }
685     }
686 
687   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
688     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
689       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
690       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
691     }
692 
693   } else {
694     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
695   }
696 
697   return LandingPadLabel;
698 }
699 
700 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
701                                        ArrayRef<const GlobalValue *> TyInfo) {
702   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
703   for (unsigned N = TyInfo.size(); N; --N)
704     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
705 }
706 
707 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
708                                         ArrayRef<const GlobalValue *> TyInfo) {
709   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
710   std::vector<unsigned> IdsInFilter(TyInfo.size());
711   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
712     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
713   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
714 }
715 
716 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
717                                       bool TidyIfNoBeginLabels) {
718   for (unsigned i = 0; i != LandingPads.size(); ) {
719     LandingPadInfo &LandingPad = LandingPads[i];
720     if (LandingPad.LandingPadLabel &&
721         !LandingPad.LandingPadLabel->isDefined() &&
722         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
723       LandingPad.LandingPadLabel = nullptr;
724 
725     // Special case: we *should* emit LPs with null LP MBB. This indicates
726     // "nounwind" case.
727     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
728       LandingPads.erase(LandingPads.begin() + i);
729       continue;
730     }
731 
732     if (TidyIfNoBeginLabels) {
733       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
734         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
735         MCSymbol *EndLabel = LandingPad.EndLabels[j];
736         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
737             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
738           continue;
739 
740         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
741         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
742         --j;
743         --e;
744       }
745 
746       // Remove landing pads with no try-ranges.
747       if (LandingPads[i].BeginLabels.empty()) {
748         LandingPads.erase(LandingPads.begin() + i);
749         continue;
750       }
751     }
752 
753     // If there is no landing pad, ensure that the list of typeids is empty.
754     // If the only typeid is a cleanup, this is the same as having no typeids.
755     if (!LandingPad.LandingPadBlock ||
756         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
757       LandingPad.TypeIds.clear();
758     ++i;
759   }
760 }
761 
762 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
763   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
764   LP.TypeIds.push_back(0);
765 }
766 
767 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
768                                          const Function *Filter,
769                                          const BlockAddress *RecoverBA) {
770   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
771   SEHHandler Handler;
772   Handler.FilterOrFinally = Filter;
773   Handler.RecoverBA = RecoverBA;
774   LP.SEHHandlers.push_back(Handler);
775 }
776 
777 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
778                                            const Function *Cleanup) {
779   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
780   SEHHandler Handler;
781   Handler.FilterOrFinally = Cleanup;
782   Handler.RecoverBA = nullptr;
783   LP.SEHHandlers.push_back(Handler);
784 }
785 
786 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
787                                             ArrayRef<unsigned> Sites) {
788   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
789 }
790 
791 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
792   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
793     if (TypeInfos[i] == TI) return i + 1;
794 
795   TypeInfos.push_back(TI);
796   return TypeInfos.size();
797 }
798 
799 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
800   // If the new filter coincides with the tail of an existing filter, then
801   // re-use the existing filter.  Folding filters more than this requires
802   // re-ordering filters and/or their elements - probably not worth it.
803   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
804        E = FilterEnds.end(); I != E; ++I) {
805     unsigned i = *I, j = TyIds.size();
806 
807     while (i && j)
808       if (FilterIds[--i] != TyIds[--j])
809         goto try_next;
810 
811     if (!j)
812       // The new filter coincides with range [i, end) of the existing filter.
813       return -(1 + i);
814 
815 try_next:;
816   }
817 
818   // Add the new filter.
819   int FilterID = -(1 + FilterIds.size());
820   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
821   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
822   FilterEnds.push_back(FilterIds.size());
823   FilterIds.push_back(0); // terminator
824   return FilterID;
825 }
826 
827 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I,
828                                                const MDNode *MD) {
829   MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
830   MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
831   I->setPreInstrSymbol(*this, BeginLabel);
832   I->setPostInstrSymbol(*this, EndLabel);
833 
834   const DIType *DI = dyn_cast<DIType>(MD);
835   CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
836 }
837 
838 void MachineFunction::updateCallSiteInfo(const MachineInstr *Old,
839                                          const MachineInstr *New) {
840   if (!Target.Options.EnableDebugEntryValues || Old == New)
841     return;
842 
843   assert(Old->isCall() && (!New || New->isCall()) &&
844          "Call site info referes only to call instructions!");
845   CallSiteInfoMap::iterator CSIt = CallSitesInfo.find(Old);
846   if (CSIt == CallSitesInfo.end())
847     return;
848   CallSiteInfo CSInfo = std::move(CSIt->second);
849   CallSitesInfo.erase(CSIt);
850   if (New)
851     CallSitesInfo[New] = CSInfo;
852 }
853 
854 /// \}
855 
856 //===----------------------------------------------------------------------===//
857 //  MachineJumpTableInfo implementation
858 //===----------------------------------------------------------------------===//
859 
860 /// Return the size of each entry in the jump table.
861 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
862   // The size of a jump table entry is 4 bytes unless the entry is just the
863   // address of a block, in which case it is the pointer size.
864   switch (getEntryKind()) {
865   case MachineJumpTableInfo::EK_BlockAddress:
866     return TD.getPointerSize();
867   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
868     return 8;
869   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
870   case MachineJumpTableInfo::EK_LabelDifference32:
871   case MachineJumpTableInfo::EK_Custom32:
872     return 4;
873   case MachineJumpTableInfo::EK_Inline:
874     return 0;
875   }
876   llvm_unreachable("Unknown jump table encoding!");
877 }
878 
879 /// Return the alignment of each entry in the jump table.
880 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
881   // The alignment of a jump table entry is the alignment of int32 unless the
882   // entry is just the address of a block, in which case it is the pointer
883   // alignment.
884   switch (getEntryKind()) {
885   case MachineJumpTableInfo::EK_BlockAddress:
886     return TD.getPointerABIAlignment(0).value();
887   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
888     return TD.getABIIntegerTypeAlignment(64).value();
889   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
890   case MachineJumpTableInfo::EK_LabelDifference32:
891   case MachineJumpTableInfo::EK_Custom32:
892     return TD.getABIIntegerTypeAlignment(32).value();
893   case MachineJumpTableInfo::EK_Inline:
894     return 1;
895   }
896   llvm_unreachable("Unknown jump table encoding!");
897 }
898 
899 /// Create a new jump table entry in the jump table info.
900 unsigned MachineJumpTableInfo::createJumpTableIndex(
901                                const std::vector<MachineBasicBlock*> &DestBBs) {
902   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
903   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
904   return JumpTables.size()-1;
905 }
906 
907 /// If Old is the target of any jump tables, update the jump tables to branch
908 /// to New instead.
909 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
910                                                   MachineBasicBlock *New) {
911   assert(Old != New && "Not making a change?");
912   bool MadeChange = false;
913   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
914     ReplaceMBBInJumpTable(i, Old, New);
915   return MadeChange;
916 }
917 
918 /// If Old is a target of the jump tables, update the jump table to branch to
919 /// New instead.
920 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
921                                                  MachineBasicBlock *Old,
922                                                  MachineBasicBlock *New) {
923   assert(Old != New && "Not making a change?");
924   bool MadeChange = false;
925   MachineJumpTableEntry &JTE = JumpTables[Idx];
926   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
927     if (JTE.MBBs[j] == Old) {
928       JTE.MBBs[j] = New;
929       MadeChange = true;
930     }
931   return MadeChange;
932 }
933 
934 void MachineJumpTableInfo::print(raw_ostream &OS) const {
935   if (JumpTables.empty()) return;
936 
937   OS << "Jump Tables:\n";
938 
939   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
940     OS << printJumpTableEntryReference(i) << ':';
941     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
942       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
943     if (i != e)
944       OS << '\n';
945   }
946 
947   OS << '\n';
948 }
949 
950 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
951 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
952 #endif
953 
954 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
955   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
956 }
957 
958 //===----------------------------------------------------------------------===//
959 //  MachineConstantPool implementation
960 //===----------------------------------------------------------------------===//
961 
962 void MachineConstantPoolValue::anchor() {}
963 
964 Type *MachineConstantPoolEntry::getType() const {
965   if (isMachineConstantPoolEntry())
966     return Val.MachineCPVal->getType();
967   return Val.ConstVal->getType();
968 }
969 
970 bool MachineConstantPoolEntry::needsRelocation() const {
971   if (isMachineConstantPoolEntry())
972     return true;
973   return Val.ConstVal->needsRelocation();
974 }
975 
976 SectionKind
977 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
978   if (needsRelocation())
979     return SectionKind::getReadOnlyWithRel();
980   switch (DL->getTypeAllocSize(getType())) {
981   case 4:
982     return SectionKind::getMergeableConst4();
983   case 8:
984     return SectionKind::getMergeableConst8();
985   case 16:
986     return SectionKind::getMergeableConst16();
987   case 32:
988     return SectionKind::getMergeableConst32();
989   default:
990     return SectionKind::getReadOnly();
991   }
992 }
993 
994 MachineConstantPool::~MachineConstantPool() {
995   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
996   // so keep track of which we've deleted to avoid double deletions.
997   DenseSet<MachineConstantPoolValue*> Deleted;
998   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
999     if (Constants[i].isMachineConstantPoolEntry()) {
1000       Deleted.insert(Constants[i].Val.MachineCPVal);
1001       delete Constants[i].Val.MachineCPVal;
1002     }
1003   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1004        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1005        I != E; ++I) {
1006     if (Deleted.count(*I) == 0)
1007       delete *I;
1008   }
1009 }
1010 
1011 /// Test whether the given two constants can be allocated the same constant pool
1012 /// entry.
1013 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1014                                       const DataLayout &DL) {
1015   // Handle the trivial case quickly.
1016   if (A == B) return true;
1017 
1018   // If they have the same type but weren't the same constant, quickly
1019   // reject them.
1020   if (A->getType() == B->getType()) return false;
1021 
1022   // We can't handle structs or arrays.
1023   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1024       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1025     return false;
1026 
1027   // For now, only support constants with the same size.
1028   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1029   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1030     return false;
1031 
1032   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1033 
1034   // Try constant folding a bitcast of both instructions to an integer.  If we
1035   // get two identical ConstantInt's, then we are good to share them.  We use
1036   // the constant folding APIs to do this so that we get the benefit of
1037   // DataLayout.
1038   if (isa<PointerType>(A->getType()))
1039     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1040                                 const_cast<Constant *>(A), IntTy, DL);
1041   else if (A->getType() != IntTy)
1042     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1043                                 IntTy, DL);
1044   if (isa<PointerType>(B->getType()))
1045     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1046                                 const_cast<Constant *>(B), IntTy, DL);
1047   else if (B->getType() != IntTy)
1048     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1049                                 IntTy, DL);
1050 
1051   return A == B;
1052 }
1053 
1054 /// Create a new entry in the constant pool or return an existing one.
1055 /// User must specify the log2 of the minimum required alignment for the object.
1056 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1057                                                    unsigned Alignment) {
1058   assert(Alignment && "Alignment must be specified!");
1059   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1060 
1061   // Check to see if we already have this constant.
1062   //
1063   // FIXME, this could be made much more efficient for large constant pools.
1064   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1065     if (!Constants[i].isMachineConstantPoolEntry() &&
1066         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1067       if ((unsigned)Constants[i].getAlignment() < Alignment)
1068         Constants[i].Alignment = Alignment;
1069       return i;
1070     }
1071 
1072   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1073   return Constants.size()-1;
1074 }
1075 
1076 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1077                                                    unsigned Alignment) {
1078   assert(Alignment && "Alignment must be specified!");
1079   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1080 
1081   // Check to see if we already have this constant.
1082   //
1083   // FIXME, this could be made much more efficient for large constant pools.
1084   int Idx = V->getExistingMachineCPValue(this, Alignment);
1085   if (Idx != -1) {
1086     MachineCPVsSharingEntries.insert(V);
1087     return (unsigned)Idx;
1088   }
1089 
1090   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1091   return Constants.size()-1;
1092 }
1093 
1094 void MachineConstantPool::print(raw_ostream &OS) const {
1095   if (Constants.empty()) return;
1096 
1097   OS << "Constant Pool:\n";
1098   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1099     OS << "  cp#" << i << ": ";
1100     if (Constants[i].isMachineConstantPoolEntry())
1101       Constants[i].Val.MachineCPVal->print(OS);
1102     else
1103       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1104     OS << ", align=" << Constants[i].getAlignment();
1105     OS << "\n";
1106   }
1107 }
1108 
1109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1110 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1111 #endif
1112