1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 #include "LiveDebugValues/LiveDebugValues.h" 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "codegen" 84 85 static cl::opt<unsigned> AlignAllFunctions( 86 "align-all-functions", 87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 88 "means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 92 using P = MachineFunctionProperties::Property; 93 94 // clang-format off 95 switch(Prop) { 96 case P::FailedISel: return "FailedISel"; 97 case P::IsSSA: return "IsSSA"; 98 case P::Legalized: return "Legalized"; 99 case P::NoPHIs: return "NoPHIs"; 100 case P::NoVRegs: return "NoVRegs"; 101 case P::RegBankSelected: return "RegBankSelected"; 102 case P::Selected: return "Selected"; 103 case P::TracksLiveness: return "TracksLiveness"; 104 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 105 case P::FailsVerification: return "FailsVerification"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 165 const TargetSubtargetInfo &STI, MCContext &Ctx, 166 unsigned FunctionNum) 167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 MBBNumberingEpoch++; 379 } 380 381 /// This method iterates over the basic blocks and assigns their IsBeginSection 382 /// and IsEndSection fields. This must be called after MBB layout is finalized 383 /// and the SectionID's are assigned to MBBs. 384 void MachineFunction::assignBeginEndSections() { 385 front().setIsBeginSection(); 386 auto CurrentSectionID = front().getSectionID(); 387 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 388 if (MBBI->getSectionID() == CurrentSectionID) 389 continue; 390 MBBI->setIsBeginSection(); 391 std::prev(MBBI)->setIsEndSection(); 392 CurrentSectionID = MBBI->getSectionID(); 393 } 394 back().setIsEndSection(); 395 } 396 397 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 398 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 399 DebugLoc DL, 400 bool NoImplicit) { 401 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 402 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 403 } 404 405 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 406 /// identical in all ways except the instruction has no parent, prev, or next. 407 MachineInstr * 408 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 409 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 410 MachineInstr(*this, *Orig); 411 } 412 413 MachineInstr &MachineFunction::cloneMachineInstrBundle( 414 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 415 const MachineInstr &Orig) { 416 MachineInstr *FirstClone = nullptr; 417 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 418 while (true) { 419 MachineInstr *Cloned = CloneMachineInstr(&*I); 420 MBB.insert(InsertBefore, Cloned); 421 if (FirstClone == nullptr) { 422 FirstClone = Cloned; 423 } else { 424 Cloned->bundleWithPred(); 425 } 426 427 if (!I->isBundledWithSucc()) 428 break; 429 ++I; 430 } 431 // Copy over call site info to the cloned instruction if needed. If Orig is in 432 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 433 // the bundle. 434 if (Orig.shouldUpdateCallSiteInfo()) 435 copyCallSiteInfo(&Orig, FirstClone); 436 return *FirstClone; 437 } 438 439 /// Delete the given MachineInstr. 440 /// 441 /// This function also serves as the MachineInstr destructor - the real 442 /// ~MachineInstr() destructor must be empty. 443 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 444 // Verify that a call site info is at valid state. This assertion should 445 // be triggered during the implementation of support for the 446 // call site info of a new architecture. If the assertion is triggered, 447 // back trace will tell where to insert a call to updateCallSiteInfo(). 448 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 449 "Call site info was not updated!"); 450 // Strip it for parts. The operand array and the MI object itself are 451 // independently recyclable. 452 if (MI->Operands) 453 deallocateOperandArray(MI->CapOperands, MI->Operands); 454 // Don't call ~MachineInstr() which must be trivial anyway because 455 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 456 // destructors. 457 InstructionRecycler.Deallocate(Allocator, MI); 458 } 459 460 /// Allocate a new MachineBasicBlock. Use this instead of 461 /// `new MachineBasicBlock'. 462 MachineBasicBlock * 463 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 464 std::optional<UniqueBBID> BBID) { 465 MachineBasicBlock *MBB = 466 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 467 MachineBasicBlock(*this, BB); 468 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to 469 // allow robust mapping of profiles to basic blocks. 470 if (Target.Options.BBAddrMap || 471 Target.getBBSectionsType() == BasicBlockSection::List) 472 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 473 return MBB; 474 } 475 476 /// Delete the given MachineBasicBlock. 477 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 478 assert(MBB->getParent() == this && "MBB parent mismatch!"); 479 // Clean up any references to MBB in jump tables before deleting it. 480 if (JumpTableInfo) 481 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 482 MBB->~MachineBasicBlock(); 483 BasicBlockRecycler.Deallocate(Allocator, MBB); 484 } 485 486 MachineMemOperand *MachineFunction::getMachineMemOperand( 487 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 488 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 489 SyncScope::ID SSID, AtomicOrdering Ordering, 490 AtomicOrdering FailureOrdering) { 491 assert((!Size.hasValue() || 492 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 493 "Unexpected an unknown size to be represented using " 494 "LocationSize::beforeOrAfter()"); 495 return new (Allocator) 496 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 497 Ordering, FailureOrdering); 498 } 499 500 MachineMemOperand *MachineFunction::getMachineMemOperand( 501 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 502 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 503 SyncScope::ID SSID, AtomicOrdering Ordering, 504 AtomicOrdering FailureOrdering) { 505 return new (Allocator) 506 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 507 Ordering, FailureOrdering); 508 } 509 510 MachineMemOperand * 511 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 512 const MachinePointerInfo &PtrInfo, 513 LocationSize Size) { 514 assert((!Size.hasValue() || 515 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 516 "Unexpected an unknown size to be represented using " 517 "LocationSize::beforeOrAfter()"); 518 return new (Allocator) 519 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 520 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 521 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 522 } 523 524 MachineMemOperand *MachineFunction::getMachineMemOperand( 525 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 526 return new (Allocator) 527 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 528 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 529 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 530 } 531 532 MachineMemOperand * 533 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 534 int64_t Offset, LLT Ty) { 535 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 536 537 // If there is no pointer value, the offset isn't tracked so we need to adjust 538 // the base alignment. 539 Align Alignment = PtrInfo.V.isNull() 540 ? commonAlignment(MMO->getBaseAlign(), Offset) 541 : MMO->getBaseAlign(); 542 543 // Do not preserve ranges, since we don't necessarily know what the high bits 544 // are anymore. 545 return new (Allocator) MachineMemOperand( 546 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 547 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 548 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 549 } 550 551 MachineMemOperand * 552 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 553 const AAMDNodes &AAInfo) { 554 MachinePointerInfo MPI = MMO->getValue() ? 555 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 556 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 557 558 return new (Allocator) MachineMemOperand( 559 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 560 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 561 MMO->getFailureOrdering()); 562 } 563 564 MachineMemOperand * 565 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 566 MachineMemOperand::Flags Flags) { 567 return new (Allocator) MachineMemOperand( 568 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 569 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 570 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 571 } 572 573 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 574 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 575 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 576 uint32_t CFIType, MDNode *MMRAs) { 577 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 578 PostInstrSymbol, HeapAllocMarker, 579 PCSections, CFIType, MMRAs); 580 } 581 582 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 583 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 584 llvm::copy(Name, Dest); 585 Dest[Name.size()] = 0; 586 return Dest; 587 } 588 589 uint32_t *MachineFunction::allocateRegMask() { 590 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 591 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 592 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 593 memset(Mask, 0, Size * sizeof(Mask[0])); 594 return Mask; 595 } 596 597 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 598 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 599 copy(Mask, AllocMask); 600 return {AllocMask, Mask.size()}; 601 } 602 603 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 604 LLVM_DUMP_METHOD void MachineFunction::dump() const { 605 print(dbgs()); 606 } 607 #endif 608 609 StringRef MachineFunction::getName() const { 610 return getFunction().getName(); 611 } 612 613 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 614 OS << "# Machine code for function " << getName() << ": "; 615 getProperties().print(OS); 616 OS << '\n'; 617 618 // Print Frame Information 619 FrameInfo->print(*this, OS); 620 621 // Print JumpTable Information 622 if (JumpTableInfo) 623 JumpTableInfo->print(OS); 624 625 // Print Constant Pool 626 ConstantPool->print(OS); 627 628 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 629 630 if (RegInfo && !RegInfo->livein_empty()) { 631 OS << "Function Live Ins: "; 632 for (MachineRegisterInfo::livein_iterator 633 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 634 OS << printReg(I->first, TRI); 635 if (I->second) 636 OS << " in " << printReg(I->second, TRI); 637 if (std::next(I) != E) 638 OS << ", "; 639 } 640 OS << '\n'; 641 } 642 643 ModuleSlotTracker MST(getFunction().getParent()); 644 MST.incorporateFunction(getFunction()); 645 for (const auto &BB : *this) { 646 OS << '\n'; 647 // If we print the whole function, print it at its most verbose level. 648 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 649 } 650 651 OS << "\n# End machine code for function " << getName() << ".\n\n"; 652 } 653 654 /// True if this function needs frame moves for debug or exceptions. 655 bool MachineFunction::needsFrameMoves() const { 656 // TODO: Ideally, what we'd like is to have a switch that allows emitting 657 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even 658 // under this switch, we'd like .debug_frame to be precise when using -g. At 659 // this moment, there's no way to specify that some CFI directives go into 660 // .eh_frame only, while others go into .debug_frame only. 661 return getTarget().Options.ForceDwarfFrameSection || 662 F.needsUnwindTableEntry() || 663 !F.getParent()->debug_compile_units().empty(); 664 } 665 666 namespace llvm { 667 668 template<> 669 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 670 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 671 672 static std::string getGraphName(const MachineFunction *F) { 673 return ("CFG for '" + F->getName() + "' function").str(); 674 } 675 676 std::string getNodeLabel(const MachineBasicBlock *Node, 677 const MachineFunction *Graph) { 678 std::string OutStr; 679 { 680 raw_string_ostream OSS(OutStr); 681 682 if (isSimple()) { 683 OSS << printMBBReference(*Node); 684 if (const BasicBlock *BB = Node->getBasicBlock()) 685 OSS << ": " << BB->getName(); 686 } else 687 Node->print(OSS); 688 } 689 690 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 691 692 // Process string output to make it nicer... 693 for (unsigned i = 0; i != OutStr.length(); ++i) 694 if (OutStr[i] == '\n') { // Left justify 695 OutStr[i] = '\\'; 696 OutStr.insert(OutStr.begin()+i+1, 'l'); 697 } 698 return OutStr; 699 } 700 }; 701 702 } // end namespace llvm 703 704 void MachineFunction::viewCFG() const 705 { 706 #ifndef NDEBUG 707 ViewGraph(this, "mf" + getName()); 708 #else 709 errs() << "MachineFunction::viewCFG is only available in debug builds on " 710 << "systems with Graphviz or gv!\n"; 711 #endif // NDEBUG 712 } 713 714 void MachineFunction::viewCFGOnly() const 715 { 716 #ifndef NDEBUG 717 ViewGraph(this, "mf" + getName(), true); 718 #else 719 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 720 << "systems with Graphviz or gv!\n"; 721 #endif // NDEBUG 722 } 723 724 /// Add the specified physical register as a live-in value and 725 /// create a corresponding virtual register for it. 726 Register MachineFunction::addLiveIn(MCRegister PReg, 727 const TargetRegisterClass *RC) { 728 MachineRegisterInfo &MRI = getRegInfo(); 729 Register VReg = MRI.getLiveInVirtReg(PReg); 730 if (VReg) { 731 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 732 (void)VRegRC; 733 // A physical register can be added several times. 734 // Between two calls, the register class of the related virtual register 735 // may have been constrained to match some operation constraints. 736 // In that case, check that the current register class includes the 737 // physical register and is a sub class of the specified RC. 738 assert((VRegRC == RC || (VRegRC->contains(PReg) && 739 RC->hasSubClassEq(VRegRC))) && 740 "Register class mismatch!"); 741 return VReg; 742 } 743 VReg = MRI.createVirtualRegister(RC); 744 MRI.addLiveIn(PReg, VReg); 745 return VReg; 746 } 747 748 /// Return the MCSymbol for the specified non-empty jump table. 749 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 750 /// normal 'L' label is returned. 751 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 752 bool isLinkerPrivate) const { 753 const DataLayout &DL = getDataLayout(); 754 assert(JumpTableInfo && "No jump tables"); 755 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 756 757 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 758 : DL.getPrivateGlobalPrefix(); 759 SmallString<60> Name; 760 raw_svector_ostream(Name) 761 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 762 return Ctx.getOrCreateSymbol(Name); 763 } 764 765 /// Return a function-local symbol to represent the PIC base. 766 MCSymbol *MachineFunction::getPICBaseSymbol() const { 767 const DataLayout &DL = getDataLayout(); 768 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 769 Twine(getFunctionNumber()) + "$pb"); 770 } 771 772 /// \name Exception Handling 773 /// \{ 774 775 LandingPadInfo & 776 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 777 unsigned N = LandingPads.size(); 778 for (unsigned i = 0; i < N; ++i) { 779 LandingPadInfo &LP = LandingPads[i]; 780 if (LP.LandingPadBlock == LandingPad) 781 return LP; 782 } 783 784 LandingPads.push_back(LandingPadInfo(LandingPad)); 785 return LandingPads[N]; 786 } 787 788 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 789 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 790 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 791 LP.BeginLabels.push_back(BeginLabel); 792 LP.EndLabels.push_back(EndLabel); 793 } 794 795 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 796 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 797 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 798 LP.LandingPadLabel = LandingPadLabel; 799 800 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 801 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 802 // If there's no typeid list specified, then "cleanup" is implicit. 803 // Otherwise, id 0 is reserved for the cleanup action. 804 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 805 LP.TypeIds.push_back(0); 806 807 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 808 // correct, but we need to do it this way because of how the DWARF EH 809 // emitter processes the clauses. 810 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 811 Value *Val = LPI->getClause(I - 1); 812 if (LPI->isCatch(I - 1)) { 813 LP.TypeIds.push_back( 814 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 815 } else { 816 // Add filters in a list. 817 auto *CVal = cast<Constant>(Val); 818 SmallVector<unsigned, 4> FilterList; 819 for (const Use &U : CVal->operands()) 820 FilterList.push_back( 821 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 822 823 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 824 } 825 } 826 827 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 828 for (unsigned I = CPI->arg_size(); I != 0; --I) { 829 auto *TypeInfo = 830 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 831 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 832 } 833 834 } else { 835 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 836 } 837 838 return LandingPadLabel; 839 } 840 841 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 842 ArrayRef<unsigned> Sites) { 843 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 844 } 845 846 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 847 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 848 if (TypeInfos[i] == TI) return i + 1; 849 850 TypeInfos.push_back(TI); 851 return TypeInfos.size(); 852 } 853 854 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 855 // If the new filter coincides with the tail of an existing filter, then 856 // re-use the existing filter. Folding filters more than this requires 857 // re-ordering filters and/or their elements - probably not worth it. 858 for (unsigned i : FilterEnds) { 859 unsigned j = TyIds.size(); 860 861 while (i && j) 862 if (FilterIds[--i] != TyIds[--j]) 863 goto try_next; 864 865 if (!j) 866 // The new filter coincides with range [i, end) of the existing filter. 867 return -(1 + i); 868 869 try_next:; 870 } 871 872 // Add the new filter. 873 int FilterID = -(1 + FilterIds.size()); 874 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 875 llvm::append_range(FilterIds, TyIds); 876 FilterEnds.push_back(FilterIds.size()); 877 FilterIds.push_back(0); // terminator 878 return FilterID; 879 } 880 881 MachineFunction::CallSiteInfoMap::iterator 882 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 883 assert(MI->isCandidateForCallSiteEntry() && 884 "Call site info refers only to call (MI) candidates"); 885 886 if (!Target.Options.EmitCallSiteInfo) 887 return CallSitesInfo.end(); 888 return CallSitesInfo.find(MI); 889 } 890 891 /// Return the call machine instruction or find a call within bundle. 892 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 893 if (!MI->isBundle()) 894 return MI; 895 896 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 897 getBundleEnd(MI->getIterator()))) 898 if (BMI.isCandidateForCallSiteEntry()) 899 return &BMI; 900 901 llvm_unreachable("Unexpected bundle without a call site candidate"); 902 } 903 904 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 905 assert(MI->shouldUpdateCallSiteInfo() && 906 "Call site info refers only to call (MI) candidates or " 907 "candidates inside bundles"); 908 909 const MachineInstr *CallMI = getCallInstr(MI); 910 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 911 if (CSIt == CallSitesInfo.end()) 912 return; 913 CallSitesInfo.erase(CSIt); 914 } 915 916 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 917 const MachineInstr *New) { 918 assert(Old->shouldUpdateCallSiteInfo() && 919 "Call site info refers only to call (MI) candidates or " 920 "candidates inside bundles"); 921 922 if (!New->isCandidateForCallSiteEntry()) 923 return eraseCallSiteInfo(Old); 924 925 const MachineInstr *OldCallMI = getCallInstr(Old); 926 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 927 if (CSIt == CallSitesInfo.end()) 928 return; 929 930 CallSiteInfo CSInfo = CSIt->second; 931 CallSitesInfo[New] = CSInfo; 932 } 933 934 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 935 const MachineInstr *New) { 936 assert(Old->shouldUpdateCallSiteInfo() && 937 "Call site info refers only to call (MI) candidates or " 938 "candidates inside bundles"); 939 940 if (!New->isCandidateForCallSiteEntry()) 941 return eraseCallSiteInfo(Old); 942 943 const MachineInstr *OldCallMI = getCallInstr(Old); 944 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 945 if (CSIt == CallSitesInfo.end()) 946 return; 947 948 CallSiteInfo CSInfo = std::move(CSIt->second); 949 CallSitesInfo.erase(CSIt); 950 CallSitesInfo[New] = CSInfo; 951 } 952 953 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 954 DebugInstrNumberingCount = Num; 955 } 956 957 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 958 DebugInstrOperandPair B, 959 unsigned Subreg) { 960 // Catch any accidental self-loops. 961 assert(A.first != B.first); 962 // Don't allow any substitutions _from_ the memory operand number. 963 assert(A.second != DebugOperandMemNumber); 964 965 DebugValueSubstitutions.push_back({A, B, Subreg}); 966 } 967 968 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 969 MachineInstr &New, 970 unsigned MaxOperand) { 971 // If the Old instruction wasn't tracked at all, there is no work to do. 972 unsigned OldInstrNum = Old.peekDebugInstrNum(); 973 if (!OldInstrNum) 974 return; 975 976 // Iterate over all operands looking for defs to create substitutions for. 977 // Avoid creating new instr numbers unless we create a new substitution. 978 // While this has no functional effect, it risks confusing someone reading 979 // MIR output. 980 // Examine all the operands, or the first N specified by the caller. 981 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 982 for (unsigned int I = 0; I < MaxOperand; ++I) { 983 const auto &OldMO = Old.getOperand(I); 984 auto &NewMO = New.getOperand(I); 985 (void)NewMO; 986 987 if (!OldMO.isReg() || !OldMO.isDef()) 988 continue; 989 assert(NewMO.isDef()); 990 991 unsigned NewInstrNum = New.getDebugInstrNum(); 992 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 993 std::make_pair(NewInstrNum, I)); 994 } 995 } 996 997 auto MachineFunction::salvageCopySSA( 998 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 999 -> DebugInstrOperandPair { 1000 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1001 1002 // Check whether this copy-like instruction has already been salvaged into 1003 // an operand pair. 1004 Register Dest; 1005 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1006 Dest = CopyDstSrc->Destination->getReg(); 1007 } else { 1008 assert(MI.isSubregToReg()); 1009 Dest = MI.getOperand(0).getReg(); 1010 } 1011 1012 auto CacheIt = DbgPHICache.find(Dest); 1013 if (CacheIt != DbgPHICache.end()) 1014 return CacheIt->second; 1015 1016 // Calculate the instruction number to use, or install a DBG_PHI. 1017 auto OperandPair = salvageCopySSAImpl(MI); 1018 DbgPHICache.insert({Dest, OperandPair}); 1019 return OperandPair; 1020 } 1021 1022 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1023 -> DebugInstrOperandPair { 1024 MachineRegisterInfo &MRI = getRegInfo(); 1025 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1026 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1027 1028 // Chase the value read by a copy-like instruction back to the instruction 1029 // that ultimately _defines_ that value. This may pass: 1030 // * Through multiple intermediate copies, including subregister moves / 1031 // copies, 1032 // * Copies from physical registers that must then be traced back to the 1033 // defining instruction, 1034 // * Or, physical registers may be live-in to (only) the entry block, which 1035 // requires a DBG_PHI to be created. 1036 // We can pursue this problem in that order: trace back through copies, 1037 // optionally through a physical register, to a defining instruction. We 1038 // should never move from physreg to vreg. As we're still in SSA form, no need 1039 // to worry about partial definitions of registers. 1040 1041 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1042 // returns the register read and any subregister identifying which part is 1043 // read. 1044 auto GetRegAndSubreg = 1045 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1046 Register NewReg, OldReg; 1047 unsigned SubReg; 1048 if (Cpy.isCopy()) { 1049 OldReg = Cpy.getOperand(0).getReg(); 1050 NewReg = Cpy.getOperand(1).getReg(); 1051 SubReg = Cpy.getOperand(1).getSubReg(); 1052 } else if (Cpy.isSubregToReg()) { 1053 OldReg = Cpy.getOperand(0).getReg(); 1054 NewReg = Cpy.getOperand(2).getReg(); 1055 SubReg = Cpy.getOperand(3).getImm(); 1056 } else { 1057 auto CopyDetails = *TII.isCopyInstr(Cpy); 1058 const MachineOperand &Src = *CopyDetails.Source; 1059 const MachineOperand &Dest = *CopyDetails.Destination; 1060 OldReg = Dest.getReg(); 1061 NewReg = Src.getReg(); 1062 SubReg = Src.getSubReg(); 1063 } 1064 1065 return {NewReg, SubReg}; 1066 }; 1067 1068 // First seek either the defining instruction, or a copy from a physreg. 1069 // During search, the current state is the current copy instruction, and which 1070 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1071 // deal with those later. 1072 auto State = GetRegAndSubreg(MI); 1073 auto CurInst = MI.getIterator(); 1074 SmallVector<unsigned, 4> SubregsSeen; 1075 while (true) { 1076 // If we've found a copy from a physreg, first portion of search is over. 1077 if (!State.first.isVirtual()) 1078 break; 1079 1080 // Record any subregister qualifier. 1081 if (State.second) 1082 SubregsSeen.push_back(State.second); 1083 1084 assert(MRI.hasOneDef(State.first)); 1085 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1086 CurInst = Inst.getIterator(); 1087 1088 // Any non-copy instruction is the defining instruction we're seeking. 1089 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1090 break; 1091 State = GetRegAndSubreg(Inst); 1092 }; 1093 1094 // Helper lambda to apply additional subregister substitutions to a known 1095 // instruction/operand pair. Adds new (fake) substitutions so that we can 1096 // record the subregister. FIXME: this isn't very space efficient if multiple 1097 // values are tracked back through the same copies; cache something later. 1098 auto ApplySubregisters = 1099 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1100 for (unsigned Subreg : reverse(SubregsSeen)) { 1101 // Fetch a new instruction number, not attached to an actual instruction. 1102 unsigned NewInstrNumber = getNewDebugInstrNum(); 1103 // Add a substitution from the "new" number to the known one, with a 1104 // qualifying subreg. 1105 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1106 // Return the new number; to find the underlying value, consumers need to 1107 // deal with the qualifying subreg. 1108 P = {NewInstrNumber, 0}; 1109 } 1110 return P; 1111 }; 1112 1113 // If we managed to find the defining instruction after COPYs, return an 1114 // instruction / operand pair after adding subregister qualifiers. 1115 if (State.first.isVirtual()) { 1116 // Virtual register def -- we can just look up where this happens. 1117 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1118 for (auto &MO : Inst->all_defs()) { 1119 if (MO.getReg() != State.first) 1120 continue; 1121 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1122 } 1123 1124 llvm_unreachable("Vreg def with no corresponding operand?"); 1125 } 1126 1127 // Our search ended in a copy from a physreg: walk back up the function 1128 // looking for whatever defines the physreg. 1129 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1130 State = GetRegAndSubreg(*CurInst); 1131 Register RegToSeek = State.first; 1132 1133 auto RMII = CurInst->getReverseIterator(); 1134 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1135 for (auto &ToExamine : PrevInstrs) { 1136 for (auto &MO : ToExamine.all_defs()) { 1137 // Test for operand that defines something aliasing RegToSeek. 1138 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1139 continue; 1140 1141 return ApplySubregisters( 1142 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1143 } 1144 } 1145 1146 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1147 1148 // We reached the start of the block before finding a defining instruction. 1149 // There are numerous scenarios where this can happen: 1150 // * Constant physical registers, 1151 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1152 // * Arguments in the entry block, 1153 // * Exception handling landing pads. 1154 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1155 // the variable value at this position, rather than checking it makes sense. 1156 1157 // Create DBG_PHI for specified physreg. 1158 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1159 TII.get(TargetOpcode::DBG_PHI)); 1160 Builder.addReg(State.first); 1161 unsigned NewNum = getNewDebugInstrNum(); 1162 Builder.addImm(NewNum); 1163 return ApplySubregisters({NewNum, 0u}); 1164 } 1165 1166 void MachineFunction::finalizeDebugInstrRefs() { 1167 auto *TII = getSubtarget().getInstrInfo(); 1168 1169 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1170 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1171 MI.setDesc(RefII); 1172 MI.setDebugValueUndef(); 1173 }; 1174 1175 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1176 for (auto &MBB : *this) { 1177 for (auto &MI : MBB) { 1178 if (!MI.isDebugRef()) 1179 continue; 1180 1181 bool IsValidRef = true; 1182 1183 for (MachineOperand &MO : MI.debug_operands()) { 1184 if (!MO.isReg()) 1185 continue; 1186 1187 Register Reg = MO.getReg(); 1188 1189 // Some vregs can be deleted as redundant in the meantime. Mark those 1190 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1191 // quickly deleted, leaving dangling references to vregs with no def. 1192 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1193 IsValidRef = false; 1194 break; 1195 } 1196 1197 assert(Reg.isVirtual()); 1198 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1199 1200 // If we've found a copy-like instruction, follow it back to the 1201 // instruction that defines the source value, see salvageCopySSA docs 1202 // for why this is important. 1203 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1204 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1205 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1206 } else { 1207 // Otherwise, identify the operand number that the VReg refers to. 1208 unsigned OperandIdx = 0; 1209 for (const auto &DefMO : DefMI.operands()) { 1210 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1211 break; 1212 ++OperandIdx; 1213 } 1214 assert(OperandIdx < DefMI.getNumOperands()); 1215 1216 // Morph this instr ref to point at the given instruction and operand. 1217 unsigned ID = DefMI.getDebugInstrNum(); 1218 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1219 } 1220 } 1221 1222 if (!IsValidRef) 1223 MakeUndefDbgValue(MI); 1224 } 1225 } 1226 } 1227 1228 bool MachineFunction::shouldUseDebugInstrRef() const { 1229 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1230 // have optimized code inlined into this unoptimized code, however with 1231 // fewer and less aggressive optimizations happening, coverage and accuracy 1232 // should not suffer. 1233 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1234 return false; 1235 1236 // Don't use instr-ref if this function is marked optnone. 1237 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1238 return false; 1239 1240 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1241 return true; 1242 1243 return false; 1244 } 1245 1246 bool MachineFunction::useDebugInstrRef() const { 1247 return UseDebugInstrRef; 1248 } 1249 1250 void MachineFunction::setUseDebugInstrRef(bool Use) { 1251 UseDebugInstrRef = Use; 1252 } 1253 1254 // Use one million as a high / reserved number. 1255 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1256 1257 /// \} 1258 1259 //===----------------------------------------------------------------------===// 1260 // MachineJumpTableInfo implementation 1261 //===----------------------------------------------------------------------===// 1262 1263 /// Return the size of each entry in the jump table. 1264 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1265 // The size of a jump table entry is 4 bytes unless the entry is just the 1266 // address of a block, in which case it is the pointer size. 1267 switch (getEntryKind()) { 1268 case MachineJumpTableInfo::EK_BlockAddress: 1269 return TD.getPointerSize(); 1270 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1271 case MachineJumpTableInfo::EK_LabelDifference64: 1272 return 8; 1273 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1274 case MachineJumpTableInfo::EK_LabelDifference32: 1275 case MachineJumpTableInfo::EK_Custom32: 1276 return 4; 1277 case MachineJumpTableInfo::EK_Inline: 1278 return 0; 1279 } 1280 llvm_unreachable("Unknown jump table encoding!"); 1281 } 1282 1283 /// Return the alignment of each entry in the jump table. 1284 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1285 // The alignment of a jump table entry is the alignment of int32 unless the 1286 // entry is just the address of a block, in which case it is the pointer 1287 // alignment. 1288 switch (getEntryKind()) { 1289 case MachineJumpTableInfo::EK_BlockAddress: 1290 return TD.getPointerABIAlignment(0).value(); 1291 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1292 case MachineJumpTableInfo::EK_LabelDifference64: 1293 return TD.getABIIntegerTypeAlignment(64).value(); 1294 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1295 case MachineJumpTableInfo::EK_LabelDifference32: 1296 case MachineJumpTableInfo::EK_Custom32: 1297 return TD.getABIIntegerTypeAlignment(32).value(); 1298 case MachineJumpTableInfo::EK_Inline: 1299 return 1; 1300 } 1301 llvm_unreachable("Unknown jump table encoding!"); 1302 } 1303 1304 /// Create a new jump table entry in the jump table info. 1305 unsigned MachineJumpTableInfo::createJumpTableIndex( 1306 const std::vector<MachineBasicBlock*> &DestBBs) { 1307 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1308 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1309 return JumpTables.size()-1; 1310 } 1311 1312 /// If Old is the target of any jump tables, update the jump tables to branch 1313 /// to New instead. 1314 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1315 MachineBasicBlock *New) { 1316 assert(Old != New && "Not making a change?"); 1317 bool MadeChange = false; 1318 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1319 ReplaceMBBInJumpTable(i, Old, New); 1320 return MadeChange; 1321 } 1322 1323 /// If MBB is present in any jump tables, remove it. 1324 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1325 bool MadeChange = false; 1326 for (MachineJumpTableEntry &JTE : JumpTables) { 1327 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1328 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1329 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1330 } 1331 return MadeChange; 1332 } 1333 1334 /// If Old is a target of the jump tables, update the jump table to branch to 1335 /// New instead. 1336 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1337 MachineBasicBlock *Old, 1338 MachineBasicBlock *New) { 1339 assert(Old != New && "Not making a change?"); 1340 bool MadeChange = false; 1341 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1342 for (MachineBasicBlock *&MBB : JTE.MBBs) 1343 if (MBB == Old) { 1344 MBB = New; 1345 MadeChange = true; 1346 } 1347 return MadeChange; 1348 } 1349 1350 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1351 if (JumpTables.empty()) return; 1352 1353 OS << "Jump Tables:\n"; 1354 1355 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1356 OS << printJumpTableEntryReference(i) << ':'; 1357 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1358 OS << ' ' << printMBBReference(*MBB); 1359 if (i != e) 1360 OS << '\n'; 1361 } 1362 1363 OS << '\n'; 1364 } 1365 1366 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1367 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1368 #endif 1369 1370 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1371 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1372 } 1373 1374 //===----------------------------------------------------------------------===// 1375 // MachineConstantPool implementation 1376 //===----------------------------------------------------------------------===// 1377 1378 void MachineConstantPoolValue::anchor() {} 1379 1380 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1381 return DL.getTypeAllocSize(Ty); 1382 } 1383 1384 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1385 if (isMachineConstantPoolEntry()) 1386 return Val.MachineCPVal->getSizeInBytes(DL); 1387 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1388 } 1389 1390 bool MachineConstantPoolEntry::needsRelocation() const { 1391 if (isMachineConstantPoolEntry()) 1392 return true; 1393 return Val.ConstVal->needsDynamicRelocation(); 1394 } 1395 1396 SectionKind 1397 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1398 if (needsRelocation()) 1399 return SectionKind::getReadOnlyWithRel(); 1400 switch (getSizeInBytes(*DL)) { 1401 case 4: 1402 return SectionKind::getMergeableConst4(); 1403 case 8: 1404 return SectionKind::getMergeableConst8(); 1405 case 16: 1406 return SectionKind::getMergeableConst16(); 1407 case 32: 1408 return SectionKind::getMergeableConst32(); 1409 default: 1410 return SectionKind::getReadOnly(); 1411 } 1412 } 1413 1414 MachineConstantPool::~MachineConstantPool() { 1415 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1416 // so keep track of which we've deleted to avoid double deletions. 1417 DenseSet<MachineConstantPoolValue*> Deleted; 1418 for (const MachineConstantPoolEntry &C : Constants) 1419 if (C.isMachineConstantPoolEntry()) { 1420 Deleted.insert(C.Val.MachineCPVal); 1421 delete C.Val.MachineCPVal; 1422 } 1423 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1424 if (Deleted.count(CPV) == 0) 1425 delete CPV; 1426 } 1427 } 1428 1429 /// Test whether the given two constants can be allocated the same constant pool 1430 /// entry referenced by \param A. 1431 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1432 const DataLayout &DL) { 1433 // Handle the trivial case quickly. 1434 if (A == B) return true; 1435 1436 // If they have the same type but weren't the same constant, quickly 1437 // reject them. 1438 if (A->getType() == B->getType()) return false; 1439 1440 // We can't handle structs or arrays. 1441 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1442 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1443 return false; 1444 1445 // For now, only support constants with the same size. 1446 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1447 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1448 return false; 1449 1450 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1451 1452 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1453 1454 // Try constant folding a bitcast of both instructions to an integer. If we 1455 // get two identical ConstantInt's, then we are good to share them. We use 1456 // the constant folding APIs to do this so that we get the benefit of 1457 // DataLayout. 1458 if (isa<PointerType>(A->getType())) 1459 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1460 const_cast<Constant *>(A), IntTy, DL); 1461 else if (A->getType() != IntTy) 1462 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1463 IntTy, DL); 1464 if (isa<PointerType>(B->getType())) 1465 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1466 const_cast<Constant *>(B), IntTy, DL); 1467 else if (B->getType() != IntTy) 1468 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1469 IntTy, DL); 1470 1471 if (A != B) 1472 return false; 1473 1474 // Constants only safely match if A doesn't contain undef/poison. 1475 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1476 // TODO: Handle cases where A and B have the same undef/poison elements. 1477 // TODO: Merge A and B with mismatching undef/poison elements. 1478 return !ContainsUndefOrPoisonA; 1479 } 1480 1481 /// Create a new entry in the constant pool or return an existing one. 1482 /// User must specify the log2 of the minimum required alignment for the object. 1483 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1484 Align Alignment) { 1485 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1486 1487 // Check to see if we already have this constant. 1488 // 1489 // FIXME, this could be made much more efficient for large constant pools. 1490 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1491 if (!Constants[i].isMachineConstantPoolEntry() && 1492 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1493 if (Constants[i].getAlign() < Alignment) 1494 Constants[i].Alignment = Alignment; 1495 return i; 1496 } 1497 1498 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1499 return Constants.size()-1; 1500 } 1501 1502 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1503 Align Alignment) { 1504 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1505 1506 // Check to see if we already have this constant. 1507 // 1508 // FIXME, this could be made much more efficient for large constant pools. 1509 int Idx = V->getExistingMachineCPValue(this, Alignment); 1510 if (Idx != -1) { 1511 MachineCPVsSharingEntries.insert(V); 1512 return (unsigned)Idx; 1513 } 1514 1515 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1516 return Constants.size()-1; 1517 } 1518 1519 void MachineConstantPool::print(raw_ostream &OS) const { 1520 if (Constants.empty()) return; 1521 1522 OS << "Constant Pool:\n"; 1523 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1524 OS << " cp#" << i << ": "; 1525 if (Constants[i].isMachineConstantPoolEntry()) 1526 Constants[i].Val.MachineCPVal->print(OS); 1527 else 1528 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1529 OS << ", align=" << Constants[i].getAlign().value(); 1530 OS << "\n"; 1531 } 1532 } 1533 1534 //===----------------------------------------------------------------------===// 1535 // Template specialization for MachineFunction implementation of 1536 // ProfileSummaryInfo::getEntryCount(). 1537 //===----------------------------------------------------------------------===// 1538 template <> 1539 std::optional<Function::ProfileCount> 1540 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1541 const llvm::MachineFunction *F) const { 1542 return F->getFunction().getEntryCount(); 1543 } 1544 1545 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1546 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1547 #endif 1548