xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 184f1be4a8029b82df942c351e0aa506b85fe305)
1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/CodeGen/MachineConstantPool.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetFrameInfo.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Config/config.h"
34 #include <fstream>
35 #include <sstream>
36 using namespace llvm;
37 
38 static AnnotationID MF_AID(
39   AnnotationManager::getID("CodeGen::MachineCodeForFunction"));
40 
41 bool MachineFunctionPass::runOnFunction(Function &F) {
42   // Do not codegen any 'available_externally' functions at all, they have
43   // definitions outside the translation unit.
44   if (F.hasAvailableExternallyLinkage())
45     return false;
46 
47   return runOnMachineFunction(MachineFunction::get(&F));
48 }
49 
50 namespace {
51   struct VISIBILITY_HIDDEN Printer : public MachineFunctionPass {
52     static char ID;
53 
54     std::ostream *OS;
55     const std::string Banner;
56 
57     Printer (std::ostream *os, const std::string &banner)
58       : MachineFunctionPass(&ID), OS(os), Banner(banner) {}
59 
60     const char *getPassName() const { return "MachineFunction Printer"; }
61 
62     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63       AU.setPreservesAll();
64     }
65 
66     bool runOnMachineFunction(MachineFunction &MF) {
67       (*OS) << Banner;
68       MF.print (*OS);
69       return false;
70     }
71   };
72   char Printer::ID = 0;
73 }
74 
75 /// Returns a newly-created MachineFunction Printer pass. The default output
76 /// stream is std::cerr; the default banner is empty.
77 ///
78 FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS,
79                                                      const std::string &Banner){
80   return new Printer(OS, Banner);
81 }
82 
83 namespace {
84   struct VISIBILITY_HIDDEN Deleter : public MachineFunctionPass {
85     static char ID;
86     Deleter() : MachineFunctionPass(&ID) {}
87 
88     const char *getPassName() const { return "Machine Code Deleter"; }
89 
90     bool runOnMachineFunction(MachineFunction &MF) {
91       // Delete the annotation from the function now.
92       MachineFunction::destruct(MF.getFunction());
93       return true;
94     }
95   };
96   char Deleter::ID = 0;
97 }
98 
99 /// MachineCodeDeletion Pass - This pass deletes all of the machine code for
100 /// the current function, which should happen after the function has been
101 /// emitted to a .s file or to memory.
102 FunctionPass *llvm::createMachineCodeDeleter() {
103   return new Deleter();
104 }
105 
106 
107 
108 //===---------------------------------------------------------------------===//
109 // MachineFunction implementation
110 //===---------------------------------------------------------------------===//
111 
112 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
113   MBB->getParent()->DeleteMachineBasicBlock(MBB);
114 }
115 
116 MachineFunction::MachineFunction(const Function *F,
117                                  const TargetMachine &TM)
118   : Annotation(MF_AID), Fn(F), Target(TM) {
119   if (TM.getRegisterInfo())
120     RegInfo = new (Allocator.Allocate<MachineRegisterInfo>())
121                   MachineRegisterInfo(*TM.getRegisterInfo());
122   else
123     RegInfo = 0;
124   MFInfo = 0;
125   FrameInfo = new (Allocator.Allocate<MachineFrameInfo>())
126                   MachineFrameInfo(*TM.getFrameInfo());
127   ConstantPool = new (Allocator.Allocate<MachineConstantPool>())
128                      MachineConstantPool(TM.getTargetData());
129 
130   // Set up jump table.
131   const TargetData &TD = *TM.getTargetData();
132   bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
133   unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
134   unsigned Alignment = IsPic ? TD.getABITypeAlignment(Type::Int32Ty)
135                              : TD.getPointerABIAlignment();
136   JumpTableInfo = new (Allocator.Allocate<MachineJumpTableInfo>())
137                       MachineJumpTableInfo(EntrySize, Alignment);
138 }
139 
140 MachineFunction::~MachineFunction() {
141   BasicBlocks.clear();
142   InstructionRecycler.clear(Allocator);
143   BasicBlockRecycler.clear(Allocator);
144   if (RegInfo)
145     RegInfo->~MachineRegisterInfo();        Allocator.Deallocate(RegInfo);
146   if (MFInfo) {
147     MFInfo->~MachineFunctionInfo();       Allocator.Deallocate(MFInfo);
148   }
149   FrameInfo->~MachineFrameInfo();         Allocator.Deallocate(FrameInfo);
150   ConstantPool->~MachineConstantPool();   Allocator.Deallocate(ConstantPool);
151   JumpTableInfo->~MachineJumpTableInfo(); Allocator.Deallocate(JumpTableInfo);
152 }
153 
154 
155 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
156 /// recomputes them.  This guarantees that the MBB numbers are sequential,
157 /// dense, and match the ordering of the blocks within the function.  If a
158 /// specific MachineBasicBlock is specified, only that block and those after
159 /// it are renumbered.
160 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
161   if (empty()) { MBBNumbering.clear(); return; }
162   MachineFunction::iterator MBBI, E = end();
163   if (MBB == 0)
164     MBBI = begin();
165   else
166     MBBI = MBB;
167 
168   // Figure out the block number this should have.
169   unsigned BlockNo = 0;
170   if (MBBI != begin())
171     BlockNo = prior(MBBI)->getNumber()+1;
172 
173   for (; MBBI != E; ++MBBI, ++BlockNo) {
174     if (MBBI->getNumber() != (int)BlockNo) {
175       // Remove use of the old number.
176       if (MBBI->getNumber() != -1) {
177         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
178                "MBB number mismatch!");
179         MBBNumbering[MBBI->getNumber()] = 0;
180       }
181 
182       // If BlockNo is already taken, set that block's number to -1.
183       if (MBBNumbering[BlockNo])
184         MBBNumbering[BlockNo]->setNumber(-1);
185 
186       MBBNumbering[BlockNo] = MBBI;
187       MBBI->setNumber(BlockNo);
188     }
189   }
190 
191   // Okay, all the blocks are renumbered.  If we have compactified the block
192   // numbering, shrink MBBNumbering now.
193   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
194   MBBNumbering.resize(BlockNo);
195 }
196 
197 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
198 /// of `new MachineInstr'.
199 ///
200 MachineInstr *
201 MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID,
202                                     DebugLoc DL, bool NoImp) {
203   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
204     MachineInstr(TID, DL, NoImp);
205 }
206 
207 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the
208 /// 'Orig' instruction, identical in all ways except the the instruction
209 /// has no parent, prev, or next.
210 ///
211 MachineInstr *
212 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
213   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
214              MachineInstr(*this, *Orig);
215 }
216 
217 /// DeleteMachineInstr - Delete the given MachineInstr.
218 ///
219 void
220 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
221   // Clear the instructions memoperands. This must be done manually because
222   // the instruction's parent pointer is now null, so it can't properly
223   // deallocate them on its own.
224   MI->clearMemOperands(*this);
225 
226   MI->~MachineInstr();
227   InstructionRecycler.Deallocate(Allocator, MI);
228 }
229 
230 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
231 /// instead of `new MachineBasicBlock'.
232 ///
233 MachineBasicBlock *
234 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
235   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
236              MachineBasicBlock(*this, bb);
237 }
238 
239 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
240 ///
241 void
242 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
243   assert(MBB->getParent() == this && "MBB parent mismatch!");
244   MBB->~MachineBasicBlock();
245   BasicBlockRecycler.Deallocate(Allocator, MBB);
246 }
247 
248 void MachineFunction::dump() const {
249   print(*cerr.stream());
250 }
251 
252 void MachineFunction::print(std::ostream &OS) const {
253   OS << "# Machine code for " << Fn->getName () << "():\n";
254 
255   // Print Frame Information
256   FrameInfo->print(*this, OS);
257 
258   // Print JumpTable Information
259   JumpTableInfo->print(OS);
260 
261   // Print Constant Pool
262   {
263     raw_os_ostream OSS(OS);
264     ConstantPool->print(OSS);
265   }
266 
267   const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
268 
269   if (RegInfo && !RegInfo->livein_empty()) {
270     OS << "Live Ins:";
271     for (MachineRegisterInfo::livein_iterator
272          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
273       if (TRI)
274         OS << " " << TRI->getName(I->first);
275       else
276         OS << " Reg #" << I->first;
277 
278       if (I->second)
279         OS << " in VR#" << I->second << " ";
280     }
281     OS << "\n";
282   }
283   if (RegInfo && !RegInfo->liveout_empty()) {
284     OS << "Live Outs:";
285     for (MachineRegisterInfo::liveout_iterator
286          I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I)
287       if (TRI)
288         OS << " " << TRI->getName(*I);
289       else
290         OS << " Reg #" << *I;
291     OS << "\n";
292   }
293 
294   for (const_iterator BB = begin(); BB != end(); ++BB)
295     BB->print(OS);
296 
297   OS << "\n# End machine code for " << Fn->getName () << "().\n\n";
298 }
299 
300 /// CFGOnly flag - This is used to control whether or not the CFG graph printer
301 /// prints out the contents of basic blocks or not.  This is acceptable because
302 /// this code is only really used for debugging purposes.
303 ///
304 static bool CFGOnly = false;
305 
306 namespace llvm {
307   template<>
308   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
309     static std::string getGraphName(const MachineFunction *F) {
310       return "CFG for '" + F->getFunction()->getName() + "' function";
311     }
312 
313     static std::string getNodeLabel(const MachineBasicBlock *Node,
314                                     const MachineFunction *Graph) {
315       if (CFGOnly && Node->getBasicBlock() &&
316           !Node->getBasicBlock()->getName().empty())
317         return Node->getBasicBlock()->getName() + ":";
318 
319       std::ostringstream Out;
320       if (CFGOnly) {
321         Out << Node->getNumber() << ':';
322         return Out.str();
323       }
324 
325       Node->print(Out);
326 
327       std::string OutStr = Out.str();
328       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
329 
330       // Process string output to make it nicer...
331       for (unsigned i = 0; i != OutStr.length(); ++i)
332         if (OutStr[i] == '\n') {                            // Left justify
333           OutStr[i] = '\\';
334           OutStr.insert(OutStr.begin()+i+1, 'l');
335         }
336       return OutStr;
337     }
338   };
339 }
340 
341 void MachineFunction::viewCFG() const
342 {
343 #ifndef NDEBUG
344   ViewGraph(this, "mf" + getFunction()->getName());
345 #else
346   cerr << "SelectionDAG::viewGraph is only available in debug builds on "
347        << "systems with Graphviz or gv!\n";
348 #endif // NDEBUG
349 }
350 
351 void MachineFunction::viewCFGOnly() const
352 {
353   CFGOnly = true;
354   viewCFG();
355   CFGOnly = false;
356 }
357 
358 // The next two methods are used to construct and to retrieve
359 // the MachineCodeForFunction object for the given function.
360 // construct() -- Allocates and initializes for a given function and target
361 // get()       -- Returns a handle to the object.
362 //                This should not be called before "construct()"
363 //                for a given Function.
364 //
365 MachineFunction&
366 MachineFunction::construct(const Function *Fn, const TargetMachine &Tar)
367 {
368   assert(Fn->getAnnotation(MF_AID) == 0 &&
369          "Object already exists for this function!");
370   MachineFunction* mcInfo = new MachineFunction(Fn, Tar);
371   Fn->addAnnotation(mcInfo);
372   return *mcInfo;
373 }
374 
375 void MachineFunction::destruct(const Function *Fn) {
376   bool Deleted = Fn->deleteAnnotation(MF_AID);
377   assert(Deleted && "Machine code did not exist for function!");
378   Deleted = Deleted; // silence warning when no assertions.
379 }
380 
381 MachineFunction& MachineFunction::get(const Function *F)
382 {
383   MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID);
384   assert(mc && "Call construct() method first to allocate the object");
385   return *mc;
386 }
387 
388 /// getOrCreateDebugLocID - Look up the DebugLocTuple index with the given
389 /// source file, line, and column. If none currently exists, create a new
390 /// DebugLocTuple, and insert it into the DebugIdMap.
391 unsigned MachineFunction::getOrCreateDebugLocID(unsigned Src, unsigned Line,
392                                                 unsigned Col) {
393   DebugLocTuple Tuple(Src, Line, Col);
394   DenseMap<DebugLocTuple, unsigned>::iterator II
395     = DebugLocInfo.DebugIdMap.find(Tuple);
396   if (II != DebugLocInfo.DebugIdMap.end())
397     return II->second;
398   // Add a new tuple.
399   unsigned Id = DebugLocInfo.DebugLocations.size();
400   DebugLocInfo.DebugLocations.push_back(Tuple);
401   DebugLocInfo.DebugIdMap[Tuple] = Id;
402   return Id;
403 }
404 
405 /// getDebugLocTuple - Get the DebugLocTuple for a given DebugLoc object.
406 DebugLocTuple MachineFunction::getDebugLocTuple(DebugLoc DL) const {
407   unsigned Idx = DL.getIndex();
408   assert(Idx < DebugLocInfo.DebugLocations.size() &&
409          "Invalid index into debug locations!");
410   return DebugLocInfo.DebugLocations[Idx];
411 }
412 
413 //===----------------------------------------------------------------------===//
414 //  MachineFrameInfo implementation
415 //===----------------------------------------------------------------------===//
416 
417 /// CreateFixedObject - Create a new object at a fixed location on the stack.
418 /// All fixed objects should be created before other objects are created for
419 /// efficiency. By default, fixed objects are immutable. This returns an
420 /// index with a negative value.
421 ///
422 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
423                                         bool Immutable) {
424   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
425   Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable));
426   return -++NumFixedObjects;
427 }
428 
429 
430 void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
431   const TargetFrameInfo *FI = MF.getTarget().getFrameInfo();
432   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
433 
434   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
435     const StackObject &SO = Objects[i];
436     OS << "  <fi#" << (int)(i-NumFixedObjects) << ">: ";
437     if (SO.Size == ~0ULL) {
438       OS << "dead\n";
439       continue;
440     }
441     if (SO.Size == 0)
442       OS << "variable sized";
443     else
444       OS << "size is " << SO.Size << " byte" << (SO.Size != 1 ? "s," : ",");
445     OS << " alignment is " << SO.Alignment << " byte"
446        << (SO.Alignment != 1 ? "s," : ",");
447 
448     if (i < NumFixedObjects)
449       OS << " fixed";
450     if (i < NumFixedObjects || SO.SPOffset != -1) {
451       int64_t Off = SO.SPOffset - ValOffset;
452       OS << " at location [SP";
453       if (Off > 0)
454         OS << "+" << Off;
455       else if (Off < 0)
456         OS << Off;
457       OS << "]";
458     }
459     OS << "\n";
460   }
461 
462   if (HasVarSizedObjects)
463     OS << "  Stack frame contains variable sized objects\n";
464 }
465 
466 void MachineFrameInfo::dump(const MachineFunction &MF) const {
467   print(MF, *cerr.stream());
468 }
469 
470 
471 //===----------------------------------------------------------------------===//
472 //  MachineJumpTableInfo implementation
473 //===----------------------------------------------------------------------===//
474 
475 /// getJumpTableIndex - Create a new jump table entry in the jump table info
476 /// or return an existing one.
477 ///
478 unsigned MachineJumpTableInfo::getJumpTableIndex(
479                                const std::vector<MachineBasicBlock*> &DestBBs) {
480   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
481   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i)
482     if (JumpTables[i].MBBs == DestBBs)
483       return i;
484 
485   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
486   return JumpTables.size()-1;
487 }
488 
489 
490 void MachineJumpTableInfo::print(std::ostream &OS) const {
491   // FIXME: this is lame, maybe we could print out the MBB numbers or something
492   // like {1, 2, 4, 5, 3, 0}
493   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
494     OS << "  <jt#" << i << "> has " << JumpTables[i].MBBs.size()
495        << " entries\n";
496   }
497 }
498 
499 void MachineJumpTableInfo::dump() const { print(*cerr.stream()); }
500 
501 
502 //===----------------------------------------------------------------------===//
503 //  MachineConstantPool implementation
504 //===----------------------------------------------------------------------===//
505 
506 const Type *MachineConstantPoolEntry::getType() const {
507   if (isMachineConstantPoolEntry())
508       return Val.MachineCPVal->getType();
509   return Val.ConstVal->getType();
510 }
511 
512 MachineConstantPool::~MachineConstantPool() {
513   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
514     if (Constants[i].isMachineConstantPoolEntry())
515       delete Constants[i].Val.MachineCPVal;
516 }
517 
518 /// getConstantPoolIndex - Create a new entry in the constant pool or return
519 /// an existing one.  User must specify the log2 of the minimum required
520 /// alignment for the object.
521 ///
522 unsigned MachineConstantPool::getConstantPoolIndex(Constant *C,
523                                                    unsigned Alignment) {
524   assert(Alignment && "Alignment must be specified!");
525   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
526 
527   // Check to see if we already have this constant.
528   //
529   // FIXME, this could be made much more efficient for large constant pools.
530   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
531     if (Constants[i].Val.ConstVal == C &&
532         (Constants[i].getAlignment() & (Alignment - 1)) == 0)
533       return i;
534 
535   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
536   return Constants.size()-1;
537 }
538 
539 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
540                                                    unsigned Alignment) {
541   assert(Alignment && "Alignment must be specified!");
542   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
543 
544   // Check to see if we already have this constant.
545   //
546   // FIXME, this could be made much more efficient for large constant pools.
547   int Idx = V->getExistingMachineCPValue(this, Alignment);
548   if (Idx != -1)
549     return (unsigned)Idx;
550 
551   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
552   return Constants.size()-1;
553 }
554 
555 void MachineConstantPool::print(raw_ostream &OS) const {
556   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
557     OS << "  <cp#" << i << "> is";
558     if (Constants[i].isMachineConstantPoolEntry())
559       Constants[i].Val.MachineCPVal->print(OS);
560     else
561       OS << *(Value*)Constants[i].Val.ConstVal;
562     OS << " , alignment=" << Constants[i].getAlignment();
563     OS << "\n";
564   }
565 }
566 
567 void MachineConstantPool::dump() const { print(errs()); }
568