1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/DerivedTypes.h" 17 #include "llvm/Function.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Config/config.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetFrameInfo.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // MachineFunction implementation 45 //===----------------------------------------------------------------------===// 46 47 // Out of line virtual method. 48 MachineFunctionInfo::~MachineFunctionInfo() {} 49 50 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 51 MBB->getParent()->DeleteMachineBasicBlock(MBB); 52 } 53 54 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 55 unsigned FunctionNum, MachineModuleInfo &mmi) 56 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi) { 57 if (TM.getRegisterInfo()) 58 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 59 else 60 RegInfo = 0; 61 MFInfo = 0; 62 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameInfo()); 63 if (Fn->hasFnAttr(Attribute::StackAlignment)) 64 FrameInfo->setMaxAlignment(Attribute::getStackAlignmentFromAttrs( 65 Fn->getAttributes().getFnAttributes())); 66 ConstantPool = new (Allocator) MachineConstantPool(TM.getTargetData()); 67 Alignment = TM.getTargetLowering()->getFunctionAlignment(F); 68 FunctionNumber = FunctionNum; 69 JumpTableInfo = 0; 70 } 71 72 MachineFunction::~MachineFunction() { 73 BasicBlocks.clear(); 74 InstructionRecycler.clear(Allocator); 75 BasicBlockRecycler.clear(Allocator); 76 if (RegInfo) { 77 RegInfo->~MachineRegisterInfo(); 78 Allocator.Deallocate(RegInfo); 79 } 80 if (MFInfo) { 81 MFInfo->~MachineFunctionInfo(); 82 Allocator.Deallocate(MFInfo); 83 } 84 FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo); 85 ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool); 86 87 if (JumpTableInfo) { 88 JumpTableInfo->~MachineJumpTableInfo(); 89 Allocator.Deallocate(JumpTableInfo); 90 } 91 } 92 93 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 94 /// does already exist, allocate one. 95 MachineJumpTableInfo *MachineFunction:: 96 getOrCreateJumpTableInfo(unsigned EntryKind) { 97 if (JumpTableInfo) return JumpTableInfo; 98 99 JumpTableInfo = new (Allocator) 100 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 101 return JumpTableInfo; 102 } 103 104 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 105 /// recomputes them. This guarantees that the MBB numbers are sequential, 106 /// dense, and match the ordering of the blocks within the function. If a 107 /// specific MachineBasicBlock is specified, only that block and those after 108 /// it are renumbered. 109 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 110 if (empty()) { MBBNumbering.clear(); return; } 111 MachineFunction::iterator MBBI, E = end(); 112 if (MBB == 0) 113 MBBI = begin(); 114 else 115 MBBI = MBB; 116 117 // Figure out the block number this should have. 118 unsigned BlockNo = 0; 119 if (MBBI != begin()) 120 BlockNo = prior(MBBI)->getNumber()+1; 121 122 for (; MBBI != E; ++MBBI, ++BlockNo) { 123 if (MBBI->getNumber() != (int)BlockNo) { 124 // Remove use of the old number. 125 if (MBBI->getNumber() != -1) { 126 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 127 "MBB number mismatch!"); 128 MBBNumbering[MBBI->getNumber()] = 0; 129 } 130 131 // If BlockNo is already taken, set that block's number to -1. 132 if (MBBNumbering[BlockNo]) 133 MBBNumbering[BlockNo]->setNumber(-1); 134 135 MBBNumbering[BlockNo] = MBBI; 136 MBBI->setNumber(BlockNo); 137 } 138 } 139 140 // Okay, all the blocks are renumbered. If we have compactified the block 141 // numbering, shrink MBBNumbering now. 142 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 143 MBBNumbering.resize(BlockNo); 144 } 145 146 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 147 /// of `new MachineInstr'. 148 /// 149 MachineInstr * 150 MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, 151 DebugLoc DL, bool NoImp) { 152 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 153 MachineInstr(TID, DL, NoImp); 154 } 155 156 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 157 /// 'Orig' instruction, identical in all ways except the instruction 158 /// has no parent, prev, or next. 159 /// 160 MachineInstr * 161 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 162 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 163 MachineInstr(*this, *Orig); 164 } 165 166 /// DeleteMachineInstr - Delete the given MachineInstr. 167 /// 168 void 169 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 170 MI->~MachineInstr(); 171 InstructionRecycler.Deallocate(Allocator, MI); 172 } 173 174 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 175 /// instead of `new MachineBasicBlock'. 176 /// 177 MachineBasicBlock * 178 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 179 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 180 MachineBasicBlock(*this, bb); 181 } 182 183 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 184 /// 185 void 186 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 187 assert(MBB->getParent() == this && "MBB parent mismatch!"); 188 MBB->~MachineBasicBlock(); 189 BasicBlockRecycler.Deallocate(Allocator, MBB); 190 } 191 192 MachineMemOperand * 193 MachineFunction::getMachineMemOperand(const Value *v, unsigned f, 194 int64_t o, uint64_t s, 195 unsigned base_alignment) { 196 return new (Allocator) MachineMemOperand(v, f, o, s, base_alignment); 197 } 198 199 MachineMemOperand * 200 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 201 int64_t Offset, uint64_t Size) { 202 return new (Allocator) 203 MachineMemOperand(MMO->getValue(), MMO->getFlags(), 204 int64_t(uint64_t(MMO->getOffset()) + 205 uint64_t(Offset)), 206 Size, MMO->getBaseAlignment()); 207 } 208 209 MachineInstr::mmo_iterator 210 MachineFunction::allocateMemRefsArray(unsigned long Num) { 211 return Allocator.Allocate<MachineMemOperand *>(Num); 212 } 213 214 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 215 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 216 MachineInstr::mmo_iterator End) { 217 // Count the number of load mem refs. 218 unsigned Num = 0; 219 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 220 if ((*I)->isLoad()) 221 ++Num; 222 223 // Allocate a new array and populate it with the load information. 224 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 225 unsigned Index = 0; 226 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 227 if ((*I)->isLoad()) { 228 if (!(*I)->isStore()) 229 // Reuse the MMO. 230 Result[Index] = *I; 231 else { 232 // Clone the MMO and unset the store flag. 233 MachineMemOperand *JustLoad = 234 getMachineMemOperand((*I)->getValue(), 235 (*I)->getFlags() & ~MachineMemOperand::MOStore, 236 (*I)->getOffset(), (*I)->getSize(), 237 (*I)->getBaseAlignment()); 238 Result[Index] = JustLoad; 239 } 240 ++Index; 241 } 242 } 243 return std::make_pair(Result, Result + Num); 244 } 245 246 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 247 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 248 MachineInstr::mmo_iterator End) { 249 // Count the number of load mem refs. 250 unsigned Num = 0; 251 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 252 if ((*I)->isStore()) 253 ++Num; 254 255 // Allocate a new array and populate it with the store information. 256 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 257 unsigned Index = 0; 258 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 259 if ((*I)->isStore()) { 260 if (!(*I)->isLoad()) 261 // Reuse the MMO. 262 Result[Index] = *I; 263 else { 264 // Clone the MMO and unset the load flag. 265 MachineMemOperand *JustStore = 266 getMachineMemOperand((*I)->getValue(), 267 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 268 (*I)->getOffset(), (*I)->getSize(), 269 (*I)->getBaseAlignment()); 270 Result[Index] = JustStore; 271 } 272 ++Index; 273 } 274 } 275 return std::make_pair(Result, Result + Num); 276 } 277 278 void MachineFunction::dump() const { 279 print(dbgs()); 280 } 281 282 void MachineFunction::print(raw_ostream &OS) const { 283 OS << "# Machine code for function " << Fn->getName() << ":\n"; 284 285 // Print Frame Information 286 FrameInfo->print(*this, OS); 287 288 // Print JumpTable Information 289 if (JumpTableInfo) 290 JumpTableInfo->print(OS); 291 292 // Print Constant Pool 293 ConstantPool->print(OS); 294 295 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 296 297 if (RegInfo && !RegInfo->livein_empty()) { 298 OS << "Function Live Ins: "; 299 for (MachineRegisterInfo::livein_iterator 300 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 301 if (TRI) 302 OS << "%" << TRI->getName(I->first); 303 else 304 OS << " %physreg" << I->first; 305 306 if (I->second) 307 OS << " in reg%" << I->second; 308 309 if (llvm::next(I) != E) 310 OS << ", "; 311 } 312 OS << '\n'; 313 } 314 if (RegInfo && !RegInfo->liveout_empty()) { 315 OS << "Function Live Outs: "; 316 for (MachineRegisterInfo::liveout_iterator 317 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){ 318 if (TRI) 319 OS << '%' << TRI->getName(*I); 320 else 321 OS << "%physreg" << *I; 322 323 if (llvm::next(I) != E) 324 OS << " "; 325 } 326 OS << '\n'; 327 } 328 329 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 330 OS << '\n'; 331 BB->print(OS); 332 } 333 334 OS << "\n# End machine code for function " << Fn->getName() << ".\n\n"; 335 } 336 337 namespace llvm { 338 template<> 339 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 340 341 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 342 343 static std::string getGraphName(const MachineFunction *F) { 344 return "CFG for '" + F->getFunction()->getNameStr() + "' function"; 345 } 346 347 std::string getNodeLabel(const MachineBasicBlock *Node, 348 const MachineFunction *Graph) { 349 if (isSimple () && Node->getBasicBlock() && 350 !Node->getBasicBlock()->getName().empty()) 351 return Node->getBasicBlock()->getNameStr() + ":"; 352 353 std::string OutStr; 354 { 355 raw_string_ostream OSS(OutStr); 356 357 if (isSimple()) 358 OSS << Node->getNumber() << ':'; 359 else 360 Node->print(OSS); 361 } 362 363 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 364 365 // Process string output to make it nicer... 366 for (unsigned i = 0; i != OutStr.length(); ++i) 367 if (OutStr[i] == '\n') { // Left justify 368 OutStr[i] = '\\'; 369 OutStr.insert(OutStr.begin()+i+1, 'l'); 370 } 371 return OutStr; 372 } 373 }; 374 } 375 376 void MachineFunction::viewCFG() const 377 { 378 #ifndef NDEBUG 379 ViewGraph(this, "mf" + getFunction()->getNameStr()); 380 #else 381 errs() << "SelectionDAG::viewGraph is only available in debug builds on " 382 << "systems with Graphviz or gv!\n"; 383 #endif // NDEBUG 384 } 385 386 void MachineFunction::viewCFGOnly() const 387 { 388 #ifndef NDEBUG 389 ViewGraph(this, "mf" + getFunction()->getNameStr(), true); 390 #else 391 errs() << "SelectionDAG::viewGraph is only available in debug builds on " 392 << "systems with Graphviz or gv!\n"; 393 #endif // NDEBUG 394 } 395 396 /// addLiveIn - Add the specified physical register as a live-in value and 397 /// create a corresponding virtual register for it. 398 unsigned MachineFunction::addLiveIn(unsigned PReg, 399 const TargetRegisterClass *RC) { 400 assert(RC->contains(PReg) && "Not the correct regclass!"); 401 MachineRegisterInfo &MRI = getRegInfo(); 402 unsigned VReg = MRI.getLiveInVirtReg(PReg); 403 if (VReg) { 404 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 405 return VReg; 406 } 407 VReg = MRI.createVirtualRegister(RC); 408 MRI.addLiveIn(PReg, VReg); 409 return VReg; 410 } 411 412 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 413 /// If isLinkerPrivate or isLinkerWeak is specified, an 'l' label is returned, 414 /// otherwise a normal 'L' label is returned. 415 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 416 bool PassToLinker) const { 417 assert(JumpTableInfo && "No jump tables"); 418 419 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 420 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 421 422 const char *Prefix = PassToLinker ? 423 MAI.getLinkerPrivateGlobalPrefix() : 424 MAI.getPrivateGlobalPrefix(); 425 SmallString<60> Name; 426 raw_svector_ostream(Name) 427 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 428 return Ctx.GetOrCreateSymbol(Name.str()); 429 } 430 431 432 //===----------------------------------------------------------------------===// 433 // MachineFrameInfo implementation 434 //===----------------------------------------------------------------------===// 435 436 /// CreateFixedObject - Create a new object at a fixed location on the stack. 437 /// All fixed objects should be created before other objects are created for 438 /// efficiency. By default, fixed objects are immutable. This returns an 439 /// index with a negative value. 440 /// 441 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 442 bool Immutable, bool isSS) { 443 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 444 Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable, 445 isSS)); 446 return -++NumFixedObjects; 447 } 448 449 450 BitVector 451 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 452 assert(MBB && "MBB must be valid"); 453 const MachineFunction *MF = MBB->getParent(); 454 assert(MF && "MBB must be part of a MachineFunction"); 455 const TargetMachine &TM = MF->getTarget(); 456 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 457 BitVector BV(TRI->getNumRegs()); 458 459 // Before CSI is calculated, no registers are considered pristine. They can be 460 // freely used and PEI will make sure they are saved. 461 if (!isCalleeSavedInfoValid()) 462 return BV; 463 464 for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 465 BV.set(*CSR); 466 467 // The entry MBB always has all CSRs pristine. 468 if (MBB == &MF->front()) 469 return BV; 470 471 // On other MBBs the saved CSRs are not pristine. 472 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 473 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 474 E = CSI.end(); I != E; ++I) 475 BV.reset(I->getReg()); 476 477 return BV; 478 } 479 480 481 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 482 if (Objects.empty()) return; 483 484 const TargetFrameInfo *FI = MF.getTarget().getFrameInfo(); 485 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 486 487 OS << "Frame Objects:\n"; 488 489 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 490 const StackObject &SO = Objects[i]; 491 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 492 if (SO.Size == ~0ULL) { 493 OS << "dead\n"; 494 continue; 495 } 496 if (SO.Size == 0) 497 OS << "variable sized"; 498 else 499 OS << "size=" << SO.Size; 500 OS << ", align=" << SO.Alignment; 501 502 if (i < NumFixedObjects) 503 OS << ", fixed"; 504 if (i < NumFixedObjects || SO.SPOffset != -1) { 505 int64_t Off = SO.SPOffset - ValOffset; 506 OS << ", at location [SP"; 507 if (Off > 0) 508 OS << "+" << Off; 509 else if (Off < 0) 510 OS << Off; 511 OS << "]"; 512 } 513 OS << "\n"; 514 } 515 } 516 517 void MachineFrameInfo::dump(const MachineFunction &MF) const { 518 print(MF, dbgs()); 519 } 520 521 //===----------------------------------------------------------------------===// 522 // MachineJumpTableInfo implementation 523 //===----------------------------------------------------------------------===// 524 525 /// getEntrySize - Return the size of each entry in the jump table. 526 unsigned MachineJumpTableInfo::getEntrySize(const TargetData &TD) const { 527 // The size of a jump table entry is 4 bytes unless the entry is just the 528 // address of a block, in which case it is the pointer size. 529 switch (getEntryKind()) { 530 case MachineJumpTableInfo::EK_BlockAddress: 531 return TD.getPointerSize(); 532 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 533 case MachineJumpTableInfo::EK_LabelDifference32: 534 case MachineJumpTableInfo::EK_Custom32: 535 return 4; 536 case MachineJumpTableInfo::EK_Inline: 537 return 0; 538 } 539 assert(0 && "Unknown jump table encoding!"); 540 return ~0; 541 } 542 543 /// getEntryAlignment - Return the alignment of each entry in the jump table. 544 unsigned MachineJumpTableInfo::getEntryAlignment(const TargetData &TD) const { 545 // The alignment of a jump table entry is the alignment of int32 unless the 546 // entry is just the address of a block, in which case it is the pointer 547 // alignment. 548 switch (getEntryKind()) { 549 case MachineJumpTableInfo::EK_BlockAddress: 550 return TD.getPointerABIAlignment(); 551 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 552 case MachineJumpTableInfo::EK_LabelDifference32: 553 case MachineJumpTableInfo::EK_Custom32: 554 return TD.getABIIntegerTypeAlignment(32); 555 case MachineJumpTableInfo::EK_Inline: 556 return 1; 557 } 558 assert(0 && "Unknown jump table encoding!"); 559 return ~0; 560 } 561 562 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 563 /// 564 unsigned MachineJumpTableInfo::createJumpTableIndex( 565 const std::vector<MachineBasicBlock*> &DestBBs) { 566 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 567 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 568 return JumpTables.size()-1; 569 } 570 571 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 572 /// the jump tables to branch to New instead. 573 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 574 MachineBasicBlock *New) { 575 assert(Old != New && "Not making a change?"); 576 bool MadeChange = false; 577 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 578 ReplaceMBBInJumpTable(i, Old, New); 579 return MadeChange; 580 } 581 582 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 583 /// the jump table to branch to New instead. 584 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 585 MachineBasicBlock *Old, 586 MachineBasicBlock *New) { 587 assert(Old != New && "Not making a change?"); 588 bool MadeChange = false; 589 MachineJumpTableEntry &JTE = JumpTables[Idx]; 590 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 591 if (JTE.MBBs[j] == Old) { 592 JTE.MBBs[j] = New; 593 MadeChange = true; 594 } 595 return MadeChange; 596 } 597 598 void MachineJumpTableInfo::print(raw_ostream &OS) const { 599 if (JumpTables.empty()) return; 600 601 OS << "Jump Tables:\n"; 602 603 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 604 OS << " jt#" << i << ": "; 605 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 606 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 607 } 608 609 OS << '\n'; 610 } 611 612 void MachineJumpTableInfo::dump() const { print(dbgs()); } 613 614 615 //===----------------------------------------------------------------------===// 616 // MachineConstantPool implementation 617 //===----------------------------------------------------------------------===// 618 619 const Type *MachineConstantPoolEntry::getType() const { 620 if (isMachineConstantPoolEntry()) 621 return Val.MachineCPVal->getType(); 622 return Val.ConstVal->getType(); 623 } 624 625 626 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 627 if (isMachineConstantPoolEntry()) 628 return Val.MachineCPVal->getRelocationInfo(); 629 return Val.ConstVal->getRelocationInfo(); 630 } 631 632 MachineConstantPool::~MachineConstantPool() { 633 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 634 if (Constants[i].isMachineConstantPoolEntry()) 635 delete Constants[i].Val.MachineCPVal; 636 } 637 638 /// CanShareConstantPoolEntry - Test whether the given two constants 639 /// can be allocated the same constant pool entry. 640 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 641 const TargetData *TD) { 642 // Handle the trivial case quickly. 643 if (A == B) return true; 644 645 // If they have the same type but weren't the same constant, quickly 646 // reject them. 647 if (A->getType() == B->getType()) return false; 648 649 // For now, only support constants with the same size. 650 if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType())) 651 return false; 652 653 // If a floating-point value and an integer value have the same encoding, 654 // they can share a constant-pool entry. 655 if (const ConstantFP *AFP = dyn_cast<ConstantFP>(A)) 656 if (const ConstantInt *BI = dyn_cast<ConstantInt>(B)) 657 return AFP->getValueAPF().bitcastToAPInt() == BI->getValue(); 658 if (const ConstantFP *BFP = dyn_cast<ConstantFP>(B)) 659 if (const ConstantInt *AI = dyn_cast<ConstantInt>(A)) 660 return BFP->getValueAPF().bitcastToAPInt() == AI->getValue(); 661 662 // Two vectors can share an entry if each pair of corresponding 663 // elements could. 664 if (const ConstantVector *AV = dyn_cast<ConstantVector>(A)) 665 if (const ConstantVector *BV = dyn_cast<ConstantVector>(B)) { 666 if (AV->getType()->getNumElements() != BV->getType()->getNumElements()) 667 return false; 668 for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i) 669 if (!CanShareConstantPoolEntry(AV->getOperand(i), 670 BV->getOperand(i), TD)) 671 return false; 672 return true; 673 } 674 675 // TODO: Handle other cases. 676 677 return false; 678 } 679 680 /// getConstantPoolIndex - Create a new entry in the constant pool or return 681 /// an existing one. User must specify the log2 of the minimum required 682 /// alignment for the object. 683 /// 684 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 685 unsigned Alignment) { 686 assert(Alignment && "Alignment must be specified!"); 687 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 688 689 // Check to see if we already have this constant. 690 // 691 // FIXME, this could be made much more efficient for large constant pools. 692 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 693 if (!Constants[i].isMachineConstantPoolEntry() && 694 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 695 if ((unsigned)Constants[i].getAlignment() < Alignment) 696 Constants[i].Alignment = Alignment; 697 return i; 698 } 699 700 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 701 return Constants.size()-1; 702 } 703 704 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 705 unsigned Alignment) { 706 assert(Alignment && "Alignment must be specified!"); 707 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 708 709 // Check to see if we already have this constant. 710 // 711 // FIXME, this could be made much more efficient for large constant pools. 712 int Idx = V->getExistingMachineCPValue(this, Alignment); 713 if (Idx != -1) 714 return (unsigned)Idx; 715 716 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 717 return Constants.size()-1; 718 } 719 720 void MachineConstantPool::print(raw_ostream &OS) const { 721 if (Constants.empty()) return; 722 723 OS << "Constant Pool:\n"; 724 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 725 OS << " cp#" << i << ": "; 726 if (Constants[i].isMachineConstantPoolEntry()) 727 Constants[i].Val.MachineCPVal->print(OS); 728 else 729 OS << *(Value*)Constants[i].Val.ConstVal; 730 OS << ", align=" << Constants[i].getAlignment(); 731 OS << "\n"; 732 } 733 } 734 735 void MachineConstantPool::dump() const { print(dbgs()); } 736