xref: /llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 01ba2ad9ef085f184f3b01cefed4ce59e170054a)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   switch(Prop) {
93   case P::FailedISel: return "FailedISel";
94   case P::IsSSA: return "IsSSA";
95   case P::Legalized: return "Legalized";
96   case P::NoPHIs: return "NoPHIs";
97   case P::NoVRegs: return "NoVRegs";
98   case P::RegBankSelected: return "RegBankSelected";
99   case P::Selected: return "Selected";
100   case P::TracksLiveness: return "TracksLiveness";
101   }
102   llvm_unreachable("Invalid machine function property");
103 }
104 
105 // Pin the vtable to this file.
106 void MachineFunction::Delegate::anchor() {}
107 
108 void MachineFunctionProperties::print(raw_ostream &OS) const {
109   const char *Separator = "";
110   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
111     if (!Properties[I])
112       continue;
113     OS << Separator << getPropertyName(static_cast<Property>(I));
114     Separator = ", ";
115   }
116 }
117 
118 //===----------------------------------------------------------------------===//
119 // MachineFunction implementation
120 //===----------------------------------------------------------------------===//
121 
122 // Out-of-line virtual method.
123 MachineFunctionInfo::~MachineFunctionInfo() = default;
124 
125 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
126   MBB->getParent()->DeleteMachineBasicBlock(MBB);
127 }
128 
129 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
130                                            const Function &F) {
131   if (F.hasFnAttribute(Attribute::StackAlignment))
132     return F.getFnStackAlignment();
133   return STI->getFrameLowering()->getStackAlign().value();
134 }
135 
136 MachineFunction::MachineFunction(const Function &F,
137                                  const LLVMTargetMachine &Target,
138                                  const TargetSubtargetInfo &STI,
139                                  unsigned FunctionNum, MachineModuleInfo &mmi)
140     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141   FunctionNumber = FunctionNum;
142   init();
143 }
144 
145 void MachineFunction::handleInsertion(MachineInstr &MI) {
146   if (TheDelegate)
147     TheDelegate->MF_HandleInsertion(MI);
148 }
149 
150 void MachineFunction::handleRemoval(MachineInstr &MI) {
151   if (TheDelegate)
152     TheDelegate->MF_HandleRemoval(MI);
153 }
154 
155 void MachineFunction::init() {
156   // Assume the function starts in SSA form with correct liveness.
157   Properties.set(MachineFunctionProperties::Property::IsSSA);
158   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159   if (STI->getRegisterInfo())
160     RegInfo = new (Allocator) MachineRegisterInfo(this);
161   else
162     RegInfo = nullptr;
163 
164   MFInfo = nullptr;
165   // We can realign the stack if the target supports it and the user hasn't
166   // explicitly asked us not to.
167   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168                       !F.hasFnAttribute("no-realign-stack");
169   FrameInfo = new (Allocator) MachineFrameInfo(
170       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171       /*ForcedRealign=*/CanRealignSP &&
172           F.hasFnAttribute(Attribute::StackAlignment));
173 
174   if (F.hasFnAttribute(Attribute::StackAlignment))
175     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
176 
177   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
179 
180   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181   // FIXME: Use Function::hasOptSize().
182   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183     Alignment = std::max(Alignment,
184                          STI->getTargetLowering()->getPrefFunctionAlignment());
185 
186   if (AlignAllFunctions)
187     Alignment = Align(1ULL << AlignAllFunctions);
188 
189   JumpTableInfo = nullptr;
190 
191   if (isFuncletEHPersonality(classifyEHPersonality(
192           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193     WinEHInfo = new (Allocator) WinEHFuncInfo();
194   }
195 
196   if (isScopedEHPersonality(classifyEHPersonality(
197           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199   }
200 
201   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202          "Can't create a MachineFunction using a Module with a "
203          "Target-incompatible DataLayout attached\n");
204 
205   PSVManager =
206     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207                                                   getInstrInfo()));
208 }
209 
210 MachineFunction::~MachineFunction() {
211   clear();
212 }
213 
214 void MachineFunction::clear() {
215   Properties.reset();
216   // Don't call destructors on MachineInstr and MachineOperand. All of their
217   // memory comes from the BumpPtrAllocator which is about to be purged.
218   //
219   // Do call MachineBasicBlock destructors, it contains std::vectors.
220   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221     I->Insts.clearAndLeakNodesUnsafely();
222   MBBNumbering.clear();
223 
224   InstructionRecycler.clear(Allocator);
225   OperandRecycler.clear(Allocator);
226   BasicBlockRecycler.clear(Allocator);
227   CodeViewAnnotations.clear();
228   VariableDbgInfos.clear();
229   if (RegInfo) {
230     RegInfo->~MachineRegisterInfo();
231     Allocator.Deallocate(RegInfo);
232   }
233   if (MFInfo) {
234     MFInfo->~MachineFunctionInfo();
235     Allocator.Deallocate(MFInfo);
236   }
237 
238   FrameInfo->~MachineFrameInfo();
239   Allocator.Deallocate(FrameInfo);
240 
241   ConstantPool->~MachineConstantPool();
242   Allocator.Deallocate(ConstantPool);
243 
244   if (JumpTableInfo) {
245     JumpTableInfo->~MachineJumpTableInfo();
246     Allocator.Deallocate(JumpTableInfo);
247   }
248 
249   if (WinEHInfo) {
250     WinEHInfo->~WinEHFuncInfo();
251     Allocator.Deallocate(WinEHInfo);
252   }
253 
254   if (WasmEHInfo) {
255     WasmEHInfo->~WasmEHFuncInfo();
256     Allocator.Deallocate(WasmEHInfo);
257   }
258 }
259 
260 const DataLayout &MachineFunction::getDataLayout() const {
261   return F.getParent()->getDataLayout();
262 }
263 
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo *MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind) {
268   if (JumpTableInfo) return JumpTableInfo;
269 
270   JumpTableInfo = new (Allocator)
271     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272   return JumpTableInfo;
273 }
274 
275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276   if (&FPType == &APFloat::IEEEsingle()) {
277     Attribute Attr = F.getFnAttribute("denormal-fp-math-f32");
278     StringRef Val = Attr.getValueAsString();
279     if (!Val.empty())
280       return parseDenormalFPAttribute(Val);
281 
282     // If the f32 variant of the attribute isn't specified, try to use the
283     // generic one.
284   }
285 
286   // TODO: Should probably avoid the connection to the IR and store directly
287   // in the MachineFunction.
288   Attribute Attr = F.getFnAttribute("denormal-fp-math");
289   return parseDenormalFPAttribute(Attr.getValueAsString());
290 }
291 
292 /// Should we be emitting segmented stack stuff for the function
293 bool MachineFunction::shouldSplitStack() const {
294   return getFunction().hasFnAttribute("split-stack");
295 }
296 
297 LLVM_NODISCARD unsigned
298 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
299   FrameInstructions.push_back(Inst);
300   return FrameInstructions.size() - 1;
301 }
302 
303 /// This discards all of the MachineBasicBlock numbers and recomputes them.
304 /// This guarantees that the MBB numbers are sequential, dense, and match the
305 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
306 /// is specified, only that block and those after it are renumbered.
307 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
308   if (empty()) { MBBNumbering.clear(); return; }
309   MachineFunction::iterator MBBI, E = end();
310   if (MBB == nullptr)
311     MBBI = begin();
312   else
313     MBBI = MBB->getIterator();
314 
315   // Figure out the block number this should have.
316   unsigned BlockNo = 0;
317   if (MBBI != begin())
318     BlockNo = std::prev(MBBI)->getNumber() + 1;
319 
320   for (; MBBI != E; ++MBBI, ++BlockNo) {
321     if (MBBI->getNumber() != (int)BlockNo) {
322       // Remove use of the old number.
323       if (MBBI->getNumber() != -1) {
324         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
325                "MBB number mismatch!");
326         MBBNumbering[MBBI->getNumber()] = nullptr;
327       }
328 
329       // If BlockNo is already taken, set that block's number to -1.
330       if (MBBNumbering[BlockNo])
331         MBBNumbering[BlockNo]->setNumber(-1);
332 
333       MBBNumbering[BlockNo] = &*MBBI;
334       MBBI->setNumber(BlockNo);
335     }
336   }
337 
338   // Okay, all the blocks are renumbered.  If we have compactified the block
339   // numbering, shrink MBBNumbering now.
340   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
341   MBBNumbering.resize(BlockNo);
342 }
343 
344 /// This sets the section ranges of cold or exception section with basic block
345 /// sections.
346 void MachineFunction::setSectionRange() {
347   // Compute the Section Range of cold and exception basic blocks.  Find the
348   // first and last block of each range.
349   auto SectionRange =
350       ([&](llvm::MachineBasicBlockSection S) -> std::pair<int, int> {
351         auto MBBP =
352             std::find_if(begin(), end(), [&](MachineBasicBlock &MBB) -> bool {
353               return MBB.getSectionType() == S;
354             });
355         if (MBBP == end())
356           return std::make_pair(-1, -1);
357 
358         auto MBBQ =
359             std::find_if(rbegin(), rend(), [&](MachineBasicBlock &MBB) -> bool {
360               return MBB.getSectionType() == S;
361             });
362         assert(MBBQ != rend() && "Section end not found!");
363         return std::make_pair(MBBP->getNumber(), MBBQ->getNumber());
364       });
365 
366   ExceptionSectionRange = SectionRange(MBBS_Exception);
367   ColdSectionRange = SectionRange(llvm::MBBS_Cold);
368 }
369 
370 /// This is used with -fbasicblock-sections or -fbasicblock-labels option.
371 /// A unary encoding of basic block labels is done to keep ".strtab" sizes
372 /// small.
373 void MachineFunction::createBBLabels() {
374   const TargetInstrInfo *TII = getSubtarget().getInstrInfo();
375   this->BBSectionsSymbolPrefix.resize(getNumBlockIDs(), 'a');
376   for (auto MBBI = begin(), E = end(); MBBI != E; ++MBBI) {
377     assert(
378         (MBBI->getNumber() >= 0 && MBBI->getNumber() < (int)getNumBlockIDs()) &&
379         "BasicBlock number was out of range!");
380     // 'a' - Normal block.
381     // 'r' - Return block.
382     // 'l' - Landing Pad.
383     // 'L' - Return and landing pad.
384     bool isEHPad = MBBI->isEHPad();
385     bool isRetBlock = MBBI->isReturnBlock() && !TII->isTailCall(MBBI->back());
386     char type = 'a';
387     if (isEHPad && isRetBlock)
388       type = 'L';
389     else if (isEHPad)
390       type = 'l';
391     else if (isRetBlock)
392       type = 'r';
393     BBSectionsSymbolPrefix[MBBI->getNumber()] = type;
394   }
395 }
396 
397 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
398 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
399                                                   const DebugLoc &DL,
400                                                   bool NoImp) {
401   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
402     MachineInstr(*this, MCID, DL, NoImp);
403 }
404 
405 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
406 /// identical in all ways except the instruction has no parent, prev, or next.
407 MachineInstr *
408 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
409   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
410              MachineInstr(*this, *Orig);
411 }
412 
413 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
414     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
415   MachineInstr *FirstClone = nullptr;
416   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
417   while (true) {
418     MachineInstr *Cloned = CloneMachineInstr(&*I);
419     MBB.insert(InsertBefore, Cloned);
420     if (FirstClone == nullptr) {
421       FirstClone = Cloned;
422     } else {
423       Cloned->bundleWithPred();
424     }
425 
426     if (!I->isBundledWithSucc())
427       break;
428     ++I;
429   }
430   return *FirstClone;
431 }
432 
433 /// Delete the given MachineInstr.
434 ///
435 /// This function also serves as the MachineInstr destructor - the real
436 /// ~MachineInstr() destructor must be empty.
437 void
438 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
439   // Verify that a call site info is at valid state. This assertion should
440   // be triggered during the implementation of support for the
441   // call site info of a new architecture. If the assertion is triggered,
442   // back trace will tell where to insert a call to updateCallSiteInfo().
443   assert((!MI->isCandidateForCallSiteEntry() ||
444           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
445          "Call site info was not updated!");
446   // Strip it for parts. The operand array and the MI object itself are
447   // independently recyclable.
448   if (MI->Operands)
449     deallocateOperandArray(MI->CapOperands, MI->Operands);
450   // Don't call ~MachineInstr() which must be trivial anyway because
451   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
452   // destructors.
453   InstructionRecycler.Deallocate(Allocator, MI);
454 }
455 
456 /// Allocate a new MachineBasicBlock. Use this instead of
457 /// `new MachineBasicBlock'.
458 MachineBasicBlock *
459 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
460   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
461              MachineBasicBlock(*this, bb);
462 }
463 
464 /// Delete the given MachineBasicBlock.
465 void
466 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
467   assert(MBB->getParent() == this && "MBB parent mismatch!");
468   MBB->~MachineBasicBlock();
469   BasicBlockRecycler.Deallocate(Allocator, MBB);
470 }
471 
472 MachineMemOperand *MachineFunction::getMachineMemOperand(
473     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
474     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
475     SyncScope::ID SSID, AtomicOrdering Ordering,
476     AtomicOrdering FailureOrdering) {
477   return new (Allocator)
478       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
479                         SSID, Ordering, FailureOrdering);
480 }
481 
482 MachineMemOperand *
483 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
484                                       int64_t Offset, uint64_t Size) {
485   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
486 
487   // If there is no pointer value, the offset isn't tracked so we need to adjust
488   // the base alignment.
489   Align Alignment = PtrInfo.V.isNull()
490                         ? commonAlignment(MMO->getBaseAlign(), Offset)
491                         : MMO->getBaseAlign();
492 
493   return new (Allocator)
494       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
495                         Alignment, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
496                         MMO->getOrdering(), MMO->getFailureOrdering());
497 }
498 
499 MachineMemOperand *
500 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
501                                       const AAMDNodes &AAInfo) {
502   MachinePointerInfo MPI = MMO->getValue() ?
503              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
504              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
505 
506   return new (Allocator) MachineMemOperand(
507       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
508       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(),
509       MMO->getFailureOrdering());
510 }
511 
512 MachineMemOperand *
513 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
514                                       MachineMemOperand::Flags Flags) {
515   return new (Allocator) MachineMemOperand(
516       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
517       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
518       MMO->getOrdering(), MMO->getFailureOrdering());
519 }
520 
521 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
522     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
523     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
524   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
525                                          PostInstrSymbol, HeapAllocMarker);
526 }
527 
528 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
529   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
530   llvm::copy(Name, Dest);
531   Dest[Name.size()] = 0;
532   return Dest;
533 }
534 
535 uint32_t *MachineFunction::allocateRegMask() {
536   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
537   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
538   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
539   memset(Mask, 0, Size * sizeof(Mask[0]));
540   return Mask;
541 }
542 
543 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
544   int* AllocMask = Allocator.Allocate<int>(Mask.size());
545   copy(Mask, AllocMask);
546   return {AllocMask, Mask.size()};
547 }
548 
549 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
550 LLVM_DUMP_METHOD void MachineFunction::dump() const {
551   print(dbgs());
552 }
553 #endif
554 
555 StringRef MachineFunction::getName() const {
556   return getFunction().getName();
557 }
558 
559 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
560   OS << "# Machine code for function " << getName() << ": ";
561   getProperties().print(OS);
562   OS << '\n';
563 
564   // Print Frame Information
565   FrameInfo->print(*this, OS);
566 
567   // Print JumpTable Information
568   if (JumpTableInfo)
569     JumpTableInfo->print(OS);
570 
571   // Print Constant Pool
572   ConstantPool->print(OS);
573 
574   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
575 
576   if (RegInfo && !RegInfo->livein_empty()) {
577     OS << "Function Live Ins: ";
578     for (MachineRegisterInfo::livein_iterator
579          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
580       OS << printReg(I->first, TRI);
581       if (I->second)
582         OS << " in " << printReg(I->second, TRI);
583       if (std::next(I) != E)
584         OS << ", ";
585     }
586     OS << '\n';
587   }
588 
589   ModuleSlotTracker MST(getFunction().getParent());
590   MST.incorporateFunction(getFunction());
591   for (const auto &BB : *this) {
592     OS << '\n';
593     // If we print the whole function, print it at its most verbose level.
594     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
595   }
596 
597   OS << "\n# End machine code for function " << getName() << ".\n\n";
598 }
599 
600 /// True if this function needs frame moves for debug or exceptions.
601 bool MachineFunction::needsFrameMoves() const {
602   return getMMI().hasDebugInfo() ||
603          getTarget().Options.ForceDwarfFrameSection ||
604          F.needsUnwindTableEntry();
605 }
606 
607 namespace llvm {
608 
609   template<>
610   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
611     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
612 
613     static std::string getGraphName(const MachineFunction *F) {
614       return ("CFG for '" + F->getName() + "' function").str();
615     }
616 
617     std::string getNodeLabel(const MachineBasicBlock *Node,
618                              const MachineFunction *Graph) {
619       std::string OutStr;
620       {
621         raw_string_ostream OSS(OutStr);
622 
623         if (isSimple()) {
624           OSS << printMBBReference(*Node);
625           if (const BasicBlock *BB = Node->getBasicBlock())
626             OSS << ": " << BB->getName();
627         } else
628           Node->print(OSS);
629       }
630 
631       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
632 
633       // Process string output to make it nicer...
634       for (unsigned i = 0; i != OutStr.length(); ++i)
635         if (OutStr[i] == '\n') {                            // Left justify
636           OutStr[i] = '\\';
637           OutStr.insert(OutStr.begin()+i+1, 'l');
638         }
639       return OutStr;
640     }
641   };
642 
643 } // end namespace llvm
644 
645 void MachineFunction::viewCFG() const
646 {
647 #ifndef NDEBUG
648   ViewGraph(this, "mf" + getName());
649 #else
650   errs() << "MachineFunction::viewCFG is only available in debug builds on "
651          << "systems with Graphviz or gv!\n";
652 #endif // NDEBUG
653 }
654 
655 void MachineFunction::viewCFGOnly() const
656 {
657 #ifndef NDEBUG
658   ViewGraph(this, "mf" + getName(), true);
659 #else
660   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
661          << "systems with Graphviz or gv!\n";
662 #endif // NDEBUG
663 }
664 
665 /// Add the specified physical register as a live-in value and
666 /// create a corresponding virtual register for it.
667 unsigned MachineFunction::addLiveIn(unsigned PReg,
668                                     const TargetRegisterClass *RC) {
669   MachineRegisterInfo &MRI = getRegInfo();
670   unsigned VReg = MRI.getLiveInVirtReg(PReg);
671   if (VReg) {
672     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
673     (void)VRegRC;
674     // A physical register can be added several times.
675     // Between two calls, the register class of the related virtual register
676     // may have been constrained to match some operation constraints.
677     // In that case, check that the current register class includes the
678     // physical register and is a sub class of the specified RC.
679     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
680                              RC->hasSubClassEq(VRegRC))) &&
681             "Register class mismatch!");
682     return VReg;
683   }
684   VReg = MRI.createVirtualRegister(RC);
685   MRI.addLiveIn(PReg, VReg);
686   return VReg;
687 }
688 
689 /// Return the MCSymbol for the specified non-empty jump table.
690 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
691 /// normal 'L' label is returned.
692 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
693                                         bool isLinkerPrivate) const {
694   const DataLayout &DL = getDataLayout();
695   assert(JumpTableInfo && "No jump tables");
696   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
697 
698   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
699                                      : DL.getPrivateGlobalPrefix();
700   SmallString<60> Name;
701   raw_svector_ostream(Name)
702     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
703   return Ctx.getOrCreateSymbol(Name);
704 }
705 
706 /// Return a function-local symbol to represent the PIC base.
707 MCSymbol *MachineFunction::getPICBaseSymbol() const {
708   const DataLayout &DL = getDataLayout();
709   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
710                                Twine(getFunctionNumber()) + "$pb");
711 }
712 
713 /// \name Exception Handling
714 /// \{
715 
716 LandingPadInfo &
717 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
718   unsigned N = LandingPads.size();
719   for (unsigned i = 0; i < N; ++i) {
720     LandingPadInfo &LP = LandingPads[i];
721     if (LP.LandingPadBlock == LandingPad)
722       return LP;
723   }
724 
725   LandingPads.push_back(LandingPadInfo(LandingPad));
726   return LandingPads[N];
727 }
728 
729 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
730                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
731   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
732   LP.BeginLabels.push_back(BeginLabel);
733   LP.EndLabels.push_back(EndLabel);
734 }
735 
736 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
737   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
738   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
739   LP.LandingPadLabel = LandingPadLabel;
740 
741   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
742   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
743     if (const auto *PF =
744             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
745       getMMI().addPersonality(PF);
746 
747     if (LPI->isCleanup())
748       addCleanup(LandingPad);
749 
750     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
751     //        correct, but we need to do it this way because of how the DWARF EH
752     //        emitter processes the clauses.
753     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
754       Value *Val = LPI->getClause(I - 1);
755       if (LPI->isCatch(I - 1)) {
756         addCatchTypeInfo(LandingPad,
757                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
758       } else {
759         // Add filters in a list.
760         auto *CVal = cast<Constant>(Val);
761         SmallVector<const GlobalValue *, 4> FilterList;
762         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
763              II != IE; ++II)
764           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
765 
766         addFilterTypeInfo(LandingPad, FilterList);
767       }
768     }
769 
770   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
771     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
772       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
773       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
774     }
775 
776   } else {
777     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
778   }
779 
780   return LandingPadLabel;
781 }
782 
783 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
784                                        ArrayRef<const GlobalValue *> TyInfo) {
785   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
786   for (unsigned N = TyInfo.size(); N; --N)
787     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
788 }
789 
790 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
791                                         ArrayRef<const GlobalValue *> TyInfo) {
792   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
793   std::vector<unsigned> IdsInFilter(TyInfo.size());
794   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
795     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
796   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
797 }
798 
799 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
800                                       bool TidyIfNoBeginLabels) {
801   for (unsigned i = 0; i != LandingPads.size(); ) {
802     LandingPadInfo &LandingPad = LandingPads[i];
803     if (LandingPad.LandingPadLabel &&
804         !LandingPad.LandingPadLabel->isDefined() &&
805         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
806       LandingPad.LandingPadLabel = nullptr;
807 
808     // Special case: we *should* emit LPs with null LP MBB. This indicates
809     // "nounwind" case.
810     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
811       LandingPads.erase(LandingPads.begin() + i);
812       continue;
813     }
814 
815     if (TidyIfNoBeginLabels) {
816       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
817         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
818         MCSymbol *EndLabel = LandingPad.EndLabels[j];
819         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
820             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
821           continue;
822 
823         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
824         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
825         --j;
826         --e;
827       }
828 
829       // Remove landing pads with no try-ranges.
830       if (LandingPads[i].BeginLabels.empty()) {
831         LandingPads.erase(LandingPads.begin() + i);
832         continue;
833       }
834     }
835 
836     // If there is no landing pad, ensure that the list of typeids is empty.
837     // If the only typeid is a cleanup, this is the same as having no typeids.
838     if (!LandingPad.LandingPadBlock ||
839         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
840       LandingPad.TypeIds.clear();
841     ++i;
842   }
843 }
844 
845 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
846   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
847   LP.TypeIds.push_back(0);
848 }
849 
850 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
851                                          const Function *Filter,
852                                          const BlockAddress *RecoverBA) {
853   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
854   SEHHandler Handler;
855   Handler.FilterOrFinally = Filter;
856   Handler.RecoverBA = RecoverBA;
857   LP.SEHHandlers.push_back(Handler);
858 }
859 
860 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
861                                            const Function *Cleanup) {
862   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
863   SEHHandler Handler;
864   Handler.FilterOrFinally = Cleanup;
865   Handler.RecoverBA = nullptr;
866   LP.SEHHandlers.push_back(Handler);
867 }
868 
869 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
870                                             ArrayRef<unsigned> Sites) {
871   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
872 }
873 
874 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
875   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
876     if (TypeInfos[i] == TI) return i + 1;
877 
878   TypeInfos.push_back(TI);
879   return TypeInfos.size();
880 }
881 
882 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
883   // If the new filter coincides with the tail of an existing filter, then
884   // re-use the existing filter.  Folding filters more than this requires
885   // re-ordering filters and/or their elements - probably not worth it.
886   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
887        E = FilterEnds.end(); I != E; ++I) {
888     unsigned i = *I, j = TyIds.size();
889 
890     while (i && j)
891       if (FilterIds[--i] != TyIds[--j])
892         goto try_next;
893 
894     if (!j)
895       // The new filter coincides with range [i, end) of the existing filter.
896       return -(1 + i);
897 
898 try_next:;
899   }
900 
901   // Add the new filter.
902   int FilterID = -(1 + FilterIds.size());
903   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
904   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
905   FilterEnds.push_back(FilterIds.size());
906   FilterIds.push_back(0); // terminator
907   return FilterID;
908 }
909 
910 MachineFunction::CallSiteInfoMap::iterator
911 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
912   assert(MI->isCandidateForCallSiteEntry() &&
913          "Call site info refers only to call (MI) candidates");
914 
915   if (!Target.Options.EmitCallSiteInfo)
916     return CallSitesInfo.end();
917   return CallSitesInfo.find(MI);
918 }
919 
920 /// Return the call machine instruction or find a call within bundle.
921 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
922   if (!MI->isBundle())
923     return MI;
924 
925   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
926                               getBundleEnd(MI->getIterator())))
927     if (BMI.isCandidateForCallSiteEntry())
928       return &BMI;
929 
930   llvm_unreachable("Unexpected bundle without a call site candidate");
931 }
932 
933 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
934   assert(MI->shouldUpdateCallSiteInfo() &&
935          "Call site info refers only to call (MI) candidates or "
936          "candidates inside bundles");
937 
938   const MachineInstr *CallMI = getCallInstr(MI);
939   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
940   if (CSIt == CallSitesInfo.end())
941     return;
942   CallSitesInfo.erase(CSIt);
943 }
944 
945 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
946                                        const MachineInstr *New) {
947   assert(Old->shouldUpdateCallSiteInfo() &&
948          "Call site info refers only to call (MI) candidates or "
949          "candidates inside bundles");
950 
951   if (!New->isCandidateForCallSiteEntry())
952     return eraseCallSiteInfo(Old);
953 
954   const MachineInstr *OldCallMI = getCallInstr(Old);
955   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
956   if (CSIt == CallSitesInfo.end())
957     return;
958 
959   CallSiteInfo CSInfo = CSIt->second;
960   CallSitesInfo[New] = CSInfo;
961 }
962 
963 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
964                                        const MachineInstr *New) {
965   assert(Old->shouldUpdateCallSiteInfo() &&
966          "Call site info refers only to call (MI) candidates or "
967          "candidates inside bundles");
968 
969   if (!New->isCandidateForCallSiteEntry())
970     return eraseCallSiteInfo(Old);
971 
972   const MachineInstr *OldCallMI = getCallInstr(Old);
973   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
974   if (CSIt == CallSitesInfo.end())
975     return;
976 
977   CallSiteInfo CSInfo = std::move(CSIt->second);
978   CallSitesInfo.erase(CSIt);
979   CallSitesInfo[New] = CSInfo;
980 }
981 
982 /// \}
983 
984 //===----------------------------------------------------------------------===//
985 //  MachineJumpTableInfo implementation
986 //===----------------------------------------------------------------------===//
987 
988 /// Return the size of each entry in the jump table.
989 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
990   // The size of a jump table entry is 4 bytes unless the entry is just the
991   // address of a block, in which case it is the pointer size.
992   switch (getEntryKind()) {
993   case MachineJumpTableInfo::EK_BlockAddress:
994     return TD.getPointerSize();
995   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
996     return 8;
997   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
998   case MachineJumpTableInfo::EK_LabelDifference32:
999   case MachineJumpTableInfo::EK_Custom32:
1000     return 4;
1001   case MachineJumpTableInfo::EK_Inline:
1002     return 0;
1003   }
1004   llvm_unreachable("Unknown jump table encoding!");
1005 }
1006 
1007 /// Return the alignment of each entry in the jump table.
1008 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1009   // The alignment of a jump table entry is the alignment of int32 unless the
1010   // entry is just the address of a block, in which case it is the pointer
1011   // alignment.
1012   switch (getEntryKind()) {
1013   case MachineJumpTableInfo::EK_BlockAddress:
1014     return TD.getPointerABIAlignment(0).value();
1015   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1016     return TD.getABIIntegerTypeAlignment(64).value();
1017   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1018   case MachineJumpTableInfo::EK_LabelDifference32:
1019   case MachineJumpTableInfo::EK_Custom32:
1020     return TD.getABIIntegerTypeAlignment(32).value();
1021   case MachineJumpTableInfo::EK_Inline:
1022     return 1;
1023   }
1024   llvm_unreachable("Unknown jump table encoding!");
1025 }
1026 
1027 /// Create a new jump table entry in the jump table info.
1028 unsigned MachineJumpTableInfo::createJumpTableIndex(
1029                                const std::vector<MachineBasicBlock*> &DestBBs) {
1030   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1031   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1032   return JumpTables.size()-1;
1033 }
1034 
1035 /// If Old is the target of any jump tables, update the jump tables to branch
1036 /// to New instead.
1037 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1038                                                   MachineBasicBlock *New) {
1039   assert(Old != New && "Not making a change?");
1040   bool MadeChange = false;
1041   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1042     ReplaceMBBInJumpTable(i, Old, New);
1043   return MadeChange;
1044 }
1045 
1046 /// If Old is a target of the jump tables, update the jump table to branch to
1047 /// New instead.
1048 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1049                                                  MachineBasicBlock *Old,
1050                                                  MachineBasicBlock *New) {
1051   assert(Old != New && "Not making a change?");
1052   bool MadeChange = false;
1053   MachineJumpTableEntry &JTE = JumpTables[Idx];
1054   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1055     if (JTE.MBBs[j] == Old) {
1056       JTE.MBBs[j] = New;
1057       MadeChange = true;
1058     }
1059   return MadeChange;
1060 }
1061 
1062 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1063   if (JumpTables.empty()) return;
1064 
1065   OS << "Jump Tables:\n";
1066 
1067   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1068     OS << printJumpTableEntryReference(i) << ':';
1069     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1070       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1071     if (i != e)
1072       OS << '\n';
1073   }
1074 
1075   OS << '\n';
1076 }
1077 
1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1079 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1080 #endif
1081 
1082 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1083   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1084 }
1085 
1086 //===----------------------------------------------------------------------===//
1087 //  MachineConstantPool implementation
1088 //===----------------------------------------------------------------------===//
1089 
1090 void MachineConstantPoolValue::anchor() {}
1091 
1092 Type *MachineConstantPoolEntry::getType() const {
1093   if (isMachineConstantPoolEntry())
1094     return Val.MachineCPVal->getType();
1095   return Val.ConstVal->getType();
1096 }
1097 
1098 bool MachineConstantPoolEntry::needsRelocation() const {
1099   if (isMachineConstantPoolEntry())
1100     return true;
1101   return Val.ConstVal->needsRelocation();
1102 }
1103 
1104 SectionKind
1105 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1106   if (needsRelocation())
1107     return SectionKind::getReadOnlyWithRel();
1108   switch (DL->getTypeAllocSize(getType())) {
1109   case 4:
1110     return SectionKind::getMergeableConst4();
1111   case 8:
1112     return SectionKind::getMergeableConst8();
1113   case 16:
1114     return SectionKind::getMergeableConst16();
1115   case 32:
1116     return SectionKind::getMergeableConst32();
1117   default:
1118     return SectionKind::getReadOnly();
1119   }
1120 }
1121 
1122 MachineConstantPool::~MachineConstantPool() {
1123   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1124   // so keep track of which we've deleted to avoid double deletions.
1125   DenseSet<MachineConstantPoolValue*> Deleted;
1126   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1127     if (Constants[i].isMachineConstantPoolEntry()) {
1128       Deleted.insert(Constants[i].Val.MachineCPVal);
1129       delete Constants[i].Val.MachineCPVal;
1130     }
1131   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1132        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1133        I != E; ++I) {
1134     if (Deleted.count(*I) == 0)
1135       delete *I;
1136   }
1137 }
1138 
1139 /// Test whether the given two constants can be allocated the same constant pool
1140 /// entry.
1141 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1142                                       const DataLayout &DL) {
1143   // Handle the trivial case quickly.
1144   if (A == B) return true;
1145 
1146   // If they have the same type but weren't the same constant, quickly
1147   // reject them.
1148   if (A->getType() == B->getType()) return false;
1149 
1150   // We can't handle structs or arrays.
1151   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1152       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1153     return false;
1154 
1155   // For now, only support constants with the same size.
1156   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1157   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1158     return false;
1159 
1160   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1161 
1162   // Try constant folding a bitcast of both instructions to an integer.  If we
1163   // get two identical ConstantInt's, then we are good to share them.  We use
1164   // the constant folding APIs to do this so that we get the benefit of
1165   // DataLayout.
1166   if (isa<PointerType>(A->getType()))
1167     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1168                                 const_cast<Constant *>(A), IntTy, DL);
1169   else if (A->getType() != IntTy)
1170     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1171                                 IntTy, DL);
1172   if (isa<PointerType>(B->getType()))
1173     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1174                                 const_cast<Constant *>(B), IntTy, DL);
1175   else if (B->getType() != IntTy)
1176     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1177                                 IntTy, DL);
1178 
1179   return A == B;
1180 }
1181 
1182 /// Create a new entry in the constant pool or return an existing one.
1183 /// User must specify the log2 of the minimum required alignment for the object.
1184 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1185                                                    unsigned Alignment) {
1186   assert(Alignment && "Alignment must be specified!");
1187   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1188 
1189   // Check to see if we already have this constant.
1190   //
1191   // FIXME, this could be made much more efficient for large constant pools.
1192   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1193     if (!Constants[i].isMachineConstantPoolEntry() &&
1194         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1195       if ((unsigned)Constants[i].getAlignment() < Alignment)
1196         Constants[i].Alignment = Alignment;
1197       return i;
1198     }
1199 
1200   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1201   return Constants.size()-1;
1202 }
1203 
1204 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1205                                                    unsigned Alignment) {
1206   assert(Alignment && "Alignment must be specified!");
1207   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1208 
1209   // Check to see if we already have this constant.
1210   //
1211   // FIXME, this could be made much more efficient for large constant pools.
1212   int Idx = V->getExistingMachineCPValue(this, Alignment);
1213   if (Idx != -1) {
1214     MachineCPVsSharingEntries.insert(V);
1215     return (unsigned)Idx;
1216   }
1217 
1218   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1219   return Constants.size()-1;
1220 }
1221 
1222 void MachineConstantPool::print(raw_ostream &OS) const {
1223   if (Constants.empty()) return;
1224 
1225   OS << "Constant Pool:\n";
1226   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1227     OS << "  cp#" << i << ": ";
1228     if (Constants[i].isMachineConstantPoolEntry())
1229       Constants[i].Val.MachineCPVal->print(OS);
1230     else
1231       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1232     OS << ", align=" << Constants[i].getAlignment();
1233     OS << "\n";
1234   }
1235 }
1236 
1237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1238 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1239 #endif
1240