1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineCombinerPattern.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/MachineSizeOpts.h" 24 #include "llvm/CodeGen/MachineTraceMetrics.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "machine-combiner" 38 39 STATISTIC(NumInstCombined, "Number of machineinst combined"); 40 41 static cl::opt<unsigned> 42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 43 cl::desc("Incremental depth computation will be used for basic " 44 "blocks with more instructions."), cl::init(500)); 45 46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 47 cl::desc("Dump all substituted intrs"), 48 cl::init(false)); 49 50 #ifdef EXPENSIVE_CHECKS 51 static cl::opt<bool> VerifyPatternOrder( 52 "machine-combiner-verify-pattern-order", cl::Hidden, 53 cl::desc( 54 "Verify that the generated patterns are ordered by increasing latency"), 55 cl::init(true)); 56 #else 57 static cl::opt<bool> VerifyPatternOrder( 58 "machine-combiner-verify-pattern-order", cl::Hidden, 59 cl::desc( 60 "Verify that the generated patterns are ordered by increasing latency"), 61 cl::init(false)); 62 #endif 63 64 namespace { 65 class MachineCombiner : public MachineFunctionPass { 66 const TargetSubtargetInfo *STI = nullptr; 67 const TargetInstrInfo *TII = nullptr; 68 const TargetRegisterInfo *TRI = nullptr; 69 MCSchedModel SchedModel; 70 MachineRegisterInfo *MRI = nullptr; 71 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 72 MachineTraceMetrics *Traces = nullptr; 73 MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr; 74 MachineBlockFrequencyInfo *MBFI = nullptr; 75 ProfileSummaryInfo *PSI = nullptr; 76 RegisterClassInfo RegClassInfo; 77 78 TargetSchedModel TSchedModel; 79 80 /// True if optimizing for code size. 81 bool OptSize = false; 82 83 public: 84 static char ID; 85 MachineCombiner() : MachineFunctionPass(ID) { 86 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 87 } 88 void getAnalysisUsage(AnalysisUsage &AU) const override; 89 bool runOnMachineFunction(MachineFunction &MF) override; 90 StringRef getPassName() const override { return "Machine InstCombiner"; } 91 92 private: 93 bool combineInstructions(MachineBasicBlock *); 94 MachineInstr *getOperandDef(const MachineOperand &MO); 95 bool isTransientMI(const MachineInstr *MI); 96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 98 MachineTraceMetrics::Trace BlockTrace, 99 const MachineBasicBlock &MBB); 100 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 101 MachineTraceMetrics::Trace BlockTrace); 102 bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 103 MachineTraceMetrics::Trace BlockTrace, 104 SmallVectorImpl<MachineInstr *> &InsInstrs, 105 SmallVectorImpl<MachineInstr *> &DelInstrs, 106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 107 unsigned Pattern, bool SlackIsAccurate); 108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB, 109 SmallVectorImpl<MachineInstr *> &InsInstrs, 110 SmallVectorImpl<MachineInstr *> &DelInstrs, 111 unsigned Pattern); 112 bool preservesResourceLen(MachineBasicBlock *MBB, 113 MachineTraceMetrics::Trace BlockTrace, 114 SmallVectorImpl<MachineInstr *> &InsInstrs, 115 SmallVectorImpl<MachineInstr *> &DelInstrs); 116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 117 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 118 std::pair<unsigned, unsigned> 119 getLatenciesForInstrSequences(MachineInstr &MI, 120 SmallVectorImpl<MachineInstr *> &InsInstrs, 121 SmallVectorImpl<MachineInstr *> &DelInstrs, 122 MachineTraceMetrics::Trace BlockTrace); 123 124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 125 SmallVector<unsigned, 16> &Patterns); 126 CombinerObjective getCombinerObjective(unsigned Pattern); 127 }; 128 } 129 130 char MachineCombiner::ID = 0; 131 char &llvm::MachineCombinerID = MachineCombiner::ID; 132 133 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 134 "Machine InstCombiner", false, false) 135 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 136 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 137 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 138 false, false) 139 140 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 141 AU.setPreservesCFG(); 142 AU.addPreserved<MachineDominatorTree>(); 143 AU.addRequired<MachineLoopInfo>(); 144 AU.addPreserved<MachineLoopInfo>(); 145 AU.addRequired<MachineTraceMetrics>(); 146 AU.addPreserved<MachineTraceMetrics>(); 147 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 148 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 149 MachineFunctionPass::getAnalysisUsage(AU); 150 } 151 152 MachineInstr * 153 MachineCombiner::getOperandDef(const MachineOperand &MO) { 154 MachineInstr *DefInstr = nullptr; 155 // We need a virtual register definition. 156 if (MO.isReg() && MO.getReg().isVirtual()) 157 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 158 return DefInstr; 159 } 160 161 /// Return true if MI is unlikely to generate an actual target instruction. 162 bool MachineCombiner::isTransientMI(const MachineInstr *MI) { 163 if (!MI->isCopy()) 164 return MI->isTransient(); 165 166 // If MI is a COPY, check if its src and dst registers can be coalesced. 167 Register Dst = MI->getOperand(0).getReg(); 168 Register Src = MI->getOperand(1).getReg(); 169 170 if (!MI->isFullCopy()) { 171 // If src RC contains super registers of dst RC, it can also be coalesced. 172 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical()) 173 return false; 174 175 auto SrcSub = MI->getOperand(1).getSubReg(); 176 auto SrcRC = MRI->getRegClass(Src); 177 auto DstRC = MRI->getRegClass(Dst); 178 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr; 179 } 180 181 if (Src.isPhysical() && Dst.isPhysical()) 182 return Src == Dst; 183 184 if (Src.isVirtual() && Dst.isVirtual()) { 185 auto SrcRC = MRI->getRegClass(Src); 186 auto DstRC = MRI->getRegClass(Dst); 187 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC); 188 } 189 190 if (Src.isVirtual()) 191 std::swap(Src, Dst); 192 193 // Now Src is physical register, Dst is virtual register. 194 auto DstRC = MRI->getRegClass(Dst); 195 return DstRC->contains(Src); 196 } 197 198 /// Computes depth of instructions in vector \InsInstr. 199 /// 200 /// \param InsInstrs is a vector of machine instructions 201 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 202 /// of defining machine instruction in \p InsInstrs 203 /// \param BlockTrace is a trace of machine instructions 204 /// 205 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 206 unsigned 207 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 208 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 209 MachineTraceMetrics::Trace BlockTrace, 210 const MachineBasicBlock &MBB) { 211 SmallVector<unsigned, 16> InstrDepth; 212 // For each instruction in the new sequence compute the depth based on the 213 // operands. Use the trace information when possible. For new operands which 214 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 215 for (auto *InstrPtr : InsInstrs) { // for each Use 216 unsigned IDepth = 0; 217 for (const MachineOperand &MO : InstrPtr->all_uses()) { 218 // Check for virtual register operand. 219 if (!MO.getReg().isVirtual()) 220 continue; 221 unsigned DepthOp = 0; 222 unsigned LatencyOp = 0; 223 DenseMap<unsigned, unsigned>::iterator II = 224 InstrIdxForVirtReg.find(MO.getReg()); 225 if (II != InstrIdxForVirtReg.end()) { 226 // Operand is new virtual register not in trace 227 assert(II->second < InstrDepth.size() && "Bad Index"); 228 MachineInstr *DefInstr = InsInstrs[II->second]; 229 assert(DefInstr && 230 "There must be a definition for a new virtual register"); 231 DepthOp = InstrDepth[II->second]; 232 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); 233 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); 234 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 235 InstrPtr, UseIdx); 236 } else { 237 MachineInstr *DefInstr = getOperandDef(MO); 238 if (DefInstr && (TII->getMachineCombinerTraceStrategy() != 239 MachineTraceStrategy::TS_Local || 240 DefInstr->getParent() == &MBB)) { 241 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 242 if (!isTransientMI(DefInstr)) 243 LatencyOp = TSchedModel.computeOperandLatency( 244 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), 245 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); 246 } 247 } 248 IDepth = std::max(IDepth, DepthOp + LatencyOp); 249 } 250 InstrDepth.push_back(IDepth); 251 } 252 unsigned NewRootIdx = InsInstrs.size() - 1; 253 return InstrDepth[NewRootIdx]; 254 } 255 256 /// Computes instruction latency as max of latency of defined operands. 257 /// 258 /// \param Root is a machine instruction that could be replaced by NewRoot. 259 /// It is used to compute a more accurate latency information for NewRoot in 260 /// case there is a dependent instruction in the same trace (\p BlockTrace) 261 /// \param NewRoot is the instruction for which the latency is computed 262 /// \param BlockTrace is a trace of machine instructions 263 /// 264 /// \returns Latency of \p NewRoot 265 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 266 MachineTraceMetrics::Trace BlockTrace) { 267 // Check each definition in NewRoot and compute the latency 268 unsigned NewRootLatency = 0; 269 270 for (const MachineOperand &MO : NewRoot->all_defs()) { 271 // Check for virtual register operand. 272 if (!MO.getReg().isVirtual()) 273 continue; 274 // Get the first instruction that uses MO 275 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 276 RI++; 277 if (RI == MRI->reg_end()) 278 continue; 279 MachineInstr *UseMO = RI->getParent(); 280 unsigned LatencyOp = 0; 281 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 282 LatencyOp = TSchedModel.computeOperandLatency( 283 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, 284 UseMO->findRegisterUseOperandIdx(MO.getReg())); 285 } else { 286 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 287 } 288 NewRootLatency = std::max(NewRootLatency, LatencyOp); 289 } 290 return NewRootLatency; 291 } 292 293 CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) { 294 // TODO: If C++ ever gets a real enum class, make this part of the 295 // MachineCombinerPattern class. 296 switch (Pattern) { 297 case MachineCombinerPattern::REASSOC_AX_BY: 298 case MachineCombinerPattern::REASSOC_AX_YB: 299 case MachineCombinerPattern::REASSOC_XA_BY: 300 case MachineCombinerPattern::REASSOC_XA_YB: 301 return CombinerObjective::MustReduceDepth; 302 default: 303 return TII->getCombinerObjective(Pattern); 304 } 305 } 306 307 /// Estimate the latency of the new and original instruction sequence by summing 308 /// up the latencies of the inserted and deleted instructions. This assumes 309 /// that the inserted and deleted instructions are dependent instruction chains, 310 /// which might not hold in all cases. 311 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 312 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 313 SmallVectorImpl<MachineInstr *> &DelInstrs, 314 MachineTraceMetrics::Trace BlockTrace) { 315 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 316 unsigned NewRootLatency = 0; 317 // NewRoot is the last instruction in the \p InsInstrs vector. 318 MachineInstr *NewRoot = InsInstrs.back(); 319 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 320 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 321 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 322 323 unsigned RootLatency = 0; 324 for (auto *I : DelInstrs) 325 RootLatency += TSchedModel.computeInstrLatency(I); 326 327 return {NewRootLatency, RootLatency}; 328 } 329 330 bool MachineCombiner::reduceRegisterPressure( 331 MachineInstr &Root, MachineBasicBlock *MBB, 332 SmallVectorImpl<MachineInstr *> &InsInstrs, 333 SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) { 334 // FIXME: for now, we don't do any check for the register pressure patterns. 335 // We treat them as always profitable. But we can do better if we make 336 // RegPressureTracker class be aware of TIE attribute. Then we can get an 337 // accurate compare of register pressure with DelInstrs or InsInstrs. 338 return true; 339 } 340 341 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 342 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 343 /// sequence to replace the old sequence is that it cannot lengthen the critical 344 /// path. The definition of "improve" may be restricted by specifying that the 345 /// new path improves the data dependency chain (MustReduceDepth). 346 bool MachineCombiner::improvesCriticalPathLen( 347 MachineBasicBlock *MBB, MachineInstr *Root, 348 MachineTraceMetrics::Trace BlockTrace, 349 SmallVectorImpl<MachineInstr *> &InsInstrs, 350 SmallVectorImpl<MachineInstr *> &DelInstrs, 351 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern, 352 bool SlackIsAccurate) { 353 // Get depth and latency of NewRoot and Root. 354 unsigned NewRootDepth = 355 getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB); 356 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 357 358 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 359 << NewRootDepth << "\tRootDepth: " << RootDepth); 360 361 // For a transform such as reassociation, the cost equation is 362 // conservatively calculated so that we must improve the depth (data 363 // dependency cycles) in the critical path to proceed with the transform. 364 // Being conservative also protects against inaccuracies in the underlying 365 // machine trace metrics and CPU models. 366 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 367 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 368 LLVM_DEBUG(NewRootDepth < RootDepth 369 ? dbgs() << "\t and it does it\n" 370 : dbgs() << "\t but it does NOT do it\n"); 371 return NewRootDepth < RootDepth; 372 } 373 374 // A more flexible cost calculation for the critical path includes the slack 375 // of the original code sequence. This may allow the transform to proceed 376 // even if the instruction depths (data dependency cycles) become worse. 377 378 // Account for the latency of the inserted and deleted instructions by 379 unsigned NewRootLatency, RootLatency; 380 if (TII->accumulateInstrSeqToRootLatency(*Root)) { 381 std::tie(NewRootLatency, RootLatency) = 382 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 383 } else { 384 NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back()); 385 RootLatency = TSchedModel.computeInstrLatency(Root); 386 } 387 388 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 389 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 390 unsigned OldCycleCount = 391 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 392 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 393 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 394 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 395 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 396 << "\n\tRootDepth + RootLatency + RootSlack = " 397 << OldCycleCount;); 398 LLVM_DEBUG(NewCycleCount <= OldCycleCount 399 ? dbgs() << "\n\t It IMPROVES PathLen because" 400 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 401 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 402 << ", OldCycleCount = " << OldCycleCount << "\n"); 403 404 return NewCycleCount <= OldCycleCount; 405 } 406 407 /// helper routine to convert instructions into SC 408 void MachineCombiner::instr2instrSC( 409 SmallVectorImpl<MachineInstr *> &Instrs, 410 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 411 for (auto *InstrPtr : Instrs) { 412 unsigned Opc = InstrPtr->getOpcode(); 413 unsigned Idx = TII->get(Opc).getSchedClass(); 414 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 415 InstrsSC.push_back(SC); 416 } 417 } 418 419 /// True when the new instructions do not increase resource length 420 bool MachineCombiner::preservesResourceLen( 421 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 422 SmallVectorImpl<MachineInstr *> &InsInstrs, 423 SmallVectorImpl<MachineInstr *> &DelInstrs) { 424 if (!TSchedModel.hasInstrSchedModel()) 425 return true; 426 427 // Compute current resource length 428 429 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 430 SmallVector <const MachineBasicBlock *, 1> MBBarr; 431 MBBarr.push_back(MBB); 432 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 433 434 // Deal with SC rather than Instructions. 435 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 436 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 437 438 instr2instrSC(InsInstrs, InsInstrsSC); 439 instr2instrSC(DelInstrs, DelInstrsSC); 440 441 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC}; 442 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC}; 443 444 // Compute new resource length. 445 unsigned ResLenAfterCombine = 446 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 447 448 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 449 << ResLenBeforeCombine 450 << " and after: " << ResLenAfterCombine << "\n";); 451 LLVM_DEBUG( 452 ResLenAfterCombine <= 453 ResLenBeforeCombine + TII->getExtendResourceLenLimit() 454 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 455 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 456 "Length\n"); 457 458 return ResLenAfterCombine <= 459 ResLenBeforeCombine + TII->getExtendResourceLenLimit(); 460 } 461 462 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 463 /// depths if requested. 464 /// 465 /// \param MBB basic block to insert instructions in 466 /// \param MI current machine instruction 467 /// \param InsInstrs new instructions to insert in \p MBB 468 /// \param DelInstrs instruction to delete from \p MBB 469 /// \param TraceEnsemble is a pointer to the machine trace information 470 /// \param RegUnits set of live registers, needed to compute instruction depths 471 /// \param TII is target instruction info, used to call target hook 472 /// \param Pattern is used to call target hook finalizeInsInstrs 473 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 474 /// otherwise invalidate the trace 475 static void 476 insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 477 SmallVectorImpl<MachineInstr *> &InsInstrs, 478 SmallVectorImpl<MachineInstr *> &DelInstrs, 479 MachineTraceMetrics::Ensemble *TraceEnsemble, 480 SparseSet<LiveRegUnit> &RegUnits, 481 const TargetInstrInfo *TII, unsigned Pattern, 482 bool IncrementalUpdate) { 483 // If we want to fix up some placeholder for some target, do it now. 484 // We need this because in genAlternativeCodeSequence, we have not decided the 485 // better pattern InsInstrs or DelInstrs, so we don't want generate some 486 // sideeffect to the function. For example we need to delay the constant pool 487 // entry creation here after InsInstrs is selected as better pattern. 488 // Otherwise the constant pool entry created for InsInstrs will not be deleted 489 // even if InsInstrs is not the better pattern. 490 TII->finalizeInsInstrs(MI, Pattern, InsInstrs); 491 492 for (auto *InstrPtr : InsInstrs) 493 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 494 495 for (auto *InstrPtr : DelInstrs) { 496 InstrPtr->eraseFromParent(); 497 // Erase all LiveRegs defined by the removed instruction 498 for (auto *I = RegUnits.begin(); I != RegUnits.end();) { 499 if (I->MI == InstrPtr) 500 I = RegUnits.erase(I); 501 else 502 I++; 503 } 504 } 505 506 if (IncrementalUpdate) 507 for (auto *InstrPtr : InsInstrs) 508 TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits); 509 else 510 TraceEnsemble->invalidate(MBB); 511 512 NumInstCombined++; 513 } 514 515 // Check that the difference between original and new latency is decreasing for 516 // later patterns. This helps to discover sub-optimal pattern orderings. 517 void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB, 518 MachineInstr &Root, 519 SmallVector<unsigned, 16> &Patterns) { 520 long PrevLatencyDiff = std::numeric_limits<long>::max(); 521 (void)PrevLatencyDiff; // Variable is used in assert only. 522 for (auto P : Patterns) { 523 SmallVector<MachineInstr *, 16> InsInstrs; 524 SmallVector<MachineInstr *, 16> DelInstrs; 525 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 526 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 527 InstrIdxForVirtReg); 528 // Found pattern, but did not generate alternative sequence. 529 // This can happen e.g. when an immediate could not be materialized 530 // in a single instruction. 531 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 532 continue; 533 534 unsigned NewRootLatency, RootLatency; 535 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 536 Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB)); 537 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 538 assert(CurrentLatencyDiff <= PrevLatencyDiff && 539 "Current pattern is better than previous pattern."); 540 PrevLatencyDiff = CurrentLatencyDiff; 541 } 542 } 543 544 /// Substitute a slow code sequence with a faster one by 545 /// evaluating instruction combining pattern. 546 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 547 /// combining based on machine trace metrics. Only combine a sequence of 548 /// instructions when this neither lengthens the critical path nor increases 549 /// resource pressure. When optimizing for codesize always combine when the new 550 /// sequence is shorter. 551 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 552 bool Changed = false; 553 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 554 555 bool IncrementalUpdate = false; 556 auto BlockIter = MBB->begin(); 557 decltype(BlockIter) LastUpdate; 558 // Check if the block is in a loop. 559 const MachineLoop *ML = MLI->getLoopFor(MBB); 560 if (!TraceEnsemble) 561 TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy()); 562 563 SparseSet<LiveRegUnit> RegUnits; 564 RegUnits.setUniverse(TRI->getNumRegUnits()); 565 566 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 567 568 bool DoRegPressureReduce = 569 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo); 570 571 while (BlockIter != MBB->end()) { 572 auto &MI = *BlockIter++; 573 SmallVector<unsigned, 16> Patterns; 574 // The motivating example is: 575 // 576 // MUL Other MUL_op1 MUL_op2 Other 577 // \ / \ | / 578 // ADD/SUB => MADD/MSUB 579 // (=Root) (=NewRoot) 580 581 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 582 // usually beneficial for code size it unfortunately can hurt performance 583 // when the ADD is on the critical path, but the MUL is not. With the 584 // substitution the MUL becomes part of the critical path (in form of the 585 // MADD) and can lengthen it on architectures where the MADD latency is 586 // longer than the ADD latency. 587 // 588 // For each instruction we check if it can be the root of a combiner 589 // pattern. Then for each pattern the new code sequence in form of MI is 590 // generated and evaluated. When the efficiency criteria (don't lengthen 591 // critical path, don't use more resources) is met the new sequence gets 592 // hooked up into the basic block before the old sequence is removed. 593 // 594 // The algorithm does not try to evaluate all patterns and pick the best. 595 // This is only an artificial restriction though. In practice there is 596 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 597 // based on an internal cost heuristic. If 598 // machine-combiner-verify-pattern-order is enabled, all patterns are 599 // checked to ensure later patterns do not provide better latency savings. 600 601 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce)) 602 continue; 603 604 if (VerifyPatternOrder) 605 verifyPatternOrder(MBB, MI, Patterns); 606 607 for (const auto P : Patterns) { 608 SmallVector<MachineInstr *, 16> InsInstrs; 609 SmallVector<MachineInstr *, 16> DelInstrs; 610 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 611 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 612 InstrIdxForVirtReg); 613 // Found pattern, but did not generate alternative sequence. 614 // This can happen e.g. when an immediate could not be materialized 615 // in a single instruction. 616 if (InsInstrs.empty()) 617 continue; 618 619 LLVM_DEBUG(if (dump_intrs) { 620 dbgs() << "\tFor the Pattern (" << (int)P 621 << ") these instructions could be removed\n"; 622 for (auto const *InstrPtr : DelInstrs) 623 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 624 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 625 dbgs() << "\tThese instructions could replace the removed ones\n"; 626 for (auto const *InstrPtr : InsInstrs) 627 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 628 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 629 }); 630 631 if (IncrementalUpdate && LastUpdate != BlockIter) { 632 // Update depths since the last incremental update. 633 TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits); 634 LastUpdate = BlockIter; 635 } 636 637 if (DoRegPressureReduce && 638 getCombinerObjective(P) == 639 CombinerObjective::MustReduceRegisterPressure) { 640 if (MBB->size() > inc_threshold) { 641 // Use incremental depth updates for basic blocks above threshold 642 IncrementalUpdate = true; 643 LastUpdate = BlockIter; 644 } 645 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) { 646 // Replace DelInstrs with InsInstrs. 647 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 648 RegUnits, TII, P, IncrementalUpdate); 649 Changed |= true; 650 651 // Go back to previous instruction as it may have ILP reassociation 652 // opportunity. 653 BlockIter--; 654 break; 655 } 656 } 657 658 if (ML && TII->isThroughputPattern(P)) { 659 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n"); 660 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 661 RegUnits, TII, P, IncrementalUpdate); 662 // Eagerly stop after the first pattern fires. 663 Changed = true; 664 break; 665 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) { 666 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize (" 667 << InsInstrs.size() << " < " 668 << DelInstrs.size() << ")\n"); 669 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 670 RegUnits, TII, P, IncrementalUpdate); 671 // Eagerly stop after the first pattern fires. 672 Changed = true; 673 break; 674 } else { 675 // For big basic blocks, we only compute the full trace the first time 676 // we hit this. We do not invalidate the trace, but instead update the 677 // instruction depths incrementally. 678 // NOTE: Only the instruction depths up to MI are accurate. All other 679 // trace information is not updated. 680 MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB); 681 Traces->verifyAnalysis(); 682 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 683 InstrIdxForVirtReg, P, 684 !IncrementalUpdate) && 685 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 686 if (MBB->size() > inc_threshold) { 687 // Use incremental depth updates for basic blocks above treshold 688 IncrementalUpdate = true; 689 LastUpdate = BlockIter; 690 } 691 692 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 693 RegUnits, TII, P, IncrementalUpdate); 694 695 // Eagerly stop after the first pattern fires. 696 Changed = true; 697 break; 698 } 699 // Cleanup instructions of the alternative code sequence. There is no 700 // use for them. 701 MachineFunction *MF = MBB->getParent(); 702 for (auto *InstrPtr : InsInstrs) 703 MF->deleteMachineInstr(InstrPtr); 704 } 705 InstrIdxForVirtReg.clear(); 706 } 707 } 708 709 if (Changed && IncrementalUpdate) 710 Traces->invalidate(MBB); 711 return Changed; 712 } 713 714 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 715 STI = &MF.getSubtarget(); 716 TII = STI->getInstrInfo(); 717 TRI = STI->getRegisterInfo(); 718 SchedModel = STI->getSchedModel(); 719 TSchedModel.init(STI); 720 MRI = &MF.getRegInfo(); 721 MLI = &getAnalysis<MachineLoopInfo>(); 722 Traces = &getAnalysis<MachineTraceMetrics>(); 723 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 724 MBFI = (PSI && PSI->hasProfileSummary()) ? 725 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 726 nullptr; 727 TraceEnsemble = nullptr; 728 OptSize = MF.getFunction().hasOptSize(); 729 RegClassInfo.runOnMachineFunction(MF); 730 731 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 732 if (!TII->useMachineCombiner()) { 733 LLVM_DEBUG( 734 dbgs() 735 << " Skipping pass: Target does not support machine combiner\n"); 736 return false; 737 } 738 739 bool Changed = false; 740 741 // Try to combine instructions. 742 for (auto &MBB : MF) 743 Changed |= combineInstructions(&MBB); 744 745 return Changed; 746 } 747