xref: /llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp (revision 8bf7f86d7966ff835967669fb6bf23897e20b71d)
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ProfileSummaryInfo.h"
16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
17 #include "llvm/CodeGen/MachineCombinerPattern.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/MachineSizeOpts.h"
24 #include "llvm/CodeGen/MachineTraceMetrics.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSchedule.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "machine-combiner"
38 
39 STATISTIC(NumInstCombined, "Number of machineinst combined");
40 
41 static cl::opt<unsigned>
42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43               cl::desc("Incremental depth computation will be used for basic "
44                        "blocks with more instructions."), cl::init(500));
45 
46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47                                 cl::desc("Dump all substituted intrs"),
48                                 cl::init(false));
49 
50 #ifdef EXPENSIVE_CHECKS
51 static cl::opt<bool> VerifyPatternOrder(
52     "machine-combiner-verify-pattern-order", cl::Hidden,
53     cl::desc(
54         "Verify that the generated patterns are ordered by increasing latency"),
55     cl::init(true));
56 #else
57 static cl::opt<bool> VerifyPatternOrder(
58     "machine-combiner-verify-pattern-order", cl::Hidden,
59     cl::desc(
60         "Verify that the generated patterns are ordered by increasing latency"),
61     cl::init(false));
62 #endif
63 
64 namespace {
65 class MachineCombiner : public MachineFunctionPass {
66   const TargetSubtargetInfo *STI = nullptr;
67   const TargetInstrInfo *TII = nullptr;
68   const TargetRegisterInfo *TRI = nullptr;
69   MCSchedModel SchedModel;
70   MachineRegisterInfo *MRI = nullptr;
71   MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo
72   MachineTraceMetrics *Traces = nullptr;
73   MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr;
74   MachineBlockFrequencyInfo *MBFI = nullptr;
75   ProfileSummaryInfo *PSI = nullptr;
76   RegisterClassInfo RegClassInfo;
77 
78   TargetSchedModel TSchedModel;
79 
80   /// True if optimizing for code size.
81   bool OptSize;
82 
83 public:
84   static char ID;
85   MachineCombiner() : MachineFunctionPass(ID) {
86     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
87   }
88   void getAnalysisUsage(AnalysisUsage &AU) const override;
89   bool runOnMachineFunction(MachineFunction &MF) override;
90   StringRef getPassName() const override { return "Machine InstCombiner"; }
91 
92 private:
93   bool combineInstructions(MachineBasicBlock *);
94   MachineInstr *getOperandDef(const MachineOperand &MO);
95   bool isTransientMI(const MachineInstr *MI);
96   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
98                     MachineTraceMetrics::Trace BlockTrace,
99                     const MachineBasicBlock &MBB);
100   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
101                       MachineTraceMetrics::Trace BlockTrace);
102   bool
103   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
104                           MachineTraceMetrics::Trace BlockTrace,
105                           SmallVectorImpl<MachineInstr *> &InsInstrs,
106                           SmallVectorImpl<MachineInstr *> &DelInstrs,
107                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
108                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
109   bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
110                               SmallVectorImpl<MachineInstr *> &InsInstrs,
111                               SmallVectorImpl<MachineInstr *> &DelInstrs,
112                               MachineCombinerPattern Pattern);
113   bool preservesResourceLen(MachineBasicBlock *MBB,
114                             MachineTraceMetrics::Trace BlockTrace,
115                             SmallVectorImpl<MachineInstr *> &InsInstrs,
116                             SmallVectorImpl<MachineInstr *> &DelInstrs);
117   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
118                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
119   std::pair<unsigned, unsigned>
120   getLatenciesForInstrSequences(MachineInstr &MI,
121                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
122                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
123                                 MachineTraceMetrics::Trace BlockTrace);
124 
125   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
126                           SmallVector<MachineCombinerPattern, 16> &Patterns);
127 };
128 }
129 
130 char MachineCombiner::ID = 0;
131 char &llvm::MachineCombinerID = MachineCombiner::ID;
132 
133 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
134                       "Machine InstCombiner", false, false)
135 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
136 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
137 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
138                     false, false)
139 
140 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
141   AU.setPreservesCFG();
142   AU.addPreserved<MachineDominatorTree>();
143   AU.addRequired<MachineLoopInfo>();
144   AU.addPreserved<MachineLoopInfo>();
145   AU.addRequired<MachineTraceMetrics>();
146   AU.addPreserved<MachineTraceMetrics>();
147   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
148   AU.addRequired<ProfileSummaryInfoWrapperPass>();
149   MachineFunctionPass::getAnalysisUsage(AU);
150 }
151 
152 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
153   MachineInstr *DefInstr = nullptr;
154   // We need a virtual register definition.
155   if (MO.isReg() && MO.getReg().isVirtual())
156     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
157   // PHI's have no depth etc.
158   if (DefInstr && DefInstr->isPHI())
159     DefInstr = nullptr;
160   return DefInstr;
161 }
162 
163 /// Return true if MI is unlikely to generate an actual target instruction.
164 bool MachineCombiner::isTransientMI(const MachineInstr *MI) {
165   if (!MI->isCopy())
166     return MI->isTransient();
167 
168   // If MI is a COPY, check if its src and dst registers can be coalesced.
169   Register Dst = MI->getOperand(0).getReg();
170   Register Src = MI->getOperand(1).getReg();
171 
172   if (!MI->isFullCopy()) {
173     // If src RC contains super registers of dst RC, it can also be coalesced.
174     if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical())
175       return false;
176 
177     auto SrcSub = MI->getOperand(1).getSubReg();
178     auto SrcRC = MRI->getRegClass(Src);
179     auto DstRC = MRI->getRegClass(Dst);
180     return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr;
181   }
182 
183   if (Src.isPhysical() && Dst.isPhysical())
184     return Src == Dst;
185 
186   if (Src.isVirtual() && Dst.isVirtual()) {
187     auto SrcRC = MRI->getRegClass(Src);
188     auto DstRC = MRI->getRegClass(Dst);
189     return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC);
190   }
191 
192   if (Src.isVirtual())
193     std::swap(Src, Dst);
194 
195   // Now Src is physical register, Dst is virtual register.
196   auto DstRC = MRI->getRegClass(Dst);
197   return DstRC->contains(Src);
198 }
199 
200 /// Computes depth of instructions in vector \InsInstr.
201 ///
202 /// \param InsInstrs is a vector of machine instructions
203 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
204 /// of defining machine instruction in \p InsInstrs
205 /// \param BlockTrace is a trace of machine instructions
206 ///
207 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
208 unsigned
209 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
210                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
211                           MachineTraceMetrics::Trace BlockTrace,
212                           const MachineBasicBlock &MBB) {
213   SmallVector<unsigned, 16> InstrDepth;
214   // For each instruction in the new sequence compute the depth based on the
215   // operands. Use the trace information when possible. For new operands which
216   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
217   for (auto *InstrPtr : InsInstrs) { // for each Use
218     unsigned IDepth = 0;
219     for (const MachineOperand &MO : InstrPtr->operands()) {
220       // Check for virtual register operand.
221       if (!(MO.isReg() && MO.getReg().isVirtual()))
222         continue;
223       if (!MO.isUse())
224         continue;
225       unsigned DepthOp = 0;
226       unsigned LatencyOp = 0;
227       DenseMap<unsigned, unsigned>::iterator II =
228           InstrIdxForVirtReg.find(MO.getReg());
229       if (II != InstrIdxForVirtReg.end()) {
230         // Operand is new virtual register not in trace
231         assert(II->second < InstrDepth.size() && "Bad Index");
232         MachineInstr *DefInstr = InsInstrs[II->second];
233         assert(DefInstr &&
234                "There must be a definition for a new virtual register");
235         DepthOp = InstrDepth[II->second];
236         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
237         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
238         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
239                                                       InstrPtr, UseIdx);
240       } else {
241         MachineInstr *DefInstr = getOperandDef(MO);
242         if (DefInstr && (TII->getMachineCombinerTraceStrategy() !=
243                              MachineTraceStrategy::TS_Local ||
244                          DefInstr->getParent() == &MBB)) {
245           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
246           if (!isTransientMI(DefInstr))
247             LatencyOp = TSchedModel.computeOperandLatency(
248                 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
249                 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
250         }
251       }
252       IDepth = std::max(IDepth, DepthOp + LatencyOp);
253     }
254     InstrDepth.push_back(IDepth);
255   }
256   unsigned NewRootIdx = InsInstrs.size() - 1;
257   return InstrDepth[NewRootIdx];
258 }
259 
260 /// Computes instruction latency as max of latency of defined operands.
261 ///
262 /// \param Root is a machine instruction that could be replaced by NewRoot.
263 /// It is used to compute a more accurate latency information for NewRoot in
264 /// case there is a dependent instruction in the same trace (\p BlockTrace)
265 /// \param NewRoot is the instruction for which the latency is computed
266 /// \param BlockTrace is a trace of machine instructions
267 ///
268 /// \returns Latency of \p NewRoot
269 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
270                                      MachineTraceMetrics::Trace BlockTrace) {
271   // Check each definition in NewRoot and compute the latency
272   unsigned NewRootLatency = 0;
273 
274   for (const MachineOperand &MO : NewRoot->operands()) {
275     // Check for virtual register operand.
276     if (!(MO.isReg() && MO.getReg().isVirtual()))
277       continue;
278     if (!MO.isDef())
279       continue;
280     // Get the first instruction that uses MO
281     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
282     RI++;
283     if (RI == MRI->reg_end())
284       continue;
285     MachineInstr *UseMO = RI->getParent();
286     unsigned LatencyOp = 0;
287     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
288       LatencyOp = TSchedModel.computeOperandLatency(
289           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
290           UseMO->findRegisterUseOperandIdx(MO.getReg()));
291     } else {
292       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
293     }
294     NewRootLatency = std::max(NewRootLatency, LatencyOp);
295   }
296   return NewRootLatency;
297 }
298 
299 /// The combiner's goal may differ based on which pattern it is attempting
300 /// to optimize.
301 enum class CombinerObjective {
302   MustReduceDepth,            // The data dependency chain must be improved.
303   MustReduceRegisterPressure, // The register pressure must be reduced.
304   Default                     // The critical path must not be lengthened.
305 };
306 
307 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
308   // TODO: If C++ ever gets a real enum class, make this part of the
309   // MachineCombinerPattern class.
310   switch (P) {
311   case MachineCombinerPattern::REASSOC_AX_BY:
312   case MachineCombinerPattern::REASSOC_AX_YB:
313   case MachineCombinerPattern::REASSOC_XA_BY:
314   case MachineCombinerPattern::REASSOC_XA_YB:
315   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
316   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
317   case MachineCombinerPattern::SUBADD_OP1:
318   case MachineCombinerPattern::SUBADD_OP2:
319   case MachineCombinerPattern::FMADD_AX:
320   case MachineCombinerPattern::FMADD_XA:
321   case MachineCombinerPattern::FMSUB:
322   case MachineCombinerPattern::FNMSUB:
323     return CombinerObjective::MustReduceDepth;
324   case MachineCombinerPattern::REASSOC_XY_BCA:
325   case MachineCombinerPattern::REASSOC_XY_BAC:
326     return CombinerObjective::MustReduceRegisterPressure;
327   default:
328     return CombinerObjective::Default;
329   }
330 }
331 
332 /// Estimate the latency of the new and original instruction sequence by summing
333 /// up the latencies of the inserted and deleted instructions. This assumes
334 /// that the inserted and deleted instructions are dependent instruction chains,
335 /// which might not hold in all cases.
336 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
337     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
338     SmallVectorImpl<MachineInstr *> &DelInstrs,
339     MachineTraceMetrics::Trace BlockTrace) {
340   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
341   unsigned NewRootLatency = 0;
342   // NewRoot is the last instruction in the \p InsInstrs vector.
343   MachineInstr *NewRoot = InsInstrs.back();
344   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
345     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
346   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
347 
348   unsigned RootLatency = 0;
349   for (auto *I : DelInstrs)
350     RootLatency += TSchedModel.computeInstrLatency(I);
351 
352   return {NewRootLatency, RootLatency};
353 }
354 
355 bool MachineCombiner::reduceRegisterPressure(
356     MachineInstr &Root, MachineBasicBlock *MBB,
357     SmallVectorImpl<MachineInstr *> &InsInstrs,
358     SmallVectorImpl<MachineInstr *> &DelInstrs,
359     MachineCombinerPattern Pattern) {
360   // FIXME: for now, we don't do any check for the register pressure patterns.
361   // We treat them as always profitable. But we can do better if we make
362   // RegPressureTracker class be aware of TIE attribute. Then we can get an
363   // accurate compare of register pressure with DelInstrs or InsInstrs.
364   return true;
365 }
366 
367 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
368 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
369 /// sequence to replace the old sequence is that it cannot lengthen the critical
370 /// path. The definition of "improve" may be restricted by specifying that the
371 /// new path improves the data dependency chain (MustReduceDepth).
372 bool MachineCombiner::improvesCriticalPathLen(
373     MachineBasicBlock *MBB, MachineInstr *Root,
374     MachineTraceMetrics::Trace BlockTrace,
375     SmallVectorImpl<MachineInstr *> &InsInstrs,
376     SmallVectorImpl<MachineInstr *> &DelInstrs,
377     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
378     MachineCombinerPattern Pattern,
379     bool SlackIsAccurate) {
380   // Get depth and latency of NewRoot and Root.
381   unsigned NewRootDepth =
382       getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB);
383   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
384 
385   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
386                     << NewRootDepth << "\tRootDepth: " << RootDepth);
387 
388   // For a transform such as reassociation, the cost equation is
389   // conservatively calculated so that we must improve the depth (data
390   // dependency cycles) in the critical path to proceed with the transform.
391   // Being conservative also protects against inaccuracies in the underlying
392   // machine trace metrics and CPU models.
393   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
394     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
395     LLVM_DEBUG(NewRootDepth < RootDepth
396                    ? dbgs() << "\t  and it does it\n"
397                    : dbgs() << "\t  but it does NOT do it\n");
398     return NewRootDepth < RootDepth;
399   }
400 
401   // A more flexible cost calculation for the critical path includes the slack
402   // of the original code sequence. This may allow the transform to proceed
403   // even if the instruction depths (data dependency cycles) become worse.
404 
405   // Account for the latency of the inserted and deleted instructions by
406   unsigned NewRootLatency, RootLatency;
407   std::tie(NewRootLatency, RootLatency) =
408       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
409 
410   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
411   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
412   unsigned OldCycleCount =
413       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
414   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
415                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
416                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
417                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
418                     << "\n\tRootDepth + RootLatency + RootSlack = "
419                     << OldCycleCount;);
420   LLVM_DEBUG(NewCycleCount <= OldCycleCount
421                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
422                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
423   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
424                     << ", OldCycleCount = " << OldCycleCount << "\n");
425 
426   return NewCycleCount <= OldCycleCount;
427 }
428 
429 /// helper routine to convert instructions into SC
430 void MachineCombiner::instr2instrSC(
431     SmallVectorImpl<MachineInstr *> &Instrs,
432     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
433   for (auto *InstrPtr : Instrs) {
434     unsigned Opc = InstrPtr->getOpcode();
435     unsigned Idx = TII->get(Opc).getSchedClass();
436     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
437     InstrsSC.push_back(SC);
438   }
439 }
440 
441 /// True when the new instructions do not increase resource length
442 bool MachineCombiner::preservesResourceLen(
443     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
444     SmallVectorImpl<MachineInstr *> &InsInstrs,
445     SmallVectorImpl<MachineInstr *> &DelInstrs) {
446   if (!TSchedModel.hasInstrSchedModel())
447     return true;
448 
449   // Compute current resource length
450 
451   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
452   SmallVector <const MachineBasicBlock *, 1> MBBarr;
453   MBBarr.push_back(MBB);
454   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
455 
456   // Deal with SC rather than Instructions.
457   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
458   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
459 
460   instr2instrSC(InsInstrs, InsInstrsSC);
461   instr2instrSC(DelInstrs, DelInstrsSC);
462 
463   ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC};
464   ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC};
465 
466   // Compute new resource length.
467   unsigned ResLenAfterCombine =
468       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
469 
470   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
471                     << ResLenBeforeCombine
472                     << " and after: " << ResLenAfterCombine << "\n";);
473   LLVM_DEBUG(
474       ResLenAfterCombine <=
475       ResLenBeforeCombine + TII->getExtendResourceLenLimit()
476           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
477           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
478                       "Length\n");
479 
480   return ResLenAfterCombine <=
481          ResLenBeforeCombine + TII->getExtendResourceLenLimit();
482 }
483 
484 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
485 /// depths if requested.
486 ///
487 /// \param MBB basic block to insert instructions in
488 /// \param MI current machine instruction
489 /// \param InsInstrs new instructions to insert in \p MBB
490 /// \param DelInstrs instruction to delete from \p MBB
491 /// \param TraceEnsemble is a pointer to the machine trace information
492 /// \param RegUnits set of live registers, needed to compute instruction depths
493 /// \param TII is target instruction info, used to call target hook
494 /// \param Pattern is used to call target hook finalizeInsInstrs
495 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
496 ///                          otherwise invalidate the trace
497 static void insertDeleteInstructions(
498     MachineBasicBlock *MBB, MachineInstr &MI,
499     SmallVector<MachineInstr *, 16> InsInstrs,
500     SmallVector<MachineInstr *, 16> DelInstrs,
501     MachineTraceMetrics::Ensemble *TraceEnsemble,
502     SparseSet<LiveRegUnit> &RegUnits, const TargetInstrInfo *TII,
503     MachineCombinerPattern Pattern, bool IncrementalUpdate) {
504   // If we want to fix up some placeholder for some target, do it now.
505   // We need this because in genAlternativeCodeSequence, we have not decided the
506   // better pattern InsInstrs or DelInstrs, so we don't want generate some
507   // sideeffect to the function. For example we need to delay the constant pool
508   // entry creation here after InsInstrs is selected as better pattern.
509   // Otherwise the constant pool entry created for InsInstrs will not be deleted
510   // even if InsInstrs is not the better pattern.
511   TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
512 
513   for (auto *InstrPtr : InsInstrs)
514     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
515 
516   for (auto *InstrPtr : DelInstrs) {
517     InstrPtr->eraseFromParent();
518     // Erase all LiveRegs defined by the removed instruction
519     for (auto *I = RegUnits.begin(); I != RegUnits.end();) {
520       if (I->MI == InstrPtr)
521         I = RegUnits.erase(I);
522       else
523         I++;
524     }
525   }
526 
527   if (IncrementalUpdate)
528     for (auto *InstrPtr : InsInstrs)
529       TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits);
530   else
531     TraceEnsemble->invalidate(MBB);
532 
533   NumInstCombined++;
534 }
535 
536 // Check that the difference between original and new latency is decreasing for
537 // later patterns. This helps to discover sub-optimal pattern orderings.
538 void MachineCombiner::verifyPatternOrder(
539     MachineBasicBlock *MBB, MachineInstr &Root,
540     SmallVector<MachineCombinerPattern, 16> &Patterns) {
541   long PrevLatencyDiff = std::numeric_limits<long>::max();
542   (void)PrevLatencyDiff; // Variable is used in assert only.
543   for (auto P : Patterns) {
544     SmallVector<MachineInstr *, 16> InsInstrs;
545     SmallVector<MachineInstr *, 16> DelInstrs;
546     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
547     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
548                                     InstrIdxForVirtReg);
549     // Found pattern, but did not generate alternative sequence.
550     // This can happen e.g. when an immediate could not be materialized
551     // in a single instruction.
552     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
553       continue;
554 
555     unsigned NewRootLatency, RootLatency;
556     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
557         Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB));
558     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
559     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
560            "Current pattern is better than previous pattern.");
561     PrevLatencyDiff = CurrentLatencyDiff;
562   }
563 }
564 
565 /// Substitute a slow code sequence with a faster one by
566 /// evaluating instruction combining pattern.
567 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
568 /// combining based on machine trace metrics. Only combine a sequence of
569 /// instructions  when this neither lengthens the critical path nor increases
570 /// resource pressure. When optimizing for codesize always combine when the new
571 /// sequence is shorter.
572 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
573   bool Changed = false;
574   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
575 
576   bool IncrementalUpdate = false;
577   auto BlockIter = MBB->begin();
578   decltype(BlockIter) LastUpdate;
579   // Check if the block is in a loop.
580   const MachineLoop *ML = MLI->getLoopFor(MBB);
581   if (!TraceEnsemble)
582     TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy());
583 
584   SparseSet<LiveRegUnit> RegUnits;
585   RegUnits.setUniverse(TRI->getNumRegUnits());
586 
587   bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
588 
589   bool DoRegPressureReduce =
590       TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
591 
592   while (BlockIter != MBB->end()) {
593     auto &MI = *BlockIter++;
594     SmallVector<MachineCombinerPattern, 16> Patterns;
595     // The motivating example is:
596     //
597     //     MUL  Other        MUL_op1 MUL_op2  Other
598     //      \    /               \      |    /
599     //      ADD/SUB      =>        MADD/MSUB
600     //      (=Root)                (=NewRoot)
601 
602     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
603     // usually beneficial for code size it unfortunately can hurt performance
604     // when the ADD is on the critical path, but the MUL is not. With the
605     // substitution the MUL becomes part of the critical path (in form of the
606     // MADD) and can lengthen it on architectures where the MADD latency is
607     // longer than the ADD latency.
608     //
609     // For each instruction we check if it can be the root of a combiner
610     // pattern. Then for each pattern the new code sequence in form of MI is
611     // generated and evaluated. When the efficiency criteria (don't lengthen
612     // critical path, don't use more resources) is met the new sequence gets
613     // hooked up into the basic block before the old sequence is removed.
614     //
615     // The algorithm does not try to evaluate all patterns and pick the best.
616     // This is only an artificial restriction though. In practice there is
617     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
618     // based on an internal cost heuristic. If
619     // machine-combiner-verify-pattern-order is enabled, all patterns are
620     // checked to ensure later patterns do not provide better latency savings.
621 
622     if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
623       continue;
624 
625     if (VerifyPatternOrder)
626       verifyPatternOrder(MBB, MI, Patterns);
627 
628     for (const auto P : Patterns) {
629       SmallVector<MachineInstr *, 16> InsInstrs;
630       SmallVector<MachineInstr *, 16> DelInstrs;
631       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
632       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
633                                       InstrIdxForVirtReg);
634       // Found pattern, but did not generate alternative sequence.
635       // This can happen e.g. when an immediate could not be materialized
636       // in a single instruction.
637       if (InsInstrs.empty())
638         continue;
639 
640       LLVM_DEBUG(if (dump_intrs) {
641         dbgs() << "\tFor the Pattern (" << (int)P
642                << ") these instructions could be removed\n";
643         for (auto const *InstrPtr : DelInstrs)
644           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
645                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
646         dbgs() << "\tThese instructions could replace the removed ones\n";
647         for (auto const *InstrPtr : InsInstrs)
648           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
649                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
650       });
651 
652       if (IncrementalUpdate && LastUpdate != BlockIter) {
653         // Update depths since the last incremental update.
654         TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits);
655         LastUpdate = BlockIter;
656       }
657 
658       if (DoRegPressureReduce &&
659           getCombinerObjective(P) ==
660               CombinerObjective::MustReduceRegisterPressure) {
661         if (MBB->size() > inc_threshold) {
662           // Use incremental depth updates for basic blocks above threshold
663           IncrementalUpdate = true;
664           LastUpdate = BlockIter;
665         }
666         if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
667           // Replace DelInstrs with InsInstrs.
668           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
669                                    RegUnits, TII, P, IncrementalUpdate);
670           Changed |= true;
671 
672           // Go back to previous instruction as it may have ILP reassociation
673           // opportunity.
674           BlockIter--;
675           break;
676         }
677       }
678 
679       if (ML && TII->isThroughputPattern(P)) {
680         LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n");
681         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
682                                  RegUnits, TII, P, IncrementalUpdate);
683         // Eagerly stop after the first pattern fires.
684         Changed = true;
685         break;
686       } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) {
687         LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize ("
688                           << InsInstrs.size() << " < "
689                           << DelInstrs.size() << ")\n");
690         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
691                                  RegUnits, TII, P, IncrementalUpdate);
692         // Eagerly stop after the first pattern fires.
693         Changed = true;
694         break;
695       } else {
696         // For big basic blocks, we only compute the full trace the first time
697         // we hit this. We do not invalidate the trace, but instead update the
698         // instruction depths incrementally.
699         // NOTE: Only the instruction depths up to MI are accurate. All other
700         // trace information is not updated.
701         MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB);
702         Traces->verifyAnalysis();
703         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
704                                     InstrIdxForVirtReg, P,
705                                     !IncrementalUpdate) &&
706             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
707           if (MBB->size() > inc_threshold) {
708             // Use incremental depth updates for basic blocks above treshold
709             IncrementalUpdate = true;
710             LastUpdate = BlockIter;
711           }
712 
713           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
714                                    RegUnits, TII, P, IncrementalUpdate);
715 
716           // Eagerly stop after the first pattern fires.
717           Changed = true;
718           break;
719         }
720         // Cleanup instructions of the alternative code sequence. There is no
721         // use for them.
722         MachineFunction *MF = MBB->getParent();
723         for (auto *InstrPtr : InsInstrs)
724           MF->deleteMachineInstr(InstrPtr);
725       }
726       InstrIdxForVirtReg.clear();
727     }
728   }
729 
730   if (Changed && IncrementalUpdate)
731     Traces->invalidate(MBB);
732   return Changed;
733 }
734 
735 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
736   STI = &MF.getSubtarget();
737   TII = STI->getInstrInfo();
738   TRI = STI->getRegisterInfo();
739   SchedModel = STI->getSchedModel();
740   TSchedModel.init(STI);
741   MRI = &MF.getRegInfo();
742   MLI = &getAnalysis<MachineLoopInfo>();
743   Traces = &getAnalysis<MachineTraceMetrics>();
744   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
745   MBFI = (PSI && PSI->hasProfileSummary()) ?
746          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
747          nullptr;
748   TraceEnsemble = nullptr;
749   OptSize = MF.getFunction().hasOptSize();
750   RegClassInfo.runOnMachineFunction(MF);
751 
752   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
753   if (!TII->useMachineCombiner()) {
754     LLVM_DEBUG(
755         dbgs()
756         << "  Skipping pass: Target does not support machine combiner\n");
757     return false;
758   }
759 
760   bool Changed = false;
761 
762   // Try to combine instructions.
763   for (auto &MBB : MF)
764     Changed |= combineInstructions(&MBB);
765 
766   return Changed;
767 }
768